Properties

Label 2646.2.e.g.2125.1
Level $2646$
Weight $2$
Character 2646.2125
Analytic conductor $21.128$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(1549,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,-3,0,0,2,0,-3,-3,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2125.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2646.2125
Dual form 2646.2.e.g.1549.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +(-1.50000 + 2.59808i) q^{5} +1.00000 q^{8} +(-1.50000 + 2.59808i) q^{10} +(-1.50000 - 2.59808i) q^{11} +(-0.500000 - 0.866025i) q^{13} +1.00000 q^{16} +(-1.50000 + 2.59808i) q^{17} +(-3.50000 - 6.06218i) q^{19} +(-1.50000 + 2.59808i) q^{20} +(-1.50000 - 2.59808i) q^{22} +(-4.50000 + 7.79423i) q^{23} +(-2.00000 - 3.46410i) q^{25} +(-0.500000 - 0.866025i) q^{26} +(1.50000 - 2.59808i) q^{29} -8.00000 q^{31} +1.00000 q^{32} +(-1.50000 + 2.59808i) q^{34} +(0.500000 + 0.866025i) q^{37} +(-3.50000 - 6.06218i) q^{38} +(-1.50000 + 2.59808i) q^{40} +(-1.50000 - 2.59808i) q^{41} +(0.500000 - 0.866025i) q^{43} +(-1.50000 - 2.59808i) q^{44} +(-4.50000 + 7.79423i) q^{46} +(-2.00000 - 3.46410i) q^{50} +(-0.500000 - 0.866025i) q^{52} +(1.50000 - 2.59808i) q^{53} +9.00000 q^{55} +(1.50000 - 2.59808i) q^{58} -2.00000 q^{61} -8.00000 q^{62} +1.00000 q^{64} +3.00000 q^{65} -4.00000 q^{67} +(-1.50000 + 2.59808i) q^{68} -12.0000 q^{71} +(5.50000 - 9.52628i) q^{73} +(0.500000 + 0.866025i) q^{74} +(-3.50000 - 6.06218i) q^{76} -16.0000 q^{79} +(-1.50000 + 2.59808i) q^{80} +(-1.50000 - 2.59808i) q^{82} +(4.50000 - 7.79423i) q^{83} +(-4.50000 - 7.79423i) q^{85} +(0.500000 - 0.866025i) q^{86} +(-1.50000 - 2.59808i) q^{88} +(-1.50000 - 2.59808i) q^{89} +(-4.50000 + 7.79423i) q^{92} +21.0000 q^{95} +(-0.500000 + 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 3 q^{5} + 2 q^{8} - 3 q^{10} - 3 q^{11} - q^{13} + 2 q^{16} - 3 q^{17} - 7 q^{19} - 3 q^{20} - 3 q^{22} - 9 q^{23} - 4 q^{25} - q^{26} + 3 q^{29} - 16 q^{31} + 2 q^{32} - 3 q^{34}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) −3.50000 6.06218i −0.802955 1.39076i −0.917663 0.397360i \(-0.869927\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) −1.50000 + 2.59808i −0.335410 + 0.580948i
\(21\) 0 0
\(22\) −1.50000 2.59808i −0.319801 0.553912i
\(23\) −4.50000 + 7.79423i −0.938315 + 1.62521i −0.169701 + 0.985496i \(0.554280\pi\)
−0.768613 + 0.639713i \(0.779053\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) −0.500000 0.866025i −0.0980581 0.169842i
\(27\) 0 0
\(28\) 0 0
\(29\) 1.50000 2.59808i 0.278543 0.482451i −0.692480 0.721437i \(-0.743482\pi\)
0.971023 + 0.238987i \(0.0768152\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −3.50000 6.06218i −0.567775 0.983415i
\(39\) 0 0
\(40\) −1.50000 + 2.59808i −0.237171 + 0.410792i
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) −1.50000 2.59808i −0.226134 0.391675i
\(45\) 0 0
\(46\) −4.50000 + 7.79423i −0.663489 + 1.14920i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.00000 3.46410i −0.282843 0.489898i
\(51\) 0 0
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) 1.50000 2.59808i 0.206041 0.356873i −0.744423 0.667708i \(-0.767275\pi\)
