Properties

Label 2646.2.f.a.1765.1
Level $2646$
Weight $2$
Character 2646.1765
Analytic conductor $21.128$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(883,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-1,-3,0,0,2,0,6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1765.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1765
Dual form 2646.2.f.a.883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.50000 + 2.59808i) q^{5} +1.00000 q^{8} +3.00000 q^{10} +(-1.50000 - 2.59808i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(-0.500000 - 0.866025i) q^{16} +3.00000 q^{17} +7.00000 q^{19} +(-1.50000 - 2.59808i) q^{20} +(-1.50000 + 2.59808i) q^{22} +(-4.50000 + 7.79423i) q^{23} +(-2.00000 - 3.46410i) q^{25} +1.00000 q^{26} +(1.50000 + 2.59808i) q^{29} +(4.00000 - 6.92820i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-1.50000 - 2.59808i) q^{34} -1.00000 q^{37} +(-3.50000 - 6.06218i) q^{38} +(-1.50000 + 2.59808i) q^{40} +(-1.50000 + 2.59808i) q^{41} +(0.500000 + 0.866025i) q^{43} +3.00000 q^{44} +9.00000 q^{46} +(-2.00000 + 3.46410i) q^{50} +(-0.500000 - 0.866025i) q^{52} -3.00000 q^{53} +9.00000 q^{55} +(1.50000 - 2.59808i) q^{58} +(1.00000 + 1.73205i) q^{61} -8.00000 q^{62} +1.00000 q^{64} +(-1.50000 - 2.59808i) q^{65} +(2.00000 - 3.46410i) q^{67} +(-1.50000 + 2.59808i) q^{68} -12.0000 q^{71} -11.0000 q^{73} +(0.500000 + 0.866025i) q^{74} +(-3.50000 + 6.06218i) q^{76} +(8.00000 + 13.8564i) q^{79} +3.00000 q^{80} +3.00000 q^{82} +(4.50000 + 7.79423i) q^{83} +(-4.50000 + 7.79423i) q^{85} +(0.500000 - 0.866025i) q^{86} +(-1.50000 - 2.59808i) q^{88} +3.00000 q^{89} +(-4.50000 - 7.79423i) q^{92} +(-10.5000 + 18.1865i) q^{95} +(-0.500000 - 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 3 q^{5} + 2 q^{8} + 6 q^{10} - 3 q^{11} - q^{13} - q^{16} + 6 q^{17} + 14 q^{19} - 3 q^{20} - 3 q^{22} - 9 q^{23} - 4 q^{25} + 2 q^{26} + 3 q^{29} + 8 q^{31} - q^{32} - 3 q^{34}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.00000 0.948683
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i −0.926995 0.375073i \(-0.877618\pi\)
0.788320 + 0.615265i \(0.210951\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −1.50000 2.59808i −0.335410 0.580948i
\(21\) 0 0
\(22\) −1.50000 + 2.59808i −0.319801 + 0.553912i
\(23\) −4.50000 + 7.79423i −0.938315 + 1.62521i −0.169701 + 0.985496i \(0.554280\pi\)
−0.768613 + 0.639713i \(0.779053\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 0 0
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) 4.00000 6.92820i 0.718421 1.24434i −0.243204 0.969975i \(-0.578198\pi\)
0.961625 0.274367i \(-0.0884683\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −1.50000 2.59808i −0.257248 0.445566i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) −3.50000 6.06218i −0.567775 0.983415i
\(39\) 0 0
\(40\) −1.50000 + 2.59808i −0.237171 + 0.410792i
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 9.00000 1.32698
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.00000 + 3.46410i −0.282843 + 0.489898i
\(51\) 0 0
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 1.50000 2.59808i 0.196960 0.341144i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.50000 2.59808i −0.186052 0.322252i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) 0.500000 + 0.866025i 0.0581238 + 0.100673i
\(75\) 0 0
\(76\) −3.50000 + 6.06218i −0.401478 + 0.695379i
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 + 13.8564i 0.900070 + 1.55897i 0.827401 + 0.561611i \(0.189818\pi\)
0.0726692 + 0.997356i \(0.476848\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) 3.00000 0.331295
\(83\) 4.50000 + 7.79423i 0.493939 + 0.855528i 0.999976 0.00698436i \(-0.00222321\pi\)
−0.506036 + 0.862512i \(0.668890\pi\)
\(84\) 0 0
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) 0.500000 0.866025i 0.0539164 0.0933859i
\(87\) 0 0
\(88\) −1.50000 2.59808i −0.159901 0.276956i
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.50000 7.79423i −0.469157 0.812605i
\(93\) 0 0
\(94\) 0 0
\(95\) −10.5000 + 18.1865i −1.07728 + 1.86590i
\(96\) 0 0
\(97\) −0.500000 0.866025i −0.0507673 0.0879316i 0.839525 0.543321i \(-0.182833\pi\)
−0.890292 + 0.455389i \(0.849500\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) −6.50000 + 11.2583i −0.640464 + 1.10932i 0.344865 + 0.938652i \(0.387925\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) −0.500000 + 0.866025i −0.0490290 + 0.0849208i
\(105\) 0 0
\(106\) 1.50000 + 2.59808i 0.145693 + 0.252347i
\(107\) −9.00000 −0.870063 −0.435031 0.900415i \(-0.643263\pi\)
−0.435031 + 0.900415i \(0.643263\pi\)
\(108\) 0 0
\(109\) −13.0000 −1.24517 −0.622587 0.782551i \(-0.713918\pi\)
−0.622587 + 0.782551i \(0.713918\pi\)
\(110\) −4.50000 7.79423i −0.429058 0.743151i
\(111\) 0 0
\(112\) 0 0
\(113\) −4.50000 + 7.79423i −0.423324 + 0.733219i −0.996262 0.0863794i \(-0.972470\pi\)
