Properties

Label 2646.2.e.h.2125.1
Level $2646$
Weight $2$
Character 2646.2125
Analytic conductor $21.128$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(1549,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,-2,0,0,2,0,-2,1,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2125.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2646.2125
Dual form 2646.2.e.h.1549.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +(-1.00000 + 1.73205i) q^{5} +1.00000 q^{8} +(-1.00000 + 1.73205i) q^{10} +(0.500000 + 0.866025i) q^{11} +(-3.00000 - 5.19615i) q^{13} +1.00000 q^{16} +(2.50000 - 4.33013i) q^{17} +(-3.50000 - 6.06218i) q^{19} +(-1.00000 + 1.73205i) q^{20} +(0.500000 + 0.866025i) q^{22} +(2.00000 - 3.46410i) q^{23} +(0.500000 + 0.866025i) q^{25} +(-3.00000 - 5.19615i) q^{26} +(-2.00000 + 3.46410i) q^{29} +6.00000 q^{31} +1.00000 q^{32} +(2.50000 - 4.33013i) q^{34} +(-1.00000 - 1.73205i) q^{37} +(-3.50000 - 6.06218i) q^{38} +(-1.00000 + 1.73205i) q^{40} +(-1.50000 - 2.59808i) q^{41} +(0.500000 - 0.866025i) q^{43} +(0.500000 + 0.866025i) q^{44} +(2.00000 - 3.46410i) q^{46} +(0.500000 + 0.866025i) q^{50} +(-3.00000 - 5.19615i) q^{52} +(6.00000 - 10.3923i) q^{53} -2.00000 q^{55} +(-2.00000 + 3.46410i) q^{58} -7.00000 q^{59} +12.0000 q^{61} +6.00000 q^{62} +1.00000 q^{64} +12.0000 q^{65} +13.0000 q^{67} +(2.50000 - 4.33013i) q^{68} +8.00000 q^{71} +(0.500000 - 0.866025i) q^{73} +(-1.00000 - 1.73205i) q^{74} +(-3.50000 - 6.06218i) q^{76} -6.00000 q^{79} +(-1.00000 + 1.73205i) q^{80} +(-1.50000 - 2.59808i) q^{82} +(-8.00000 + 13.8564i) q^{83} +(5.00000 + 8.66025i) q^{85} +(0.500000 - 0.866025i) q^{86} +(0.500000 + 0.866025i) q^{88} +(3.00000 + 5.19615i) q^{89} +(2.00000 - 3.46410i) q^{92} +14.0000 q^{95} +(-2.50000 + 4.33013i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 2 q^{5} + 2 q^{8} - 2 q^{10} + q^{11} - 6 q^{13} + 2 q^{16} + 5 q^{17} - 7 q^{19} - 2 q^{20} + q^{22} + 4 q^{23} + q^{25} - 6 q^{26} - 4 q^{29} + 12 q^{31} + 2 q^{32} + 5 q^{34}+ \cdots - 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 + 1.73205i −0.447214 + 0.774597i −0.998203 0.0599153i \(-0.980917\pi\)
0.550990 + 0.834512i \(0.314250\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 + 1.73205i −0.316228 + 0.547723i
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) 0 0
\(13\) −3.00000 5.19615i −0.832050 1.44115i −0.896410 0.443227i \(-0.853834\pi\)
0.0643593 0.997927i \(-0.479500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.50000 4.33013i 0.606339 1.05021i −0.385499 0.922708i \(-0.625971\pi\)
0.991838 0.127502i \(-0.0406959\pi\)
\(18\) 0 0
\(19\) −3.50000 6.06218i −0.802955 1.39076i −0.917663 0.397360i \(-0.869927\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) −1.00000 + 1.73205i −0.223607 + 0.387298i
\(21\) 0 0
\(22\) 0.500000 + 0.866025i 0.106600 + 0.184637i
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) −3.00000 5.19615i −0.588348 1.01905i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 + 3.46410i −0.371391 + 0.643268i −0.989780 0.142605i \(-0.954452\pi\)
0.618389 + 0.785872i \(0.287786\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 2.50000 4.33013i 0.428746 0.742611i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) −3.50000 6.06218i −0.567775 0.983415i
\(39\) 0 0
\(40\) −1.00000 + 1.73205i −0.158114 + 0.273861i
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 0.500000 + 0.866025i 0.0753778 + 0.130558i
\(45\) 0 0
\(46\) 2.00000 3.46410i 0.294884 0.510754i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) −3.00000 5.19615i −0.416025 0.720577i
\(53\) 6.00000 10.3923i 0.824163 1.42749i −0.0783936 0.996922i \(-0.524979\pi\)
0.902557 0.430570i \(-0.141688\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) −2.00000 + 3.46410i −0.262613 + 0.454859i
\(59\) −7.00000 −0.911322 −0.455661 0.890153i \(-0.650597\pi\)
−0.455661 + 0.890153i \(0.650597\pi\)
\(60\) 0 0
\(61\) 12.0000 1.53644 0.768221 0.640184i \(-0.221142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 12.0000 1.48842
\(66\) 0 0
\(67\) 13.0000 1.58820 0.794101 0.607785i \(-0.207942\pi\)
0.794101 + 0.607785i \(0.207942\pi\)
\(68\) 2.50000 4.33013i 0.303170 0.525105i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 0.500000 0.866025i 0.0585206 0.101361i −0.835281 0.549823i \(-0.814695\pi\)
0.893801 + 0.448463i \(0.148028\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) 0 0
\(76\) −3.50000 6.06218i −0.401478 0.695379i
\(77\) 0 0
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) −1.00000 + 1.73205i −0.111803 + 0.193649i
\(81\) 0 0
\(82\) −1.50000 2.59808i −0.165647 0.286910i
\(83\) −8.00000 + 13.8564i −0.878114 + 1.52094i −0.0247060 + 0.999695i \(0.507865\pi\)
−0.853408 + 0.521243i \(0.825468\pi\)
\(84\) 0 0
\(85\) 5.00000 + 8.66025i 0.542326 + 0.939336i
\(86\) 0.500000 0.866025i 0.0539164 0.0933859i
\(87\) 0 0
\(88\) 0.500000 + 0.866025i 0.0533002 + 0.0923186i
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.00000 3.46410i 0.208514 0.361158i
\(93\) 0 0
\(94\) 0 0
\(95\) 14.0000 1.43637
\(96\) 0 0