0.950464 + 0.310835i \(0.100609\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 1.50000 2.59808i 0.196960 0.341144i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 5.50000 9.52628i 0.643726 1.11497i −0.340868 0.940111i \(-0.610721\pi\)
0.984594 0.174855i \(-0.0559458\pi\)
\(74\) 0.500000 + 0.866025i 0.0581238 + 0.100673i
\(75\) 0 0
\(76\) −3.50000 6.06218i −0.401478 0.695379i
\(77\) 0 0
\(78\) 0 0
\(79\) −16.0000 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) −1.50000 + 2.59808i −0.167705 + 0.290474i
\(81\) 0 0
\(82\) −1.50000 2.59808i −0.165647 0.286910i
\(83\) 4.50000 7.79423i 0.493939 0.855528i −0.506036 0.862512i \(-0.668890\pi\)
0.999976 + 0.00698436i \(0.00222321\pi\)
\(84\) 0 0
\(85\) −4.50000 7.79423i −0.488094 0.845403i
\(86\) 0.500000 0.866025i 0.0539164 0.0933859i
\(87\) 0 0
\(88\) −1.50000 2.59808i −0.159901 0.276956i
\(89\) −1.50000 2.59808i −0.159000 0.275396i 0.775509 0.631337i \(-0.217494\pi\)
−0.934508 + 0.355942i \(0.884160\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.50000 + 7.79423i −0.469157 + 0.812605i
\(93\) 0 0
\(94\) 0 0
\(95\) 21.0000 2.15455
\(96\) 0 0
\(97\) −0.500000 + 0.866025i −0.0507673 + 0.0879316i −0.890292 0.455389i \(-0.849500\pi\)
0.839525 + 0.543321i \(0.182833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) −6.50000 + 11.2583i −0.640464 + 1.10932i 0.344865 + 0.938652i \(0.387925\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) −0.500000 0.866025i −0.0490290 0.0849208i
\(105\) 0 0
\(106\) 1.50000 2.59808i 0.145693 0.252347i
\(107\) 4.50000 + 7.79423i 0.435031 + 0.753497i 0.997298 0.0734594i \(-0.0234039\pi\)
−0.562267 + 0.826956i \(0.690071\pi\)
\(108\) 0 0
\(109\) 6.50000 11.2583i 0.622587 1.07835i −0.366415 0.930451i \(-0.619415\pi\)
0.989002 0.147901i \(-0.0472517\pi\)
\(110\) 9.00000 0.858116
\(111\) 0 0
\(112\) 0 0
\(113\) −4.50000 7.79423i −0.423324 0.733219i 0.572938 0.819599i \(-0.305804\pi\)
−0.996262 + 0.0863794i \(0.972470\pi\)
\(114\) 0 0
\(115\) −13.5000 23.3827i −1.25888 2.18045i
\(116\) 1.50000 2.59808i 0.139272 0.241225i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 3.00000 0.263117
\(131\) −7.50000 + 12.9904i −0.655278 + 1.13497i 0.326546 + 0.945181i \(0.394115\pi\)
−0.981824 + 0.189794i \(0.939218\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −1.50000 + 2.59808i −0.128624 + 0.222783i
\(137\) −4.50000 7.79423i −0.384461 0.665906i 0.607233 0.794524i \(-0.292279\pi\)
−0.991694 + 0.128618i \(0.958946\pi\)
\(138\) 0 0
\(139\) −3.50000 6.06218i −0.296866 0.514187i 0.678551 0.734553i \(-0.262608\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) −1.50000 + 2.59808i −0.125436 + 0.217262i
\(144\) 0 0
\(145\) 4.50000 + 7.79423i 0.373705 + 0.647275i
\(146\) 5.50000 9.52628i 0.455183 0.788400i
\(147\) 0 0
\(148\) 0.500000 + 0.866025i 0.0410997 + 0.0711868i
\(149\) −4.50000 + 7.79423i −0.368654 + 0.638528i −0.989355 0.145519i \(-0.953515\pi\)
0.620701 + 0.784047i \(0.286848\pi\)
\(150\) 0 0
\(151\) 3.50000 + 6.06218i 0.284826 + 0.493333i 0.972567 0.232623i \(-0.0747309\pi\)
−0.687741 + 0.725956i \(0.741398\pi\)
\(152\) −3.50000 6.06218i −0.283887 0.491708i
\(153\) 0 0
\(154\) 0 0
\(155\) 12.0000 20.7846i 0.963863 1.66946i
\(156\) 0 0