0.572938 + 0.819599i \(0.305804\pi\)
\(114\) 0 0
\(115\) −13.5000 23.3827i −1.25888 2.18045i
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 1.00000 1.73205i 0.0905357 0.156813i
\(123\) 0 0
\(124\) 4.00000 + 6.92820i 0.359211 + 0.622171i
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.50000 + 2.59808i −0.131559 + 0.227866i
\(131\) −7.50000 + 12.9904i −0.655278 + 1.13497i 0.326546 + 0.945181i \(0.394115\pi\)
−0.981824 + 0.189794i \(0.939218\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) −4.50000 7.79423i −0.384461 0.665906i 0.607233 0.794524i \(-0.292279\pi\)
−0.991694 + 0.128618i \(0.958946\pi\)
\(138\) 0 0
\(139\) −3.50000 + 6.06218i −0.296866 + 0.514187i −0.975417 0.220366i \(-0.929275\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.00000 + 10.3923i 0.503509 + 0.872103i
\(143\) 3.00000 0.250873
\(144\) 0 0
\(145\) −9.00000 −0.747409
\(146\) 5.50000 + 9.52628i 0.455183 + 0.788400i
\(147\) 0 0
\(148\) 0.500000 0.866025i 0.0410997 0.0711868i
\(149\) −4.50000 + 7.79423i −0.368654 + 0.638528i −0.989355 0.145519i \(-0.953515\pi\)
0.620701 + 0.784047i \(0.286848\pi\)
\(150\) 0 0
\(151\) 3.50000 + 6.06218i 0.284826 + 0.493333i 0.972567 0.232623i \(-0.0747309\pi\)
−0.687741 + 0.725956i \(0.741398\pi\)
\(152\) 7.00000 0.567775
\(153\) 0 0
\(154\) 0 0
\(155\) 12.0000 + 20.7846i 0.963863 + 1.66946i
\(156\) 0 0
\(157\) −11.0000 + 19.0526i −0.877896 + 1.52056i −0.0242497 + 0.999706i \(0.507720\pi\)
−0.853646 + 0.520854i \(0.825614\pi\)
\(158\) 8.00000 13.8564i 0.636446 1.10236i
\(159\) 0 0
\(160\) −1.50000 2.59808i −0.118585 0.205396i
\(161\) 0 0
\(162\) 0 0
\(163\) −19.0000 −1.48819 −0.744097 0.668071i \(-0.767120\pi\)
−0.744097 + 0.668071i \(0.767120\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) 0 0
\(166\) 4.50000 7.79423i 0.349268 0.604949i
\(167\) 7.50000 12.9904i 0.580367 1.00523i −0.415068 0.909790i \(-0.636242\pi\)
0.995436 0.0954356i \(-0.0304244\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 0 0
\(178\) −1.50000 2.59808i −0.112430 0.194734i
\(179\) 21.0000 1.56961 0.784807 0.619740i \(-0.212762\pi\)
0.784807 + 0.619740i \(0.212762\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.50000 + 7.79423i −0.331744 + 0.574598i
\(185\) 1.50000 2.59808i 0.110282 0.191014i
\(186\) 0 0
\(187\) −4.50000 7.79423i −0.329073 0.569970i
\(188\) 0 0
\(189\) 0 0
\(190\) 21.0000 1.52350
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) −0.500000 + 0.866025i −0.0358979 + 0.0621770i
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 25.0000 1.77220 0.886102 0.463491i \(-0.153403\pi\)
0.886102 + 0.463491i \(0.153403\pi\)
\(200\) −2.00000 3.46410i −0.141421 0.244949i
\(201\) 0 0
\(202\) −1.50000 + 2.59808i −0.105540 + 0.182800i
\(203\) 0 0
\(204\) 0 0
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) 13.0000 0.905753
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) −10.5000 18.1865i −0.726300 1.25799i
\(210\) 0 0
\(211\) −2.50000 + 4.33013i −0.172107 + 0.298098i −0.939156 0.343490i \(-0.888391\pi\)
0.767049 + 0.641588i \(0.221724\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) 0 0
\(214\) 4.50000 + 7.79423i 0.307614 + 0.532803i
\(215\) −3.00000 −0.204598
\(216\) 0 0
\(217\) 0 0
\(218\) 6.50000 + 11.2583i 0.440236 + 0.762510i
\(219\) 0 0
\(220\) −4.50000 + 7.79423i −0.303390 + 0.525487i
\(221\) −1.50000 + 2.59808i −0.100901 + 0.174766i
\(222\) 0 0
\(223\) −0.500000 0.866025i −0.0334825 0.0579934i 0.848799 0.528716i \(-0.177326\pi\)
−0.882281 + 0.470723i \(0.843993\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 9.00000 0.598671
\(227\) 1.50000 + 2.59808i 0.0995585 + 0.172440i 0.911502 0.411296i \(-0.134924\pi\)
−0.811943 + 0.583736i \(0.801590\pi\)
\(228\) 0 0
\(229\) −6.50000 + 11.2583i −0.429532 + 0.743971i −0.996832 0.0795401i \(-0.974655\pi\)
0.567300 + 0.823511i \(0.307988\pi\)
\(230\) −13.5000 + 23.3827i −0.890164 + 1.54181i
\(231\) 0 0
\(232\) 1.50000 + 2.59808i 0.0984798 + 0.170572i
\(233\) −3.00000 −0.196537 −0.0982683 0.995160i \(-0.531330\pi\)
−0.0982683 + 0.995160i \(0.531330\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.50000 + 2.59808i −0.0970269 + 0.168056i −0.910453 0.413613i \(-0.864267\pi\)
0.813426 + 0.581669i \(0.197600\pi\)
\(240\) 0 0
\(241\) −6.50000 11.2583i −0.418702 0.725213i 0.577107 0.816668i \(-0.304181\pi\)
−0.995809 + 0.0914555i \(0.970848\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) −3.50000 + 6.06218i −0.222700 + 0.385727i
\(248\) 4.00000 6.92820i 0.254000 0.439941i
\(249\) 0 0
\(250\) 1.50000 + 2.59808i 0.0948683 + 0.164317i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 27.0000 1.69748
\(254\) 2.00000 + 3.46410i 0.125491 + 0.217357i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.5000 18.1865i 0.654972 1.13444i −0.326929 0.945049i \(-0.606014\pi\)
0.981901 0.189396i \(-0.0606529\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.00000 0.186052