\(97\) −2.50000 + 4.33013i −0.253837 + 0.439658i −0.964579 0.263795i \(-0.915026\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 2.00000 + 3.46410i 0.199007 + 0.344691i 0.948207 0.317653i \(-0.102895\pi\)
−0.749199 + 0.662344i \(0.769562\pi\)
\(102\) 0 0
\(103\) 7.00000 12.1244i 0.689730 1.19465i −0.282194 0.959357i \(-0.591062\pi\)
0.971925 0.235291i \(-0.0756043\pi\)
\(104\) −3.00000 5.19615i −0.294174 0.509525i
\(105\) 0 0
\(106\) 6.00000 10.3923i 0.582772 1.00939i
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 0 0
\(109\) 1.00000 1.73205i 0.0957826 0.165900i −0.814152 0.580651i \(-0.802798\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) −2.00000 −0.190693
\(111\) 0 0
\(112\) 0 0
\(113\) −5.00000 8.66025i −0.470360 0.814688i 0.529065 0.848581i \(-0.322543\pi\)
−0.999425 + 0.0338931i \(0.989209\pi\)
\(114\) 0 0
\(115\) 4.00000 + 6.92820i 0.373002 + 0.646058i
\(116\) −2.00000 + 3.46410i −0.185695 + 0.321634i
\(117\) 0 0
\(118\) −7.00000 −0.644402
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 12.0000 1.08643
\(123\) 0 0
\(124\) 6.00000 0.538816
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 12.0000 1.05247
\(131\) 2.00000 3.46410i 0.174741 0.302660i −0.765331 0.643637i \(-0.777425\pi\)
0.940072 + 0.340977i \(0.110758\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 13.0000 1.12303
\(135\) 0 0
\(136\) 2.50000 4.33013i 0.214373 0.371305i
\(137\) −9.50000 16.4545i −0.811640 1.40580i −0.911716 0.410822i \(-0.865242\pi\)
0.100076 0.994980i \(-0.468091\pi\)
\(138\) 0 0
\(139\) −2.50000 4.33013i −0.212047 0.367277i 0.740308 0.672268i \(-0.234680\pi\)
−0.952355 + 0.304991i \(0.901346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.00000 0.671345
\(143\) 3.00000 5.19615i 0.250873 0.434524i
\(144\) 0 0
\(145\) −4.00000 6.92820i −0.332182 0.575356i
\(146\) 0.500000 0.866025i 0.0413803 0.0716728i
\(147\) 0 0
\(148\) −1.00000 1.73205i −0.0821995 0.142374i
\(149\) −12.0000 + 20.7846i −0.983078 + 1.70274i −0.332896 + 0.942964i \(0.608026\pi\)
−0.650183 + 0.759778i \(0.725308\pi\)
\(150\) 0 0
\(151\) −5.00000 8.66025i −0.406894 0.704761i 0.587646 0.809118i \(-0.300055\pi\)
−0.994540 + 0.104357i \(0.966722\pi\)
\(152\) −3.50000 6.06218i −0.283887 0.491708i
\(153\) 0 0
\(154\) 0 0
\(155\) −6.00000 + 10.3923i −0.481932 + 0.834730i
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) −6.00000 −0.477334
\(159\) 0 0
\(160\) −1.00000 + 1.73205i −0.0790569 + 0.136931i
\(161\) 0 0
\(162\) 0 0
\(163\) 2.00000 + 3.46410i 0.156652 + 0.271329i 0.933659 0.358162i \(-0.116597\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) 0 0
\(166\) −8.00000 + 13.8564i −0.620920 + 1.07547i
\(167\) −10.0000 17.3205i −0.773823 1.34030i −0.935454 0.353450i \(-0.885009\pi\)
0.161630 0.986851i \(-0.448325\pi\)
\(168\) 0 0
\(169\) −11.5000 + 19.9186i −0.884615 + 1.53220i
\(170\) 5.00000 + 8.66025i 0.383482 + 0.664211i
\(171\) 0 0
\(172\) 0.500000 0.866025i 0.0381246 0.0660338i
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.500000 + 0.866025i 0.0376889 + 0.0652791i
\(177\) 0 0
\(178\) 3.00000 + 5.19615i 0.224860 + 0.389468i
\(179\) 12.0000 20.7846i 0.896922 1.55351i 0.0655145 0.997852i \(-0.479131\pi\)
0.831408 0.555663i \(-0.187536\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.00000 3.46410i 0.147442 0.255377i
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 5.00000 0.365636
\(188\) 0 0
\(189\) 0 0
\(190\) 14.0000 1.01567
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 17.0000 1.22369 0.611843 0.790979i \(-0.290428\pi\)
0.611843 + 0.790979i \(0.290428\pi\)
\(194\) −2.50000 + 4.33013i −0.179490 + 0.310885i
\(195\) 0 0
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) 7.00000 12.1244i 0.496217 0.859473i −0.503774 0.863836i \(-0.668055\pi\)
0.999990 + 0.00436292i \(0.00138876\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) 2.00000 + 3.46410i 0.140720 + 0.243733i
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 7.00000 12.1244i 0.487713 0.844744i
\(207\) 0 0
\(208\) −3.00000 5.19615i −0.208013 0.360288i
\(209\) 3.50000 6.06218i 0.242100 0.419330i
\(210\) 0 0
\(211\) 8.00000 + 13.8564i 0.550743 + 0.953914i 0.998221 + 0.0596196i \(0.0189888\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 6.00000 10.3923i 0.412082 0.713746i
\(213\) 0 0
\(214\) 1.50000 + 2.59808i 0.102538 + 0.177601i
\(215\) 1.00000 + 1.73205i 0.0681994 + 0.118125i
\(216\) 0 0
\(217\) 0 0
\(218\) 1.00000 1.73205i 0.0677285 0.117309i
\(219\) 0 0
\(220\) −2.00000 −0.134840
\(221\) −30.0000 −2.01802
\(222\) 0 0
\(223\) −2.00000 + 3.46410i −0.133930 + 0.231973i −0.925188 0.379509i \(-0.876093\pi\)
0.791258 + 0.611482i \(0.209426\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.00000 8.66025i −0.332595 0.576072i
\(227\) −1.50000 2.59808i −0.0995585 0.172440i 0.811943 0.583736i \(-0.198410\pi\)
−0.911502 + 0.411296i \(0.865076\pi\)
\(228\) 0 0
\(229\) −13.0000 + 22.5167i −0.859064 + 1.48794i 0.0137585 + 0.999905i \(0.495620\pi\)
−0.872823 + 0.488037i \(0.837713\pi\)
\(230\) 4.00000 + 6.92820i 0.263752 + 0.456832i