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) −16.0000 −1.27289
\(159\) 0 0
\(160\) −1.50000 + 2.59808i −0.118585 + 0.205396i
\(161\) 0 0
\(162\) 0 0
\(163\) 9.50000 + 16.4545i 0.744097 + 1.28881i 0.950615 + 0.310372i \(0.100454\pi\)
−0.206518 + 0.978443i \(0.566213\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) 0 0
\(166\) 4.50000 7.79423i 0.349268 0.604949i
\(167\) 7.50000 + 12.9904i 0.580367 + 1.00523i 0.995436 + 0.0954356i \(0.0304244\pi\)
−0.415068 + 0.909790i \(0.636242\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) −4.50000 7.79423i −0.345134 0.597790i
\(171\) 0 0
\(172\) 0.500000 0.866025i 0.0381246 0.0660338i
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.50000 2.59808i −0.113067 0.195837i
\(177\) 0 0
\(178\) −1.50000 2.59808i −0.112430 0.194734i
\(179\) −10.5000 + 18.1865i −0.784807 + 1.35933i 0.144308 + 0.989533i \(0.453905\pi\)
−0.929114 + 0.369792i \(0.879429\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.50000 + 7.79423i −0.331744 + 0.574598i
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 0 0
\(189\) 0 0
\(190\) 21.0000 1.52350
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −0.500000 + 0.866025i −0.0358979 + 0.0621770i
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −12.5000 + 21.6506i −0.886102 + 1.53477i −0.0416556 + 0.999132i \(0.513263\pi\)
−0.844446 + 0.535641i \(0.820070\pi\)
\(200\) −2.00000 3.46410i −0.141421 0.244949i
\(201\) 0 0
\(202\) −1.50000 2.59808i −0.105540 0.182800i
\(203\) 0 0
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) −6.50000 + 11.2583i −0.452876 + 0.784405i
\(207\) 0 0
\(208\) −0.500000 0.866025i −0.0346688 0.0600481i
\(209\) −10.5000 + 18.1865i −0.726300 + 1.25799i
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) 0 0
\(214\) 4.50000 + 7.79423i 0.307614 + 0.532803i
\(215\) 1.50000 + 2.59808i 0.102299 + 0.177187i
\(216\) 0 0
\(217\) 0 0
\(218\) 6.50000 11.2583i 0.440236 0.762510i
\(219\) 0 0
\(220\) 9.00000 0.606780
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) −0.500000 + 0.866025i −0.0334825 + 0.0579934i −0.882281 0.470723i \(-0.843993\pi\)
0.848799 + 0.528716i \(0.177326\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.50000 7.79423i −0.299336 0.518464i
\(227\) 1.50000 + 2.59808i 0.0995585 + 0.172440i 0.911502 0.411296i \(-0.134924\pi\)
−0.811943 + 0.583736i \(0.801590\pi\)
\(228\) 0 0
\(229\) −6.50000 + 11.2583i −0.429532 + 0.743971i −0.996832 0.0795401i \(-0.974655\pi\)
0.567300 + 0.823511i \(0.307988\pi\)
\(230\) −13.5000 23.3827i −0.890164 1.54181i
\(231\) 0 0
\(232\) 1.50000 2.59808i 0.0984798 0.170572i
\(233\) 1.50000 + 2.59808i 0.0982683 + 0.170206i 0.910968 0.412477i \(-0.135336\pi\)
−0.812700 + 0.582683i \(0.802003\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.50000 2.59808i −0.0970269 0.168056i 0.813426 0.581669i \(-0.197600\pi\)
−0.910453 + 0.413613i \(0.864267\pi\)
\(240\) 0 0
\(241\) −6.50000 11.2583i −0.418702 0.725213i 0.577107 0.816668i \(-0.304181\pi\)
−0.995809 + 0.0914555i \(0.970848\pi\)
\(242\) 1.00000 1.73205i 0.0642824 0.111340i
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) −3.50000 + 6.06218i −0.222700 + 0.385727i
\(248\) −8.00000 −0.508001