\(261\) 0 0
\(262\) 15.0000 0.926703
\(263\) 4.50000 + 7.79423i 0.277482 + 0.480613i 0.970758 0.240059i \(-0.0771668\pi\)
−0.693276 + 0.720672i \(0.743833\pi\)
\(264\) 0 0
\(265\) 4.50000 7.79423i 0.276433 0.478796i
\(266\) 0 0
\(267\) 0 0
\(268\) 2.00000 + 3.46410i 0.122169 + 0.211604i
\(269\) 15.0000 0.914566 0.457283 0.889321i \(-0.348823\pi\)
0.457283 + 0.889321i \(0.348823\pi\)
\(270\) 0 0
\(271\) −5.00000 −0.303728 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(272\) −1.50000 2.59808i −0.0909509 0.157532i
\(273\) 0 0
\(274\) −4.50000 + 7.79423i −0.271855 + 0.470867i
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) 0.500000 + 0.866025i 0.0300421 + 0.0520344i 0.880656 0.473757i \(-0.157103\pi\)
−0.850613 + 0.525792i \(0.823769\pi\)
\(278\) 7.00000 0.419832
\(279\) 0 0
\(280\) 0 0
\(281\) −10.5000 18.1865i −0.626377 1.08492i −0.988273 0.152699i \(-0.951204\pi\)
0.361895 0.932219i \(-0.382130\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 6.00000 10.3923i 0.356034 0.616670i
\(285\) 0 0
\(286\) −1.50000 2.59808i −0.0886969 0.153627i
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 4.50000 + 7.79423i 0.264249 + 0.457693i
\(291\) 0 0
\(292\) 5.50000 9.52628i 0.321863 0.557483i
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) 9.00000 0.521356
\(299\) −4.50000 7.79423i −0.260242 0.450752i
\(300\) 0 0
\(301\) 0 0
\(302\) 3.50000 6.06218i 0.201402 0.348839i
\(303\) 0 0
\(304\) −3.50000 6.06218i −0.200739 0.347690i
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 12.0000 20.7846i 0.681554 1.18049i
\(311\) 12.0000 20.7846i 0.680458 1.17859i −0.294384 0.955687i \(-0.595114\pi\)
0.974841 0.222900i \(-0.0715523\pi\)
\(312\) 0 0
\(313\) −5.00000 8.66025i −0.282617 0.489506i 0.689412 0.724370i \(-0.257869\pi\)
−0.972028 + 0.234863i \(0.924536\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) 4.50000 7.79423i 0.251952 0.436393i
\(320\) −1.50000 + 2.59808i −0.0838525 + 0.145237i
\(321\) 0 0
\(322\) 0 0
\(323\) 21.0000 1.16847
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 9.50000 + 16.4545i 0.526156 + 0.911330i
\(327\) 0 0
\(328\) −1.50000 + 2.59808i −0.0828236 + 0.143455i
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 6.92820i −0.219860 0.380808i 0.734905 0.678170i \(-0.237227\pi\)
−0.954765 + 0.297361i \(0.903893\pi\)
\(332\) −9.00000 −0.493939
\(333\) 0 0
\(334\) −15.0000 −0.820763
\(335\) 6.00000 + 10.3923i 0.327815 + 0.567792i
\(336\) 0 0
\(337\) 6.50000 11.2583i 0.354078 0.613280i −0.632882 0.774248i \(-0.718128\pi\)
0.986960 + 0.160968i \(0.0514616\pi\)
\(338\) 6.00000 10.3923i 0.326357 0.565267i
\(339\) 0 0
\(340\) −4.50000 7.79423i −0.244047 0.422701i
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) 0 0
\(344\) 0.500000 + 0.866025i 0.0269582 + 0.0466930i
\(345\) 0 0
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) 11.5000 + 19.9186i 0.615581 + 1.06622i 0.990282 + 0.139072i \(0.0444119\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.00000 0.159901
\(353\) −1.50000 2.59808i −0.0798369 0.138282i 0.823343 0.567545i \(-0.192107\pi\)
−0.903179 + 0.429263i \(0.858773\pi\)
\(354\) 0 0
\(355\) 18.0000 31.1769i 0.955341 1.65470i
\(356\) −1.50000 + 2.59808i −0.0794998 + 0.137698i
\(357\) 0 0
\(358\) −10.5000 18.1865i −0.554942 0.961188i
\(359\) −9.00000 −0.475002 −0.237501 0.971387i \(-0.576328\pi\)
−0.237501 + 0.971387i \(0.576328\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 1.00000 + 1.73205i 0.0525588 + 0.0910346i
\(363\) 0 0
\(364\) 0 0
\(365\) 16.5000 28.5788i 0.863649 1.49588i
\(366\) 0 0
\(367\) 8.50000 + 14.7224i 0.443696 + 0.768505i 0.997960 0.0638362i \(-0.0203335\pi\)
−0.554264 + 0.832341i \(0.687000\pi\)
\(368\) 9.00000 0.469157
\(369\) 0 0
\(370\) −3.00000 −0.155963
\(371\) 0 0
\(372\) 0 0
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) −4.50000 + 7.79423i −0.232689 + 0.403030i
\(375\) 0 0
\(376\) 0 0
\(377\) −3.00000 −0.154508
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) −10.5000 18.1865i −0.538639 0.932949i
\(381\) 0 0
\(382\) 0 0
\(383\) −7.50000 + 12.9904i −0.383232 + 0.663777i −0.991522 0.129937i \(-0.958522\pi\)
0.608290 + 0.793715i \(0.291856\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 0 0
\(388\) 1.00000 0.0507673
\(389\) 13.5000 + 23.3827i 0.684477 + 1.18555i 0.973601 + 0.228257i \(0.0733028\pi\)
−0.289124 + 0.957292i \(0.593364\pi\)
\(390\) 0 0
\(391\) −13.5000 + 23.3827i −0.682724 + 1.18251i
\(392\) 0 0
\(393\) 0 0
\(394\) 9.00000 + 15.5885i 0.453413 + 0.785335i
\(395\) −48.0000 −2.41514
\(396\) 0 0
\(397\) 13.0000 0.652451 0.326226 0.945292i \(-0.394223\pi\)
0.326226 + 0.945292i \(0.394223\pi\)
\(398\) −12.5000 21.6506i −0.626568 1.08525i
\(399\) 0 0
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) 0 0
\(403\) 4.00000 + 6.92820i 0.199254 + 0.345118i
\(404\) 3.00000 0.149256