\(231\) 0 0
\(232\) −2.00000 + 3.46410i −0.131306 + 0.227429i
\(233\) −14.5000 25.1147i −0.949927 1.64532i −0.745573 0.666424i \(-0.767824\pi\)
−0.204354 0.978897i \(-0.565509\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −7.00000 −0.455661
\(237\) 0 0
\(238\) 0 0
\(239\) 3.00000 + 5.19615i 0.194054 + 0.336111i 0.946590 0.322440i \(-0.104503\pi\)
−0.752536 + 0.658551i \(0.771170\pi\)
\(240\) 0 0
\(241\) 11.5000 + 19.9186i 0.740780 + 1.28307i 0.952141 + 0.305661i \(0.0988773\pi\)
−0.211360 + 0.977408i \(0.567789\pi\)
\(242\) 5.00000 8.66025i 0.321412 0.556702i
\(243\) 0 0
\(244\) 12.0000 0.768221
\(245\) 0 0
\(246\) 0 0
\(247\) −21.0000 + 36.3731i −1.33620 + 2.31436i
\(248\) 6.00000 0.381000
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) 3.00000 0.189358 0.0946792 0.995508i \(-0.469817\pi\)
0.0946792 + 0.995508i \(0.469817\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.50000 12.9904i 0.467837 0.810318i −0.531487 0.847066i \(-0.678367\pi\)
0.999325 + 0.0367485i \(0.0117000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 12.0000 0.744208
\(261\) 0 0
\(262\) 2.00000 3.46410i 0.123560 0.214013i
\(263\) 9.00000 + 15.5885i 0.554964 + 0.961225i 0.997906 + 0.0646755i \(0.0206012\pi\)
−0.442943 + 0.896550i \(0.646065\pi\)
\(264\) 0 0
\(265\) 12.0000 + 20.7846i 0.737154 + 1.27679i
\(266\) 0 0
\(267\) 0 0
\(268\) 13.0000 0.794101
\(269\) −10.0000 + 17.3205i −0.609711 + 1.05605i 0.381577 + 0.924337i \(0.375381\pi\)
−0.991288 + 0.131713i \(0.957952\pi\)
\(270\) 0 0
\(271\) −3.00000 5.19615i −0.182237 0.315644i 0.760405 0.649449i \(-0.225000\pi\)
−0.942642 + 0.333805i \(0.891667\pi\)
\(272\) 2.50000 4.33013i 0.151585 0.262553i
\(273\) 0 0
\(274\) −9.50000 16.4545i −0.573916 0.994052i
\(275\) −0.500000 + 0.866025i −0.0301511 + 0.0522233i
\(276\) 0 0
\(277\) −1.00000 1.73205i −0.0600842 0.104069i 0.834419 0.551131i \(-0.185804\pi\)
−0.894503 + 0.447062i \(0.852470\pi\)
\(278\) −2.50000 4.33013i −0.149940 0.259704i
\(279\) 0 0
\(280\) 0 0
\(281\) 11.0000 19.0526i 0.656205 1.13658i −0.325385 0.945582i \(-0.605494\pi\)
0.981590 0.190999i \(-0.0611727\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 3.00000 5.19615i 0.177394 0.307255i
\(287\) 0 0
\(288\) 0 0
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) −4.00000 6.92820i −0.234888 0.406838i
\(291\) 0 0
\(292\) 0.500000 0.866025i 0.0292603 0.0506803i
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) 7.00000 12.1244i 0.407556 0.705907i
\(296\) −1.00000 1.73205i −0.0581238 0.100673i
\(297\) 0 0
\(298\) −12.0000 + 20.7846i −0.695141 + 1.20402i
\(299\) −24.0000 −1.38796
\(300\) 0 0
\(301\) 0 0
\(302\) −5.00000 8.66025i −0.287718 0.498342i
\(303\) 0 0
\(304\) −3.50000 6.06218i −0.200739 0.347690i
\(305\) −12.0000 + 20.7846i −0.687118 + 1.19012i
\(306\) 0 0
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −6.00000 + 10.3923i −0.340777 + 0.590243i
\(311\) 2.00000 0.113410 0.0567048 0.998391i \(-0.481941\pi\)
0.0567048 + 0.998391i \(0.481941\pi\)
\(312\) 0 0
\(313\) 17.0000 0.960897 0.480448 0.877023i \(-0.340474\pi\)
0.480448 + 0.877023i \(0.340474\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) −1.00000 + 1.73205i −0.0559017 + 0.0968246i
\(321\) 0 0
\(322\) 0 0
\(323\) −35.0000 −1.94745
\(324\) 0 0
\(325\) 3.00000 5.19615i 0.166410 0.288231i
\(326\) 2.00000 + 3.46410i 0.110770 + 0.191859i
\(327\) 0 0
\(328\) −1.50000 2.59808i −0.0828236 0.143455i
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −8.00000 + 13.8564i −0.439057 + 0.760469i
\(333\) 0 0
\(334\) −10.0000 17.3205i −0.547176 0.947736i
\(335\) −13.0000 + 22.5167i −0.710266 + 1.23022i
\(336\) 0 0
\(337\) 4.50000 + 7.79423i 0.245131 + 0.424579i 0.962168 0.272456i \(-0.0878358\pi\)
−0.717038 + 0.697034i \(0.754502\pi\)
\(338\) −11.5000 + 19.9186i −0.625518 + 1.08343i
\(339\) 0 0
\(340\) 5.00000 + 8.66025i 0.271163 + 0.469668i
\(341\) 3.00000 + 5.19615i 0.162459 + 0.281387i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.500000 0.866025i 0.0269582 0.0466930i
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) 3.00000 0.161048 0.0805242 0.996753i \(-0.474341\pi\)
0.0805242 + 0.996753i \(0.474341\pi\)
\(348\) 0 0
\(349\) −7.00000 + 12.1244i −0.374701 + 0.649002i −0.990282 0.139072i \(-0.955588\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.500000 + 0.866025i 0.0266501 + 0.0461593i
\(353\) 7.50000 + 12.9904i 0.399185 + 0.691408i 0.993626 0.112731i \(-0.0359599\pi\)
−0.594441 + 0.804139i \(0.702627\pi\)
\(354\) 0 0
\(355\) −8.00000 + 13.8564i −0.424596 + 0.735422i
\(356\) 3.00000 + 5.19615i 0.159000 + 0.275396i
\(357\) 0 0
\(358\) 12.0000 20.7846i 0.634220 1.09850i
\(359\) 1.00000 + 1.73205i 0.0527780 + 0.0914141i 0.891207 0.453596i \(-0.149859\pi\)
−0.838429 + 0.545010i \(0.816526\pi\)
\(360\) 0 0
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.00000 + 1.73205i 0.0523424 + 0.0906597i
\(366\) 0 0
\(367\) −11.0000 19.0526i −0.574195 0.994535i −0.996129 0.0879086i \(-0.971982\pi\)
0.421933 0.906627i \(-0.361352\pi\)
\(368\) 2.00000 3.46410i 0.104257 0.180579i
\(369\) 0 0