\(405\) 0 0
\(406\) 0 0
\(407\) 1.50000 + 2.59808i 0.0743522 + 0.128782i
\(408\) 0 0
\(409\) −17.0000 + 29.4449i −0.840596 + 1.45595i 0.0487958 + 0.998809i \(0.484462\pi\)
−0.889392 + 0.457146i \(0.848872\pi\)
\(410\) −4.50000 + 7.79423i −0.222239 + 0.384930i
\(411\) 0 0
\(412\) −6.50000 11.2583i −0.320232 0.554658i
\(413\) 0 0
\(414\) 0 0
\(415\) −27.0000 −1.32538
\(416\) −0.500000 0.866025i −0.0245145 0.0424604i
\(417\) 0 0
\(418\) −10.5000 + 18.1865i −0.513572 + 0.889532i
\(419\) −4.50000 + 7.79423i −0.219839 + 0.380773i −0.954759 0.297382i \(-0.903887\pi\)
0.734919 + 0.678155i \(0.237220\pi\)
\(420\) 0 0
\(421\) −17.5000 30.3109i −0.852898 1.47726i −0.878582 0.477592i \(-0.841510\pi\)
0.0256838 0.999670i \(-0.491824\pi\)
\(422\) 5.00000 0.243396
\(423\) 0 0
\(424\) −3.00000 −0.145693
\(425\) −6.00000 10.3923i −0.291043 0.504101i
\(426\) 0 0
\(427\) 0 0
\(428\) 4.50000 7.79423i 0.217516 0.376748i
\(429\) 0 0
\(430\) 1.50000 + 2.59808i 0.0723364 + 0.125290i
\(431\) −27.0000 −1.30054 −0.650272 0.759701i \(-0.725345\pi\)
−0.650272 + 0.759701i \(0.725345\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.50000 11.2583i 0.311294 0.539176i
\(437\) −31.5000 + 54.5596i −1.50685 + 2.60994i
\(438\) 0 0
\(439\) 4.00000 + 6.92820i 0.190910 + 0.330665i 0.945552 0.325471i \(-0.105523\pi\)
−0.754642 + 0.656136i \(0.772190\pi\)
\(440\) 9.00000 0.429058
\(441\) 0 0
\(442\) 3.00000 0.142695
\(443\) 18.0000 + 31.1769i 0.855206 + 1.48126i 0.876454 + 0.481486i \(0.159903\pi\)
−0.0212481 + 0.999774i \(0.506764\pi\)
\(444\) 0 0
\(445\) −4.50000 + 7.79423i −0.213320 + 0.369482i
\(446\) −0.500000 + 0.866025i −0.0236757 + 0.0410075i
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 9.00000 0.423793
\(452\) −4.50000 7.79423i −0.211662 0.366610i
\(453\) 0 0
\(454\) 1.50000 2.59808i 0.0703985 0.121934i
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 + 8.66025i 0.233890 + 0.405110i 0.958950 0.283577i \(-0.0915211\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 13.0000 0.607450
\(459\) 0 0
\(460\) 27.0000 1.25888
\(461\) 4.50000 + 7.79423i 0.209586 + 0.363013i 0.951584 0.307388i \(-0.0994551\pi\)
−0.741998 + 0.670402i \(0.766122\pi\)
\(462\) 0 0
\(463\) −20.5000 + 35.5070i −0.952716 + 1.65015i −0.213205 + 0.977007i \(0.568390\pi\)
−0.739511 + 0.673145i \(0.764943\pi\)
\(464\) 1.50000 2.59808i 0.0696358 0.120613i
\(465\) 0 0
\(466\) 1.50000 + 2.59808i 0.0694862 + 0.120354i
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.50000 2.59808i 0.0689701 0.119460i
\(474\) 0 0
\(475\) −14.0000 24.2487i −0.642364 1.11261i
\(476\) 0 0
\(477\) 0 0
\(478\) 3.00000 0.137217
\(479\) 1.50000 + 2.59808i 0.0685367 + 0.118709i 0.898257 0.439470i \(-0.144834\pi\)
−0.829721 + 0.558179i \(0.811500\pi\)
\(480\) 0 0
\(481\) 0.500000 0.866025i 0.0227980 0.0394874i
\(482\) −6.50000 + 11.2583i −0.296067 + 0.512803i
\(483\) 0 0
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) 3.00000 0.136223
\(486\) 0 0
\(487\) −25.0000 −1.13286 −0.566429 0.824110i \(-0.691675\pi\)
−0.566429 + 0.824110i \(0.691675\pi\)
\(488\) 1.00000 + 1.73205i 0.0452679 + 0.0784063i
\(489\) 0 0
\(490\) 0 0
\(491\) 10.5000 18.1865i 0.473858 0.820747i −0.525694 0.850674i \(-0.676194\pi\)
0.999552 + 0.0299272i \(0.00952753\pi\)
\(492\) 0 0
\(493\) 4.50000 + 7.79423i 0.202670 + 0.351034i
\(494\) 7.00000 0.314945
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 12.5000 21.6506i 0.559577 0.969216i −0.437955 0.898997i \(-0.644297\pi\)
0.997532 0.0702185i \(-0.0223697\pi\)
\(500\) 1.50000 2.59808i 0.0670820 0.116190i
\(501\) 0 0
\(502\) −6.00000 10.3923i −0.267793 0.463831i
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) −13.5000 23.3827i −0.600148 1.03949i
\(507\) 0 0
\(508\) 2.00000 3.46410i 0.0887357 0.153695i
\(509\) 4.50000 7.79423i 0.199459 0.345473i −0.748894 0.662690i \(-0.769415\pi\)
0.948353 + 0.317217i \(0.102748\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −21.0000 −0.926270
\(515\) −19.5000 33.7750i −0.859273 1.48830i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −1.50000 2.59808i −0.0657794 0.113933i
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 7.00000 0.306089 0.153044 0.988219i \(-0.451092\pi\)
0.153044 + 0.988219i \(0.451092\pi\)
\(524\) −7.50000 12.9904i −0.327639 0.567487i
\(525\) 0 0
\(526\) 4.50000 7.79423i 0.196209 0.339845i
\(527\) 12.0000 20.7846i 0.522728 0.905392i
\(528\) 0 0
\(529\) −29.0000 50.2295i −1.26087 2.18389i
\(530\) −9.00000 −0.390935
\(531\) 0 0
\(532\) 0 0
\(533\) −1.50000 2.59808i −0.0649722 0.112535i
\(534\) 0 0
\(535\) 13.5000 23.3827i 0.583656 1.01092i
\(536\) 2.00000 3.46410i 0.0863868 0.149626i
\(537\) 0 0
\(538\) −7.50000 12.9904i −0.323348 0.560055i
\(539\) 0 0
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) 2.50000 + 4.33013i 0.107384 + 0.185995i
\(543\) 0 0
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) 19.5000 33.7750i 0.835288 1.44676i
\(546\) 0 0
\(547\) −5.50000 9.52628i −0.235163 0.407314i 0.724157 0.689635i \(-0.242229\pi\)
−0.959320 + 0.282321i \(0.908896\pi\)
\(548\) 9.00000 0.384461
\(549\) 0 0
\(550\) 12.0000 0.511682
\(551\) 10.5000 + 18.1865i 0.447315 + 0.774772i
\(552\) 0 0
\(553\) 0 0
\(554\) 0.500000 0.866025i 0.0212430 0.0367939i
\(555\) 0 0
\(556\) −3.50000 6.06218i −0.148433 0.257094i
\(557\) 9.00000 0.381342 0.190671 0.981654i \(-0.438934\pi\)
0.190671 + 0.981654i \(0.438934\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) −10.5000 + 18.1865i −0.442916 + 0.767153i
\(563\) −6.00000 + 10.3923i −0.252870 + 0.437983i −0.964315 0.264758i \(-0.914708\pi\)
0.711445 + 0.702742i \(0.248041\pi\)
\(564\) 0 0
\(565\) −13.5000 23.3827i −0.567949 0.983717i
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −9.00000 15.5885i −0.377300 0.653502i 0.613369 0.789797i \(-0.289814\pi\)
−0.990668 + 0.136295i \(0.956481\pi\)
\(570\) 0 0
\(571\) −16.0000 + 27.7128i −0.669579 + 1.15975i 0.308443 + 0.951243i \(0.400192\pi\)
−0.978022 + 0.208502i \(0.933141\pi\)
\(572\) −1.50000 + 2.59808i −0.0627182 + 0.108631i
\(573\) 0 0
\(574\) 0 0
\(575\) 36.0000 1.50130
\(576\) 0 0
\(577\) 25.0000 1.04076 0.520382 0.853934i \(-0.325790\pi\)
0.520382 + 0.853934i \(0.325790\pi\)
\(578\) 4.00000 + 6.92820i 0.166378 + 0.288175i
\(579\) 0 0
\(580\) 4.50000 7.79423i 0.186852 0.323638i
\(581\) 0 0
\(582\) 0 0
\(583\) 4.50000 + 7.79423i 0.186371 + 0.322804i
\(584\) −11.0000 −0.455183
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) −1.50000 2.59808i −0.0619116 0.107234i 0.833408 0.552658i \(-0.186386\pi\)
−0.895320 + 0.445424i \(0.853053\pi\)
\(588\) 0 0
\(589\) 28.0000 48.4974i 1.15372 1.99830i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) 39.0000 1.60154 0.800769 0.598973i \(-0.204424\pi\)
0.800769 + 0.598973i \(0.204424\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.50000 7.79423i −0.184327 0.319264i
\(597\) 0 0
\(598\) −4.50000 + 7.79423i −0.184019 + 0.318730i
\(599\) −12.0000 + 20.7846i −0.490307 + 0.849236i −0.999938 0.0111569i \(-0.996449\pi\)
0.509631 + 0.860393i \(0.329782\pi\)
\(600\) 0 0
\(601\) −12.5000 21.6506i −0.509886 0.883148i −0.999934 0.0114528i \(-0.996354\pi\)
0.490049 0.871695i \(-0.336979\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −7.00000 −0.284826
\(605\) 3.00000 + 5.19615i 0.121967 + 0.211254i
\(606\) 0 0
\(607\) −6.50000 + 11.2583i −0.263827 + 0.456962i −0.967256 0.253804i \(-0.918318\pi\)
0.703429 + 0.710766i \(0.251651\pi\)
\(608\) −3.50000 + 6.06218i −0.141944 + 0.245854i
\(609\) 0 0
\(610\) 3.00000 + 5.19615i 0.121466 + 0.210386i
\(611\) 0 0
\(612\) 0 0
\(613\) 23.0000 0.928961 0.464481 0.885583i \(-0.346241\pi\)
0.464481 + 0.885583i \(0.346241\pi\)
\(614\) −14.0000 24.2487i −0.564994 0.978598i
\(615\) 0 0
\(616\) 0 0
\(617\) −22.5000 + 38.9711i −0.905816 + 1.56892i −0.0859976 + 0.996295i \(0.527408\pi\)
−0.819818 + 0.572624i \(0.805926\pi\)
\(618\) 0 0
\(619\) 8.50000 + 14.7224i 0.341644 + 0.591744i 0.984738 0.174042i \(-0.0556830\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) −24.0000 −0.963863
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 0 0
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) −5.00000 + 8.66025i −0.199840 + 0.346133i
\(627\) 0 0
\(628\) −11.0000 19.0526i −0.438948 0.760280i
\(629\) −3.00000 −0.119618
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 8.00000 + 13.8564i 0.318223 + 0.551178i
\(633\) 0 0
\(634\) 9.00000 15.5885i 0.357436 0.619097i
\(635\) 6.00000 10.3923i 0.238103 0.412406i
\(636\) 0 0
\(637\) 0 0
\(638\) −9.00000 −0.356313
\(639\) 0 0
\(640\) 3.00000 0.118585
\(641\) −16.5000 28.5788i −0.651711 1.12880i −0.982708 0.185164i \(-0.940718\pi\)
0.330997 0.943632i \(-0.392615\pi\)
\(642\) 0 0
\(643\) 14.5000 25.1147i 0.571824 0.990429i −0.424555 0.905402i \(-0.639569\pi\)
0.996379 0.0850262i \(-0.0270974\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −10.5000 18.1865i −0.413117 0.715540i
\(647\) −21.0000 −0.825595 −0.412798 0.910823i \(-0.635448\pi\)
−0.412798 + 0.910823i \(0.635448\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −2.00000 3.46410i −0.0784465 0.135873i
\(651\) 0 0
\(652\) 9.50000 16.4545i 0.372049 0.644407i
\(653\) 7.50000 12.9904i 0.293498 0.508353i −0.681137 0.732156i \(-0.738514\pi\)
0.974634 + 0.223803i \(0.0718474\pi\)
\(654\) 0 0
\(655\) −22.5000 38.9711i −0.879148 1.52273i
\(656\) 3.00000 0.117130
\(657\) 0 0
\(658\) 0 0
\(659\) 1.50000 + 2.59808i 0.0584317 + 0.101207i 0.893762 0.448542i \(-0.148057\pi\)
−0.835330 + 0.549749i \(0.814723\pi\)
\(660\) 0 0
\(661\) −11.0000 + 19.0526i −0.427850 + 0.741059i −0.996682 0.0813955i \(-0.974062\pi\)
0.568831 + 0.822454i \(0.307396\pi\)
\(662\) −4.00000 + 6.92820i −0.155464 + 0.269272i
\(663\) 0 0
\(664\) 4.50000 + 7.79423i 0.174634 + 0.302475i
\(665\) 0 0