\(370\) 4.00000 0.207950
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 + 19.0526i −0.569558 + 0.986504i 0.427051 + 0.904227i \(0.359552\pi\)
−0.996610 + 0.0822766i \(0.973781\pi\)
\(374\) 5.00000 0.258544
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −17.0000 −0.873231 −0.436616 0.899648i \(-0.643823\pi\)
−0.436616 + 0.899648i \(0.643823\pi\)
\(380\) 14.0000 0.718185
\(381\) 0 0
\(382\) −12.0000 −0.613973
\(383\) −2.00000 + 3.46410i −0.102195 + 0.177007i −0.912589 0.408879i \(-0.865920\pi\)
0.810394 + 0.585886i \(0.199253\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.0000 0.865277
\(387\) 0 0
\(388\) −2.50000 + 4.33013i −0.126918 + 0.219829i
\(389\) 4.00000 + 6.92820i 0.202808 + 0.351274i 0.949432 0.313972i \(-0.101660\pi\)
−0.746624 + 0.665246i \(0.768327\pi\)
\(390\) 0 0
\(391\) −10.0000 17.3205i −0.505722 0.875936i
\(392\) 0 0
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) 6.00000 10.3923i 0.301893 0.522894i
\(396\) 0 0
\(397\) 9.00000 + 15.5885i 0.451697 + 0.782362i 0.998492 0.0549046i \(-0.0174855\pi\)
−0.546795 + 0.837267i \(0.684152\pi\)
\(398\) 7.00000 12.1244i 0.350878 0.607739i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 4.50000 7.79423i 0.224719 0.389225i −0.731516 0.681824i \(-0.761187\pi\)
0.956235 + 0.292599i \(0.0945202\pi\)
\(402\) 0 0
\(403\) −18.0000 31.1769i −0.896644 1.55303i
\(404\) 2.00000 + 3.46410i 0.0995037 + 0.172345i
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00000 1.73205i 0.0495682 0.0858546i
\(408\) 0 0
\(409\) −11.0000 −0.543915 −0.271957 0.962309i \(-0.587671\pi\)
−0.271957 + 0.962309i \(0.587671\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) 7.00000 12.1244i 0.344865 0.597324i
\(413\) 0 0
\(414\) 0 0
\(415\) −16.0000 27.7128i −0.785409 1.36037i
\(416\) −3.00000 5.19615i −0.147087 0.254762i
\(417\) 0 0
\(418\) 3.50000 6.06218i 0.171191 0.296511i
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) 0 0
\(421\) 6.00000 10.3923i 0.292422 0.506490i −0.681960 0.731390i \(-0.738872\pi\)
0.974382 + 0.224900i \(0.0722054\pi\)
\(422\) 8.00000 + 13.8564i 0.389434 + 0.674519i
\(423\) 0 0
\(424\) 6.00000 10.3923i 0.291386 0.504695i
\(425\) 5.00000 0.242536
\(426\) 0 0
\(427\) 0 0
\(428\) 1.50000 + 2.59808i 0.0725052 + 0.125583i
\(429\) 0 0
\(430\) 1.00000 + 1.73205i 0.0482243 + 0.0835269i
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 0 0
\(433\) 25.0000 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.00000 1.73205i 0.0478913 0.0829502i
\(437\) −28.0000 −1.33942
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 0 0
\(442\) −30.0000 −1.42695
\(443\) −7.00000 −0.332580 −0.166290 0.986077i \(-0.553179\pi\)
−0.166290 + 0.986077i \(0.553179\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) −2.00000 + 3.46410i −0.0947027 + 0.164030i
\(447\) 0 0
\(448\) 0 0
\(449\) −17.0000 −0.802280 −0.401140 0.916017i \(-0.631386\pi\)
−0.401140 + 0.916017i \(0.631386\pi\)
\(450\) 0 0
\(451\) 1.50000 2.59808i 0.0706322 0.122339i
\(452\) −5.00000 8.66025i −0.235180 0.407344i
\(453\) 0 0
\(454\) −1.50000 2.59808i −0.0703985 0.121934i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.00000 0.0467780 0.0233890 0.999726i \(-0.492554\pi\)
0.0233890 + 0.999726i \(0.492554\pi\)
\(458\) −13.0000 + 22.5167i −0.607450 + 1.05213i
\(459\) 0 0
\(460\) 4.00000 + 6.92820i 0.186501 + 0.323029i
\(461\) −7.00000 + 12.1244i −0.326023 + 0.564688i −0.981719 0.190337i \(-0.939042\pi\)
0.655696 + 0.755025i \(0.272375\pi\)
\(462\) 0 0
\(463\) 4.00000 + 6.92820i 0.185896 + 0.321981i 0.943878 0.330294i \(-0.107148\pi\)
−0.757982 + 0.652275i \(0.773815\pi\)
\(464\) −2.00000 + 3.46410i −0.0928477 + 0.160817i
\(465\) 0 0
\(466\) −14.5000 25.1147i −0.671700 1.16342i
\(467\) 6.50000 + 11.2583i 0.300784 + 0.520973i 0.976314 0.216359i \(-0.0694183\pi\)
−0.675530 + 0.737333i \(0.736085\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −7.00000 −0.322201
\(473\) 1.00000 0.0459800
\(474\) 0 0
\(475\) 3.50000 6.06218i 0.160591 0.278152i
\(476\) 0 0
\(477\) 0 0
\(478\) 3.00000 + 5.19615i 0.137217 + 0.237666i
\(479\) 10.0000 + 17.3205i 0.456912 + 0.791394i 0.998796 0.0490589i \(-0.0156222\pi\)
−0.541884 + 0.840453i \(0.682289\pi\)
\(480\) 0 0
\(481\) −6.00000 + 10.3923i −0.273576 + 0.473848i
\(482\) 11.5000 + 19.9186i 0.523811 + 0.907267i
\(483\) 0 0
\(484\) 5.00000 8.66025i 0.227273 0.393648i
\(485\) −5.00000 8.66025i −0.227038 0.393242i
\(486\) 0 0
\(487\) 5.00000 8.66025i 0.226572 0.392434i −0.730218 0.683214i \(-0.760582\pi\)
0.956790 + 0.290780i \(0.0939149\pi\)
\(488\) 12.0000 0.543214
\(489\) 0 0
\(490\) 0 0
\(491\) 16.5000 + 28.5788i 0.744635 + 1.28974i 0.950365 + 0.311136i \(0.100710\pi\)
−0.205731 + 0.978609i \(0.565957\pi\)
\(492\) 0 0
\(493\) 10.0000 + 17.3205i 0.450377 + 0.780076i
\(494\) −21.0000 + 36.3731i −0.944835 + 1.63650i
\(495\) 0 0
\(496\) 6.00000 0.269408
\(497\) 0 0
\(498\) 0 0
\(499\) 14.5000 25.1147i 0.649109 1.12429i −0.334227 0.942493i \(-0.608475\pi\)
0.983336 0.181797i \(-0.0581915\pi\)
\(500\) −12.0000 −0.536656
\(501\) 0 0
\(502\) 3.00000 0.133897