\(666\) 0 0
\(667\) −27.0000 −1.04544
\(668\) 7.50000 + 12.9904i 0.290184 + 0.502613i
\(669\) 0 0
\(670\) 6.00000 10.3923i 0.231800 0.401490i
\(671\) 3.00000 5.19615i 0.115814 0.200595i
\(672\) 0 0
\(673\) −17.5000 30.3109i −0.674575 1.16840i −0.976593 0.215096i \(-0.930993\pi\)
0.302017 0.953302i \(-0.402340\pi\)
\(674\) −13.0000 −0.500741
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 15.0000 + 25.9808i 0.576497 + 0.998522i 0.995877 + 0.0907112i \(0.0289140\pi\)
−0.419380 + 0.907811i \(0.637753\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4.50000 + 7.79423i −0.172567 + 0.298895i
\(681\) 0 0
\(682\) 12.0000 + 20.7846i 0.459504 + 0.795884i
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) 0 0
\(685\) 27.0000 1.03162
\(686\) 0 0
\(687\) 0 0
\(688\) 0.500000 0.866025i 0.0190623 0.0330169i
\(689\) 1.50000 2.59808i 0.0571454 0.0989788i
\(690\) 0 0
\(691\) 22.0000 + 38.1051i 0.836919 + 1.44959i 0.892458 + 0.451130i \(0.148979\pi\)
−0.0555386 + 0.998457i \(0.517688\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −10.5000 18.1865i −0.398288 0.689855i
\(696\) 0 0
\(697\) −4.50000 + 7.79423i −0.170450 + 0.295227i
\(698\) 11.5000 19.9186i 0.435281 0.753930i
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −7.00000 −0.264010
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 0 0
\(706\) −1.50000 + 2.59808i −0.0564532 + 0.0977799i
\(707\) 0 0
\(708\) 0 0
\(709\) −13.0000 22.5167i −0.488225 0.845631i 0.511683 0.859174i \(-0.329022\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) −36.0000 −1.35106
\(711\) 0 0
\(712\) 3.00000 0.112430
\(713\) 36.0000 + 62.3538i 1.34821 + 2.33517i
\(714\) 0 0
\(715\) −4.50000 + 7.79423i −0.168290 + 0.291488i
\(716\) −10.5000 + 18.1865i −0.392403 + 0.679663i
\(717\) 0 0
\(718\) 4.50000 + 7.79423i 0.167939 + 0.290878i
\(719\) −15.0000 −0.559406 −0.279703 0.960087i \(-0.590236\pi\)
−0.279703 + 0.960087i \(0.590236\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.0000 25.9808i −0.558242 0.966904i
\(723\) 0 0
\(724\) 1.00000 1.73205i 0.0371647 0.0643712i
\(725\) 6.00000 10.3923i 0.222834 0.385961i
\(726\) 0 0
\(727\) −6.50000 11.2583i −0.241072 0.417548i 0.719948 0.694028i \(-0.244166\pi\)
−0.961020 + 0.276479i \(0.910832\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −33.0000 −1.22138
\(731\) 1.50000 + 2.59808i 0.0554795 + 0.0960933i
\(732\) 0 0
\(733\) −0.500000 + 0.866025i −0.0184679 + 0.0319874i −0.875112 0.483921i \(-0.839212\pi\)
0.856644 + 0.515908i \(0.172546\pi\)
\(734\) 8.50000 14.7224i 0.313741 0.543415i
\(735\) 0 0
\(736\) −4.50000 7.79423i −0.165872 0.287299i
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) 23.0000 0.846069 0.423034 0.906114i \(-0.360965\pi\)
0.423034 + 0.906114i \(0.360965\pi\)
\(740\) 1.50000 + 2.59808i 0.0551411 + 0.0955072i
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5000 18.1865i 0.385208 0.667199i −0.606590 0.795015i \(-0.707463\pi\)
0.991798 + 0.127815i \(0.0407965\pi\)
\(744\) 0 0
\(745\) −13.5000 23.3827i −0.494602 0.856675i
\(746\) −13.0000 −0.475964
\(747\) 0 0
\(748\) 9.00000 0.329073
\(749\) 0 0
\(750\) 0 0
\(751\) 6.50000 11.2583i 0.237188 0.410822i −0.722718 0.691143i \(-0.757107\pi\)
0.959906 + 0.280321i \(0.0904408\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.50000 + 2.59808i 0.0546268 + 0.0946164i
\(755\) −21.0000 −0.764268
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 14.0000 + 24.2487i 0.508503 + 0.880753i
\(759\) 0 0
\(760\) −10.5000 + 18.1865i −0.380875 + 0.659695i
\(761\) 22.5000 38.9711i 0.815624 1.41270i −0.0932544 0.995642i \(-0.529727\pi\)
0.908879 0.417061i \(-0.136940\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 15.0000 0.541972
\(767\) 0 0
\(768\) 0 0
\(769\) 11.5000 19.9186i 0.414701 0.718283i −0.580696 0.814120i \(-0.697220\pi\)
0.995397 + 0.0958377i \(0.0305530\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.00000 12.1244i −0.251936 0.436365i
\(773\) 27.0000 0.971123 0.485561 0.874203i \(-0.338615\pi\)
0.485561 + 0.874203i \(0.338615\pi\)
\(774\) 0 0
\(775\) −32.0000 −1.14947
\(776\) −0.500000 0.866025i −0.0179490 0.0310885i
\(777\) 0 0
\(778\) 13.5000 23.3827i 0.483998 0.838310i
\(779\) −10.5000 + 18.1865i −0.376202 + 0.651600i
\(780\) 0 0
\(781\) 18.0000 + 31.1769i 0.644091 + 1.11560i
\(782\) 27.0000 0.965518
\(783\) 0 0
\(784\) 0 0
\(785\) −33.0000 57.1577i −1.17782 2.04004i
\(786\) 0 0
\(787\) −14.0000 + 24.2487i −0.499046 + 0.864373i −0.999999 0.00110111i \(-0.999650\pi\)
0.500953 + 0.865474i \(0.332983\pi\)
\(788\) 9.00000 15.5885i 0.320612 0.555316i
\(789\) 0 0
\(790\) 24.0000 + 41.5692i 0.853882 + 1.47897i
\(791\) 0 0
\(792\) 0 0
\(793\) −2.00000 −0.0710221
\(794\) −6.50000 11.2583i −0.230676 0.399543i
\(795\) 0 0
\(796\) −12.5000 + 21.6506i −0.443051 + 0.767386i
\(797\) 10.5000 18.1865i 0.371929 0.644200i −0.617933 0.786231i \(-0.712030\pi\)
0.989862 + 0.142031i \(0.0453631\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) −27.0000 −0.953403
\(803\) 16.5000 + 28.5788i 0.582272 + 1.00853i
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 6.92820i 0.140894 0.244036i
\(807\) 0 0
\(808\) −1.50000 2.59808i −0.0527698 0.0914000i
\(809\) 33.0000 1.16022 0.580109 0.814539i \(-0.303010\pi\)
0.580109 + 0.814539i \(0.303010\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.50000 2.59808i 0.0525750 0.0910625i
\(815\) 28.5000 49.3634i 0.998311 1.72913i
\(816\) 0 0
\(817\) 3.50000 + 6.06218i 0.122449 + 0.212089i
\(818\) 34.0000 1.18878
\(819\) 0 0
\(820\) 9.00000 0.314294
\(821\) −21.0000 36.3731i −0.732905 1.26943i −0.955636 0.294549i \(-0.904831\pi\)
0.222731 0.974880i \(-0.428503\pi\)
\(822\) 0 0
\(823\) 20.0000 34.6410i 0.697156 1.20751i −0.272292 0.962215i \(-0.587782\pi\)
0.969448 0.245295i \(-0.0788849\pi\)
\(824\) −6.50000 + 11.2583i −0.226438 + 0.392203i
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) −11.0000 −0.382046 −0.191023 0.981586i \(-0.561180\pi\)
−0.191023 + 0.981586i \(0.561180\pi\)
\(830\) 13.5000 + 23.3827i 0.468592 + 0.811625i
\(831\) 0 0
\(832\) −0.500000 + 0.866025i −0.0173344 + 0.0300240i
\(833\) 0 0
\(834\) 0 0
\(835\) 22.5000 + 38.9711i 0.778645 + 1.34865i
\(836\) 21.0000 0.726300
\(837\) 0 0
\(838\) 9.00000 0.310900
\(839\) −7.50000 12.9904i −0.258929 0.448478i 0.707026 0.707187i \(-0.250036\pi\)
−0.965955 + 0.258709i \(0.916703\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) −17.5000 + 30.3109i −0.603090 + 1.04458i
\(843\) 0 0
\(844\) −2.50000 4.33013i −0.0860535 0.149049i
\(845\) −36.0000 −1.23844
\(846\) 0 0
\(847\) 0 0
\(848\) 1.50000 + 2.59808i 0.0515102 + 0.0892183i
\(849\) 0 0
\(850\) −6.00000 + 10.3923i −0.205798 + 0.356453i
\(851\) 4.50000 7.79423i 0.154258 0.267183i
\(852\) 0 0
\(853\) −0.500000 0.866025i −0.0171197 0.0296521i 0.857339 0.514753i \(-0.172116\pi\)
−0.874458 + 0.485101i \(0.838783\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.00000 −0.307614
\(857\) −1.50000 2.59808i −0.0512390 0.0887486i 0.839268 0.543718i \(-0.182984\pi\)
−0.890507 + 0.454969i \(0.849650\pi\)
\(858\) 0 0
\(859\) −12.5000 + 21.6506i −0.426494 + 0.738710i −0.996559 0.0828900i \(-0.973585\pi\)
0.570064 + 0.821600i \(0.306918\pi\)
\(860\) 1.50000 2.59808i 0.0511496 0.0885937i
\(861\) 0 0
\(862\) 13.5000 + 23.3827i 0.459812 + 0.796417i
\(863\) 51.0000 1.73606 0.868030 0.496512i \(-0.165386\pi\)
0.868030 + 0.496512i \(0.165386\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 1.00000 + 1.73205i 0.0339814 + 0.0588575i
\(867\) 0 0
\(868\) 0 0
\(869\) 24.0000 41.5692i 0.814144 1.41014i
\(870\) 0 0
\(871\) 2.00000 + 3.46410i 0.0677674 + 0.117377i
\(872\) −13.0000 −0.440236
\(873\) 0 0
\(874\) 63.0000 2.13101
\(875\) 0 0
\(876\) 0 0
\(877\) −23.5000 + 40.7032i −0.793539 + 1.37445i 0.130224 + 0.991485i \(0.458430\pi\)
−0.923763 + 0.382965i \(0.874903\pi\)
\(878\) 4.00000 6.92820i 0.134993 0.233816i
\(879\) 0 0
\(880\) −4.50000 7.79423i −0.151695 0.262743i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) −1.50000 2.59808i −0.0504505 0.0873828i
\(885\) 0 0
\(886\) 18.0000 31.1769i 0.604722 1.04741i
\(887\) 16.5000 28.5788i 0.554016 0.959583i −0.443964 0.896045i \(-0.646428\pi\)
0.997979 0.0635387i \(-0.0202386\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 9.00000 0.301681
\(891\) 0 0
\(892\) 1.00000 0.0334825
\(893\) 0 0
\(894\) 0 0
\(895\) −31.5000 + 54.5596i −1.05293 + 1.82373i
\(896\) 0 0
\(897\) 0 0
\(898\) 3.00000 + 5.19615i 0.100111 + 0.173398i
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −9.00000 −0.299833
\(902\) −4.50000 7.79423i −0.149834 0.259519i
\(903\) 0 0
\(904\) −4.50000 + 7.79423i −0.149668 + 0.259232i
\(905\) 3.00000 5.19615i 0.0997234 0.172726i
\(906\) 0 0
\(907\) 21.5000 + 37.2391i 0.713896 + 1.23650i 0.963384 + 0.268126i \(0.0864043\pi\)
−0.249488 + 0.968378i \(0.580262\pi\)
\(908\) −3.00000 −0.0995585
\(909\) 0 0
\(910\) 0 0
\(911\) 19.5000 + 33.7750i 0.646064 + 1.11902i 0.984055 + 0.177866i \(0.0569194\pi\)
−0.337991 + 0.941149i \(0.609747\pi\)
\(912\) 0 0
\(913\) 13.5000 23.3827i 0.446785 0.773854i
\(914\) 5.00000 8.66025i 0.165385 0.286456i
\(915\) 0 0
\(916\) −6.50000 11.2583i −0.214766 0.371986i
\(917\) 0 0
\(918\) 0 0
\(919\) 53.0000 1.74831 0.874154 0.485648i \(-0.161416\pi\)
0.874154 + 0.485648i \(0.161416\pi\)
\(920\) −13.5000 23.3827i −0.445082 0.770904i
\(921\) 0 0
\(922\) 4.50000 7.79423i 0.148200 0.256689i
\(923\) 6.00000 10.3923i 0.197492 0.342067i
\(924\) 0 0
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) 41.0000 1.34734
\(927\) 0 0
\(928\) −3.00000 −0.0984798
\(929\) −9.00000 15.5885i −0.295280 0.511441i 0.679770 0.733426i \(-0.262080\pi\)
−0.975050 + 0.221985i \(0.928746\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.50000 2.59808i 0.0491341 0.0851028i
\(933\) 0 0