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 4.00000 0.177822
\(507\) 0 0
\(508\) −12.0000 −0.532414
\(509\) −15.0000 + 25.9808i −0.664863 + 1.15158i 0.314459 + 0.949271i \(0.398177\pi\)
−0.979322 + 0.202306i \(0.935156\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 7.50000 12.9904i 0.330811 0.572981i
\(515\) 14.0000 + 24.2487i 0.616914 + 1.06853i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 12.0000 0.526235
\(521\) 4.50000 7.79423i 0.197149 0.341471i −0.750454 0.660922i \(-0.770165\pi\)
0.947603 + 0.319451i \(0.103499\pi\)
\(522\) 0 0
\(523\) −14.0000 24.2487i −0.612177 1.06032i −0.990873 0.134801i \(-0.956961\pi\)
0.378695 0.925521i \(-0.376373\pi\)
\(524\) 2.00000 3.46410i 0.0873704 0.151330i
\(525\) 0 0
\(526\) 9.00000 + 15.5885i 0.392419 + 0.679689i
\(527\) 15.0000 25.9808i 0.653410 1.13174i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 12.0000 + 20.7846i 0.521247 + 0.902826i
\(531\) 0 0
\(532\) 0 0
\(533\) −9.00000 + 15.5885i −0.389833 + 0.675211i
\(534\) 0 0
\(535\) −6.00000 −0.259403
\(536\) 13.0000 0.561514
\(537\) 0 0
\(538\) −10.0000 + 17.3205i −0.431131 + 0.746740i
\(539\) 0 0
\(540\) 0 0
\(541\) 12.0000 + 20.7846i 0.515920 + 0.893600i 0.999829 + 0.0184818i \(0.00588327\pi\)
−0.483909 + 0.875118i \(0.660783\pi\)
\(542\) −3.00000 5.19615i −0.128861 0.223194i
\(543\) 0 0
\(544\) 2.50000 4.33013i 0.107187 0.185653i
\(545\) 2.00000 + 3.46410i 0.0856706 + 0.148386i
\(546\) 0 0
\(547\) 10.5000 18.1865i 0.448948 0.777600i −0.549370 0.835579i \(-0.685132\pi\)
0.998318 + 0.0579790i \(0.0184657\pi\)
\(548\) −9.50000 16.4545i −0.405820 0.702901i
\(549\) 0 0
\(550\) −0.500000 + 0.866025i −0.0213201 + 0.0369274i
\(551\) 28.0000 1.19284
\(552\) 0 0
\(553\) 0 0
\(554\) −1.00000 1.73205i −0.0424859 0.0735878i
\(555\) 0 0
\(556\) −2.50000 4.33013i −0.106024 0.183638i
\(557\) −14.0000 + 24.2487i −0.593199 + 1.02745i 0.400599 + 0.916253i \(0.368802\pi\)
−0.993798 + 0.111198i \(0.964531\pi\)
\(558\) 0 0
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 0 0
\(562\) 11.0000 19.0526i 0.464007 0.803684i
\(563\) 31.0000 1.30649 0.653247 0.757145i \(-0.273406\pi\)
0.653247 + 0.757145i \(0.273406\pi\)
\(564\) 0 0
\(565\) 20.0000 0.841406
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) −33.0000 −1.38101 −0.690504 0.723329i \(-0.742611\pi\)
−0.690504 + 0.723329i \(0.742611\pi\)
\(572\) 3.00000 5.19615i 0.125436 0.217262i
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −17.5000 + 30.3109i −0.728535 + 1.26186i 0.228968 + 0.973434i \(0.426465\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 0 0
\(580\) −4.00000 6.92820i −0.166091 0.287678i
\(581\) 0 0
\(582\) 0 0
\(583\) 12.0000 0.496989
\(584\) 0.500000 0.866025i 0.0206901 0.0358364i
\(585\) 0 0
\(586\) 0 0
\(587\) 23.5000 40.7032i 0.969949 1.68000i 0.274263 0.961655i \(-0.411566\pi\)
0.695686 0.718346i \(-0.255100\pi\)
\(588\) 0 0
\(589\) −21.0000 36.3731i −0.865290 1.49873i
\(590\) 7.00000 12.1244i 0.288185 0.499152i
\(591\) 0 0
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) 3.00000 + 5.19615i 0.123195 + 0.213380i 0.921026 0.389501i \(-0.127353\pi\)
−0.797831 + 0.602881i \(0.794019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.0000 + 20.7846i −0.491539 + 0.851371i
\(597\) 0 0
\(598\) −24.0000 −0.981433
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −9.50000 + 16.4545i −0.387513 + 0.671192i −0.992114 0.125336i \(-0.959999\pi\)
0.604601 + 0.796528i \(0.293332\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −5.00000 8.66025i −0.203447 0.352381i
\(605\) 10.0000 + 17.3205i 0.406558 + 0.704179i
\(606\) 0 0
\(607\) −12.0000 + 20.7846i −0.487065 + 0.843621i −0.999889 0.0148722i \(-0.995266\pi\)
0.512824 + 0.858494i \(0.328599\pi\)
\(608\) −3.50000 6.06218i −0.141944 0.245854i
\(609\) 0 0
\(610\) −12.0000 + 20.7846i −0.485866 + 0.841544i
\(611\) 0 0
\(612\) 0 0
\(613\) −21.0000 + 36.3731i −0.848182 + 1.46909i 0.0346469 + 0.999400i \(0.488969\pi\)
−0.882829 + 0.469695i \(0.844364\pi\)
\(614\) −7.00000 −0.282497
\(615\) 0 0
\(616\) 0 0
\(617\) −8.50000 14.7224i −0.342197 0.592703i 0.642643 0.766165i \(-0.277838\pi\)
−0.984840 + 0.173463i \(0.944504\pi\)
\(618\) 0 0
\(619\) 18.5000 + 32.0429i 0.743578 + 1.28791i 0.950856 + 0.309633i \(0.100206\pi\)
−0.207279 + 0.978282i \(0.566461\pi\)
\(620\) −6.00000 + 10.3923i −0.240966 + 0.417365i
\(621\) 0 0
\(622\) 2.00000 0.0801927
\(623\) 0 0
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 17.0000 0.679457
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −10.0000 −0.398726
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −6.00000 −0.238667
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 12.0000 20.7846i 0.476205 0.824812i
\(636\) 0 0
\(637\) 0 0
\(638\) −4.00000 −0.158362
\(639\) 0 0
\(640\) −1.00000 + 1.73205i −0.0395285 + 0.0684653i
\(641\) 0.500000 + 0.866025i 0.0197488 + 0.0342059i 0.875731 0.482800i \(-0.160380\pi\)
−0.855982 + 0.517005i \(0.827047\pi\)
\(642\) 0 0
\(643\) −3.50000 6.06218i −0.138027 0.239069i 0.788723 0.614749i \(-0.210743\pi\)
−0.926750 + 0.375680i \(0.877409\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −35.0000 −1.37706
\(647\) −6.00000 + 10.3923i −0.235884 + 0.408564i −0.959529 0.281609i \(-0.909132\pi\)
0.723645 + 0.690172i \(0.242465\pi\)
\(648\) 0 0
\(649\) −3.50000 6.06218i −0.137387 0.237961i
\(650\) 3.00000 5.19615i 0.117670 0.203810i
\(651\) 0 0
\(652\) 2.00000 + 3.46410i 0.0783260 + 0.135665i
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) 0 0
\(655\) 4.00000 + 6.92820i 0.156293 + 0.270707i
\(656\) −1.50000 2.59808i −0.0585652 0.101438i
\(657\) 0 0
\(658\) 0 0
\(659\) 8.00000 13.8564i 0.311636 0.539769i −0.667081 0.744985i \(-0.732456\pi\)
0.978717 + 0.205216i \(0.0657898\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) 8.00000 0.310929
\(663\) 0 0
\(664\) −8.00000 + 13.8564i −0.310460 + 0.537733i
\(665\) 0 0
\(666\) 0 0
\(667\) 8.00000 + 13.8564i 0.309761 + 0.536522i
\(668\) −10.0000 17.3205i −0.386912 0.670151i
\(669\) 0 0
\(670\) −13.0000 + 22.5167i −0.502234 + 0.869894i
\(671\) 6.00000 + 10.3923i 0.231627 + 0.401190i
\(672\) 0 0
\(673\) −7.00000 + 12.1244i −0.269830 + 0.467360i −0.968818 0.247774i \(-0.920301\pi\)
0.698988 + 0.715134i \(0.253634\pi\)
\(674\) 4.50000 + 7.79423i 0.173334 + 0.300222i
\(675\) 0 0
\(676\) −11.5000 + 19.9186i −0.442308 + 0.766099i
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 5.00000 + 8.66025i 0.191741 + 0.332106i
\(681\) 0 0
\(682\) 3.00000 + 5.19615i 0.114876 + 0.198971i
\(683\) 19.5000 33.7750i 0.746147 1.29236i −0.203510 0.979073i \(-0.565235\pi\)
0.949657 0.313291i \(-0.101432\pi\)
\(684\) 0 0
\(685\) 38.0000 1.45191
\(686\) 0 0
\(687\) 0 0
\(688\) 0.500000 0.866025i 0.0190623 0.0330169i
\(689\) −72.0000 −2.74298
\(690\) 0 0
\(691\) −32.0000 −1.21734 −0.608669 0.793424i \(-0.708296\pi\)
−0.608669 + 0.793424i \(0.708296\pi\)
\(692\) 2.00000 0.0760286
\(693\) 0 0
\(694\) 3.00000 0.113878
\(695\) 10.0000 0.379322
\(696\) 0 0
\(697\) −15.0000 −0.568166
\(698\) −7.00000 + 12.1244i −0.264954 + 0.458914i
\(699\) 0 0
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) −7.00000 + 12.1244i −0.264010 + 0.457279i
\(704\) 0.500000 + 0.866025i 0.0188445 + 0.0326396i
\(705\) 0 0
\(706\) 7.50000 + 12.9904i 0.282266 + 0.488899i
\(707\) 0 0
\(708\) 0 0
\(709\) −4.00000 −0.150223 −0.0751116 0.997175i \(-0.523931\pi\)
−0.0751116 + 0.997175i \(0.523931\pi\)
\(710\) −8.00000 + 13.8564i −0.300235 + 0.520022i
\(711\) 0 0
\(712\) 3.00000 + 5.19615i 0.112430 + 0.194734i
\(713\) 12.0000 20.7846i 0.449404 0.778390i
\(714\) 0 0
\(715\) 6.00000 + 10.3923i 0.224387 + 0.388650i
\(716\) 12.0000 20.7846i 0.448461 0.776757i
\(717\) 0 0
\(718\) 1.00000 + 1.73205i 0.0373197 + 0.0646396i
\(719\) −3.00000 5.19615i −0.111881 0.193784i 0.804648 0.593753i \(-0.202354\pi\)
−0.916529 + 0.399969i \(0.869021\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.0000 + 25.9808i −0.558242 + 0.966904i
\(723\) 0 0
\(724\) 0 0
\(725\) −4.00000 −0.148556
\(726\) 0 0
\(727\) −7.00000 + 12.1244i −0.259616 + 0.449667i −0.966139 0.258022i \(-0.916929\pi\)
0.706523 + 0.707690i \(0.250263\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.00000 + 1.73205i 0.0370117 + 0.0641061i
\(731\) −2.50000 4.33013i −0.0924658 0.160156i
\(732\) 0 0
\(733\) −9.00000 + 15.5885i −0.332423 + 0.575773i −0.982986 0.183679i \(-0.941199\pi\)
0.650564 + 0.759452i \(0.274533\pi\)
\(734\) −11.0000 19.0526i −0.406017 0.703243i
\(735\) 0 0
\(736\) 2.00000 3.46410i 0.0737210 0.127688i
\(737\) 6.50000 + 11.2583i 0.239431 + 0.414706i
\(738\) 0 0
\(739\) 16.5000 28.5788i 0.606962 1.05129i −0.384776 0.923010i \(-0.625721\pi\)
0.991738 0.128279i \(-0.0409454\pi\)
\(740\) 4.00000 0.147043
\(741\) 0 0
\(742\) 0 0
\(743\) −3.00000 5.19615i −0.110059 0.190628i 0.805735 0.592277i \(-0.201771\pi\)
−0.915794 + 0.401648i \(0.868437\pi\)
\(744\) 0 0
\(745\) −24.0000 41.5692i −0.879292 1.52298i
\(746\) −11.0000 + 19.0526i −0.402739 + 0.697564i
\(747\) 0 0
\(748\) 5.00000 0.182818
\(749\) 0 0
\(750\) 0 0
\(751\) 9.00000 15.5885i 0.328415 0.568831i −0.653783 0.756682i \(-0.726819\pi\)
0.982197 + 0.187851i \(0.0601523\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) 20.0000 0.727875
\(756\) 0 0
\(757\) −48.0000 −1.74459 −0.872295 0.488980i \(-0.837369\pi\)
−0.872295 + 0.488980i \(0.837369\pi\)
\(758\) −17.0000 −0.617468
\(759\) 0 0
\(760\) 14.0000 0.507833
\(761\) −5.00000 + 8.66025i −0.181250 + 0.313934i −0.942306 0.334752i \(-0.891348\pi\)
0.761057 + 0.648686i \(0.224681\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −2.00000 + 3.46410i −0.0722629 + 0.125163i
\(767\) 21.0000 + 36.3731i 0.758266 + 1.31336i
\(768\) 0 0
\(769\) 11.0000 + 19.0526i 0.396670 + 0.687053i 0.993313 0.115454i \(-0.0368323\pi\)
−0.596643 + 0.802507i \(0.703499\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 17.0000 0.611843
\(773\) 26.0000 45.0333i 0.935155 1.61974i 0.160798 0.986987i \(-0.448593\pi\)
0.774357 0.632749i \(-0.218073\pi\)
\(774\) 0 0
\(775\) 3.00000 + 5.19615i 0.107763 + 0.186651i
\(776\) −2.50000 + 4.33013i −0.0897448 + 0.155443i
\(777\) 0 0