\(934\) 1.50000 + 2.59808i 0.0490815 + 0.0850117i
\(935\) 27.0000 0.882994
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.00000 5.19615i 0.0977972 0.169390i −0.812975 0.582298i \(-0.802154\pi\)
0.910773 + 0.412908i \(0.135487\pi\)
\(942\) 0 0
\(943\) −13.5000 23.3827i −0.439620 0.761445i
\(944\) 0 0
\(945\) 0 0
\(946\) −3.00000 −0.0975384
\(947\) 6.00000 + 10.3923i 0.194974 + 0.337705i 0.946892 0.321552i \(-0.104204\pi\)
−0.751918 + 0.659256i \(0.770871\pi\)
\(948\) 0 0
\(949\) 5.50000 9.52628i 0.178538 0.309236i
\(950\) −14.0000 + 24.2487i −0.454220 + 0.786732i
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.50000 2.59808i −0.0485135 0.0840278i
\(957\) 0 0
\(958\) 1.50000 2.59808i 0.0484628 0.0839400i
\(959\) 0 0
\(960\) 0 0
\(961\) −16.5000 28.5788i −0.532258 0.921898i
\(962\) −1.00000 −0.0322413
\(963\) 0 0
\(964\) 13.0000 0.418702
\(965\) −21.0000 36.3731i −0.676014 1.17089i
\(966\) 0 0
\(967\) −20.5000 + 35.5070i −0.659236 + 1.14183i 0.321578 + 0.946883i \(0.395787\pi\)
−0.980814 + 0.194946i \(0.937547\pi\)
\(968\) 1.00000 1.73205i 0.0321412 0.0556702i
\(969\) 0 0
\(970\) −1.50000 2.59808i −0.0481621 0.0834192i
\(971\) 33.0000 1.05902 0.529510 0.848304i \(-0.322376\pi\)
0.529510 + 0.848304i \(0.322376\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 12.5000 + 21.6506i 0.400526 + 0.693731i
\(975\) 0 0
\(976\) 1.00000 1.73205i 0.0320092 0.0554416i
\(977\) −15.0000 + 25.9808i −0.479893 + 0.831198i −0.999734 0.0230645i \(-0.992658\pi\)
0.519841 + 0.854263i \(0.325991\pi\)
\(978\) 0 0
\(979\) −4.50000 7.79423i −0.143821 0.249105i
\(980\) 0 0
\(981\) 0 0
\(982\) −21.0000 −0.670137
\(983\) 7.50000 + 12.9904i 0.239213 + 0.414329i 0.960489 0.278319i \(-0.0897773\pi\)
−0.721276 + 0.692648i \(0.756444\pi\)
\(984\) 0 0
\(985\) 27.0000 46.7654i 0.860292 1.49007i
\(986\) 4.50000 7.79423i 0.143309 0.248219i
\(987\) 0 0
\(988\) −3.50000 6.06218i −0.111350 0.192864i
\(989\) −9.00000 −0.286183
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 4.00000 + 6.92820i 0.127000 + 0.219971i
\(993\) 0 0
\(994\) 0 0
\(995\) −37.5000 + 64.9519i −1.18883 + 2.05911i
\(996\) 0 0
\(997\) −6.50000 11.2583i −0.205857 0.356555i 0.744548 0.667568i \(-0.232665\pi\)
−0.950405 + 0.311014i \(0.899332\pi\)
\(998\) −25.0000 −0.791361
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.f.a.1765.1 2
3.2 odd 2 882.2.f.g.589.1 2
7.2 even 3 2646.2.h.d.361.1 2
7.3 odd 6 378.2.e.b.37.1 2
7.4 even 3 2646.2.e.g.1549.1 2
7.5 odd 6 378.2.h.a.361.1 2
7.6 odd 2 2646.2.f.d.1765.1 2
9.2 odd 6 882.2.f.g.295.1 2
9.4 even 3 7938.2.a.be.1.1 1
9.5 odd 6 7938.2.a.b.1.1 1
9.7 even 3 inner 2646.2.f.a.883.1 2
21.2 odd 6 882.2.h.i.67.1 2
21.5 even 6 126.2.h.b.67.1 yes 2
21.11 odd 6 882.2.e.c.373.1 2
21.17 even 6 126.2.e.a.121.1 yes 2
21.20 even 2 882.2.f.i.589.1 2
28.3 even 6 3024.2.q.f.2305.1 2
28.19 even 6 3024.2.t.a.1873.1 2
63.2 odd 6 882.2.e.c.655.1 2
63.5 even 6 1134.2.g.e.487.1 2
63.11 odd 6 882.2.h.i.79.1 2
63.13 odd 6 7938.2.a.t.1.1 1
63.16 even 3 2646.2.e.g.2125.1 2
63.20 even 6 882.2.f.i.295.1 2
63.25 even 3 2646.2.h.d.667.1 2
63.31 odd 6 1134.2.g.c.163.1 2
63.34 odd 6 2646.2.f.d.883.1 2
63.38 even 6 126.2.h.b.79.1 yes 2
63.40 odd 6 1134.2.g.c.487.1 2
63.41 even 6 7938.2.a.m.1.1 1
63.47 even 6 126.2.e.a.25.1 2
63.52 odd 6 378.2.h.a.289.1 2
63.59 even 6 1134.2.g.e.163.1 2
63.61 odd 6 378.2.e.b.235.1 2
84.47 odd 6 1008.2.t.f.193.1 2
84.59 odd 6 1008.2.q.a.625.1 2
252.47 odd 6 1008.2.q.a.529.1 2
252.115 even 6 3024.2.t.a.289.1 2
252.187 even 6 3024.2.q.f.2881.1 2
252.227 odd 6 1008.2.t.f.961.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.a.25.1 2 63.47 even 6
126.2.e.a.121.1 yes 2 21.17 even 6
126.2.h.b.67.1 yes 2 21.5 even 6
126.2.h.b.79.1 yes 2 63.38 even 6
378.2.e.b.37.1 2 7.3 odd 6
378.2.e.b.235.1 2 63.61 odd 6
378.2.h.a.289.1 2 63.52 odd 6
378.2.h.a.361.1 2 7.5 odd 6
882.2.e.c.373.1 2 21.11 odd 6
882.2.e.c.655.1 2 63.2 odd 6
882.2.f.g.295.1 2 9.2 odd 6
882.2.f.g.589.1 2 3.2 odd 2
882.2.f.i.295.1 2 63.20 even 6
882.2.f.i.589.1 2 21.20 even 2
882.2.h.i.67.1 2 21.2 odd 6
882.2.h.i.79.1 2 63.11 odd 6
1008.2.q.a.529.1 2 252.47 odd 6
1008.2.q.a.625.1 2 84.59 odd 6
1008.2.t.f.193.1 2 84.47 odd 6
1008.2.t.f.961.1 2 252.227 odd 6
1134.2.g.c.163.1 2 63.31 odd 6
1134.2.g.c.487.1 2 63.40 odd 6
1134.2.g.e.163.1 2 63.59 even 6
1134.2.g.e.487.1 2 63.5 even 6
2646.2.e.g.1549.1 2 7.4 even 3
2646.2.e.g.2125.1 2 63.16 even 3
2646.2.f.a.883.1 2 9.7 even 3 inner
2646.2.f.a.1765.1 2 1.1 even 1 trivial
2646.2.f.d.883.1 2 63.34 odd 6
2646.2.f.d.1765.1 2 7.6 odd 2
2646.2.h.d.361.1 2 7.2 even 3
2646.2.h.d.667.1 2 63.25 even 3
3024.2.q.f.2305.1 2 28.3 even 6
3024.2.q.f.2881.1 2 252.187 even 6
3024.2.t.a.289.1 2 252.115 even 6
3024.2.t.a.1873.1 2 28.19 even 6
7938.2.a.b.1.1 1 9.5 odd 6
7938.2.a.m.1.1 1 63.41 even 6
7938.2.a.t.1.1 1 63.13 odd 6
7938.2.a.be.1.1 1 9.4 even 3