\(778\) 4.00000 + 6.92820i 0.143407 + 0.248388i
\(779\) −10.5000 + 18.1865i −0.376202 + 0.651600i
\(780\) 0 0
\(781\) 4.00000 + 6.92820i 0.143131 + 0.247911i
\(782\) −10.0000 17.3205i −0.357599 0.619380i
\(783\) 0 0
\(784\) 0 0
\(785\) 2.00000 3.46410i 0.0713831 0.123639i
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) −10.0000 −0.356235
\(789\) 0 0
\(790\) 6.00000 10.3923i 0.213470 0.369742i
\(791\) 0 0
\(792\) 0 0
\(793\) −36.0000 62.3538i −1.27840 2.21425i
\(794\) 9.00000 + 15.5885i 0.319398 + 0.553214i
\(795\) 0 0
\(796\) 7.00000 12.1244i 0.248108 0.429736i
\(797\) 6.00000 + 10.3923i 0.212531 + 0.368114i 0.952506 0.304520i \(-0.0984960\pi\)
−0.739975 + 0.672634i \(0.765163\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.500000 + 0.866025i 0.0176777 + 0.0306186i
\(801\) 0 0
\(802\) 4.50000 7.79423i 0.158901 0.275224i
\(803\) 1.00000 0.0352892
\(804\) 0 0
\(805\) 0 0
\(806\) −18.0000 31.1769i −0.634023 1.09816i
\(807\) 0 0
\(808\) 2.00000 + 3.46410i 0.0703598 + 0.121867i
\(809\) −21.5000 + 37.2391i −0.755900 + 1.30926i 0.189026 + 0.981972i \(0.439467\pi\)
−0.944926 + 0.327285i \(0.893866\pi\)
\(810\) 0 0
\(811\) −31.0000 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.00000 1.73205i 0.0350500 0.0607083i
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) −7.00000 −0.244899
\(818\) −11.0000 −0.384606
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) −46.0000 −1.60541 −0.802706 0.596376i \(-0.796607\pi\)
−0.802706 + 0.596376i \(0.796607\pi\)
\(822\) 0 0
\(823\) 34.0000 1.18517 0.592583 0.805510i \(-0.298108\pi\)
0.592583 + 0.805510i \(0.298108\pi\)
\(824\) 7.00000 12.1244i 0.243857 0.422372i
\(825\) 0 0
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 2.00000 3.46410i 0.0694629 0.120313i −0.829202 0.558949i \(-0.811205\pi\)
0.898665 + 0.438636i \(0.144538\pi\)
\(830\) −16.0000 27.7128i −0.555368 0.961926i
\(831\) 0 0
\(832\) −3.00000 5.19615i −0.104006 0.180144i
\(833\) 0 0
\(834\) 0 0
\(835\) 40.0000 1.38426
\(836\) 3.50000 6.06218i 0.121050 0.209665i
\(837\) 0 0
\(838\) 6.00000 + 10.3923i 0.207267 + 0.358996i
\(839\) 10.0000 17.3205i 0.345238 0.597970i −0.640159 0.768243i \(-0.721131\pi\)
0.985397 + 0.170272i \(0.0544647\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) 6.00000 10.3923i 0.206774 0.358142i
\(843\) 0 0
\(844\) 8.00000 + 13.8564i 0.275371 + 0.476957i
\(845\) −23.0000 39.8372i −0.791224 1.37044i
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000 10.3923i 0.206041 0.356873i
\(849\) 0 0
\(850\) 5.00000 0.171499
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) 22.0000 38.1051i 0.753266 1.30469i −0.192966 0.981205i \(-0.561811\pi\)
0.946232 0.323489i \(-0.104856\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.50000 + 2.59808i 0.0512689 + 0.0888004i
\(857\) −15.0000 25.9808i −0.512390 0.887486i −0.999897 0.0143666i \(-0.995427\pi\)
0.487507 0.873119i \(-0.337907\pi\)
\(858\) 0 0
\(859\) 14.5000 25.1147i 0.494734 0.856904i −0.505248 0.862974i \(-0.668599\pi\)
0.999982 + 0.00607046i \(0.00193230\pi\)
\(860\) 1.00000 + 1.73205i 0.0340997 + 0.0590624i
\(861\) 0 0
\(862\) 0 0
\(863\) 19.0000 + 32.9090i 0.646768 + 1.12023i 0.983890 + 0.178774i \(0.0572129\pi\)
−0.337123 + 0.941461i \(0.609454\pi\)
\(864\) 0 0
\(865\) −2.00000 + 3.46410i −0.0680020 + 0.117783i
\(866\) 25.0000 0.849535
\(867\) 0 0
\(868\) 0 0
\(869\) −3.00000 5.19615i −0.101768 0.176267i
\(870\) 0 0
\(871\) −39.0000 67.5500i −1.32146 2.28884i
\(872\) 1.00000 1.73205i 0.0338643 0.0586546i
\(873\) 0 0
\(874\) −28.0000 −0.947114
\(875\) 0 0
\(876\) 0 0
\(877\) −8.00000 + 13.8564i −0.270141 + 0.467898i −0.968898 0.247462i \(-0.920404\pi\)
0.698757 + 0.715359i \(0.253737\pi\)
\(878\) 24.0000 0.809961
\(879\) 0 0
\(880\) −2.00000 −0.0674200
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) 53.0000 1.78359 0.891796 0.452438i \(-0.149446\pi\)
0.891796 + 0.452438i \(0.149446\pi\)
\(884\) −30.0000 −1.00901
\(885\) 0 0
\(886\) −7.00000 −0.235170
\(887\) 3.00000 5.19615i 0.100730 0.174470i −0.811256 0.584692i \(-0.801215\pi\)
0.911986 + 0.410222i \(0.134549\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) −2.00000 + 3.46410i −0.0669650 + 0.115987i
\(893\) 0 0
\(894\) 0 0
\(895\) 24.0000 + 41.5692i 0.802232 + 1.38951i
\(896\) 0 0
\(897\) 0 0
\(898\) −17.0000 −0.567297
\(899\) −12.0000 + 20.7846i −0.400222 + 0.693206i
\(900\) 0 0
\(901\) −30.0000 51.9615i −0.999445 1.73109i
\(902\) 1.50000 2.59808i 0.0499445 0.0865065i
\(903\) 0 0
\(904\) −5.00000 8.66025i −0.166298 0.288036i
\(905\) 0 0
\(906\) 0 0
\(907\) 13.5000 + 23.3827i 0.448260 + 0.776409i 0.998273 0.0587469i \(-0.0187105\pi\)
−0.550013 + 0.835156i \(0.685377\pi\)
\(908\) −1.50000 2.59808i −0.0497792 0.0862202i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) −16.0000 −0.529523
\(914\) 1.00000 0.0330771
\(915\) 0 0
\(916\) −13.0000 + 22.5167i −0.429532 + 0.743971i
\(917\) 0 0
\(918\) 0 0
\(919\) −8.00000 13.8564i −0.263896 0.457081i 0.703378 0.710816i \(-0.251674\pi\)
−0.967274 + 0.253735i \(0.918341\pi\)
\(920\) 4.00000 + 6.92820i 0.131876 + 0.228416i
\(921\) 0 0
\(922\) −7.00000 + 12.1244i −0.230533 + 0.399294i
\(923\) −24.0000 41.5692i −0.789970 1.36827i
\(924\) 0 0
\(925\) 1.00000 1.73205i 0.0328798 0.0569495i
\(926\) 4.00000 + 6.92820i 0.131448 + 0.227675i
\(927\) 0 0
\(928\) −2.00000 + 3.46410i −0.0656532 + 0.113715i
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −14.5000 25.1147i −0.474963 0.822661i
\(933\) 0 0
\(934\) 6.50000 + 11.2583i 0.212686 + 0.368384i
\(935\) −5.00000 + 8.66025i −0.163517 + 0.283221i
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.0000 0.651981 0.325991 0.945373i \(-0.394302\pi\)
0.325991 + 0.945373i \(0.394302\pi\)
\(942\) 0 0
\(943\) −12.0000 −0.390774
\(944\) −7.00000 −0.227831
\(945\) 0 0
\(946\) 1.00000 0.0325128
\(947\) 37.0000 1.20234 0.601169 0.799122i \(-0.294702\pi\)
0.601169 + 0.799122i \(0.294702\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 3.50000 6.06218i 0.113555 0.196683i
\(951\) 0 0
\(952\) 0 0
\(953\) 35.0000 1.13376 0.566881 0.823800i \(-0.308150\pi\)
0.566881 + 0.823800i \(0.308150\pi\)
\(954\) 0 0
\(955\) 12.0000 20.7846i 0.388311 0.672574i
\(956\) 3.00000 + 5.19615i 0.0970269 + 0.168056i
\(957\) 0 0
\(958\) 10.0000 + 17.3205i 0.323085 + 0.559600i
\(959\) 0 0
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) −6.00000 + 10.3923i −0.193448 + 0.335061i
\(963\) 0 0
\(964\) 11.5000 + 19.9186i 0.370390 + 0.641534i
\(965\) −17.0000 + 29.4449i −0.547249 + 0.947864i
\(966\) 0 0
\(967\) −7.00000 12.1244i −0.225105 0.389893i 0.731246 0.682114i \(-0.238939\pi\)
−0.956351 + 0.292221i \(0.905606\pi\)
\(968\) 5.00000 8.66025i 0.160706 0.278351i
\(969\) 0 0
\(970\) −5.00000 8.66025i −0.160540 0.278064i
\(971\) 6.00000 + 10.3923i 0.192549 + 0.333505i 0.946094 0.323891i \(-0.104991\pi\)
−0.753545 + 0.657396i \(0.771658\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 5.00000 8.66025i 0.160210 0.277492i
\(975\) 0 0
\(976\) 12.0000 0.384111
\(977\) 15.0000 0.479893 0.239946 0.970786i \(-0.422870\pi\)
0.239946 + 0.970786i \(0.422870\pi\)
\(978\) 0 0
\(979\) −3.00000 + 5.19615i −0.0958804 + 0.166070i
\(980\) 0 0
\(981\) 0 0
\(982\) 16.5000 + 28.5788i 0.526536 + 0.911987i
\(983\) 30.0000 + 51.9615i 0.956851 + 1.65732i 0.730073 + 0.683369i \(0.239486\pi\)
0.226778 + 0.973946i \(0.427181\pi\)
\(984\) 0 0
\(985\) 10.0000 17.3205i 0.318626 0.551877i
\(986\) 10.0000 + 17.3205i 0.318465 + 0.551597i
\(987\) 0 0
\(988\) −21.0000 + 36.3731i −0.668099 + 1.15718i
\(989\) −2.00000 3.46410i −0.0635963 0.110152i
\(990\) 0 0
\(991\) 14.0000 24.2487i 0.444725 0.770286i −0.553308 0.832977i \(-0.686635\pi\)
0.998033 + 0.0626908i \(0.0199682\pi\)
\(992\) 6.00000 0.190500
\(993\) 0 0
\(994\) 0 0
\(995\) 14.0000 + 24.2487i 0.443830 + 0.768736i
\(996\) 0 0
\(997\) 1.00000 + 1.73205i 0.0316703 + 0.0548546i 0.881426 0.472322i \(-0.156584\pi\)
−0.849756 + 0.527176i \(0.823251\pi\)
\(998\) 14.5000 25.1147i 0.458989 0.794993i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.e.h.2125.1 2
3.2 odd 2 882.2.e.e.655.1 2
7.2 even 3 2646.2.h.c.667.1 2
7.3 odd 6 378.2.f.b.127.1 2
7.4 even 3 2646.2.f.b.883.1 2
7.5 odd 6 2646.2.h.b.667.1 2
7.6 odd 2 2646.2.e.i.2125.1 2
9.4 even 3 2646.2.h.c.361.1 2
9.5 odd 6 882.2.h.g.67.1 2
21.2 odd 6 882.2.h.g.79.1 2
21.5 even 6 882.2.h.h.79.1 2
21.11 odd 6 882.2.f.f.295.1 2
21.17 even 6 126.2.f.b.43.1 2
21.20 even 2 882.2.e.a.655.1 2
28.3 even 6 3024.2.r.c.2017.1 2
63.4 even 3 2646.2.f.b.1765.1 2
63.5 even 6 882.2.e.a.373.1 2
63.11 odd 6 7938.2.a.e.1.1 1
63.13 odd 6 2646.2.h.b.361.1 2
63.23 odd 6 882.2.e.e.373.1 2
63.25 even 3 7938.2.a.bb.1.1 1
63.31 odd 6 378.2.f.b.253.1 2
63.32 odd 6 882.2.f.f.589.1 2
63.38 even 6 1134.2.a.c.1.1 1
63.40 odd 6 2646.2.e.i.1549.1 2
63.41 even 6 882.2.h.h.67.1 2
63.52 odd 6 1134.2.a.f.1.1 1
63.58 even 3 inner 2646.2.e.h.1549.1 2
63.59 even 6 126.2.f.b.85.1 yes 2
84.59 odd 6 1008.2.r.a.673.1 2
252.31 even 6 3024.2.r.c.1009.1 2
252.59 odd 6 1008.2.r.a.337.1 2
252.115 even 6 9072.2.a.f.1.1 1
252.227 odd 6 9072.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.b.43.1 2 21.17 even 6
126.2.f.b.85.1 yes 2 63.59 even 6
378.2.f.b.127.1 2 7.3 odd 6
378.2.f.b.253.1 2 63.31 odd 6
882.2.e.a.373.1 2 63.5 even 6
882.2.e.a.655.1 2 21.20 even 2
882.2.e.e.373.1 2 63.23 odd 6
882.2.e.e.655.1 2 3.2 odd 2
882.2.f.f.295.1 2 21.11 odd 6
882.2.f.f.589.1 2 63.32 odd 6
882.2.h.g.67.1 2 9.5 odd 6
882.2.h.g.79.1 2 21.2 odd 6
882.2.h.h.67.1 2 63.41 even 6
882.2.h.h.79.1 2 21.5 even 6
1008.2.r.a.337.1 2 252.59 odd 6
1008.2.r.a.673.1 2 84.59 odd 6
1134.2.a.c.1.1 1 63.38 even 6
1134.2.a.f.1.1 1 63.52 odd 6
2646.2.e.h.1549.1 2 63.58 even 3 inner
2646.2.e.h.2125.1 2 1.1 even 1 trivial
2646.2.e.i.1549.1 2 63.40 odd 6
2646.2.e.i.2125.1 2 7.6 odd 2
2646.2.f.b.883.1 2 7.4 even 3
2646.2.f.b.1765.1 2 63.4 even 3
2646.2.h.b.361.1 2 63.13 odd 6
2646.2.h.b.667.1 2 7.5 odd 6
2646.2.h.c.361.1 2 9.4 even 3
2646.2.h.c.667.1 2 7.2 even 3
3024.2.r.c.1009.1 2 252.31 even 6
3024.2.r.c.2017.1 2 28.3 even 6
7938.2.a.e.1.1 1 63.11 odd 6
7938.2.a.bb.1.1 1 63.25 even 3
9072.2.a.f.1.1 1 252.115 even 6
9072.2.a.t.1.1 1 252.227 odd 6