\(249\) 0 0
\(250\) −3.00000 −0.189737
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 27.0000 1.69748
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 10.5000 18.1865i 0.654972 1.13444i −0.326929 0.945049i \(-0.606014\pi\)
0.981901 0.189396i \(-0.0606529\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.00000 0.186052
\(261\) 0 0
\(262\) −7.50000 + 12.9904i −0.463352 + 0.802548i
\(263\) 4.50000 + 7.79423i 0.277482 + 0.480613i 0.970758 0.240059i \(-0.0771668\pi\)
−0.693276 + 0.720672i \(0.743833\pi\)
\(264\) 0 0
\(265\) 4.50000 + 7.79423i 0.276433 + 0.478796i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −7.50000 + 12.9904i −0.457283 + 0.792038i −0.998816 0.0486418i \(-0.984511\pi\)
0.541533 + 0.840679i \(0.317844\pi\)
\(270\) 0 0
\(271\) 2.50000 + 4.33013i 0.151864 + 0.263036i 0.931913 0.362682i \(-0.118139\pi\)
−0.780049 + 0.625719i \(0.784806\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) 0 0
\(274\) −4.50000 7.79423i −0.271855 0.470867i
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) 0.500000 + 0.866025i 0.0300421 + 0.0520344i 0.880656 0.473757i \(-0.157103\pi\)
−0.850613 + 0.525792i \(0.823769\pi\)
\(278\) −3.50000 6.06218i −0.209916 0.363585i
\(279\) 0 0
\(280\) 0 0
\(281\) −10.5000 + 18.1865i −0.626377 + 1.08492i 0.361895 + 0.932219i \(0.382130\pi\)
−0.988273 + 0.152699i \(0.951204\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) −1.50000 + 2.59808i −0.0886969 + 0.153627i
\(287\) 0 0
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 4.50000 + 7.79423i 0.264249 + 0.457693i
\(291\) 0 0
\(292\) 5.50000 9.52628i 0.321863 0.557483i
\(293\) 4.50000 + 7.79423i 0.262893 + 0.455344i 0.967009 0.254741i \(-0.0819901\pi\)
−0.704117 + 0.710084i \(0.748657\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.500000 + 0.866025i 0.0290619 + 0.0503367i
\(297\) 0 0
\(298\) −4.50000 + 7.79423i −0.260678 + 0.451508i
\(299\) 9.00000 0.520483
\(300\) 0 0
\(301\) 0 0
\(302\) 3.50000 + 6.06218i 0.201402 + 0.348839i
\(303\) 0 0
\(304\) −3.50000 6.06218i −0.200739 0.347690i
\(305\) 3.00000 5.19615i 0.171780 0.297531i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 12.0000 20.7846i 0.681554 1.18049i
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −9.00000 −0.503903
\(320\) −1.50000 + 2.59808i −0.0838525 + 0.145237i
\(321\) 0 0
\(322\) 0 0
\(323\) 21.0000 1.16847
\(324\) 0 0
\(325\) −2.00000 + 3.46410i −0.110940 + 0.192154i
\(326\) 9.50000 + 16.4545i 0.526156 + 0.911330i
\(327\) 0 0
\(328\) −1.50000 2.59808i −0.0828236 0.143455i
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 4.50000 7.79423i 0.246970 0.427764i
\(333\) 0 0
\(334\) 7.50000 + 12.9904i 0.410382 + 0.710802i
\(335\) 6.00000 10.3923i 0.327815 0.567792i
\(336\) 0 0
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) 6.00000 10.3923i 0.326357 0.565267i
\(339\) 0 0
\(340\) −4.50000 7.79423i −0.244047 0.422701i
\(341\) 12.0000 + 20.7846i 0.649836 + 1.12555i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.500000 0.866025i 0.0269582 0.0466930i
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 11.5000 19.9186i 0.615581 1.06622i −0.374701 0.927146i \(-0.622255\pi\)
0.990282 0.139072i \(-0.0444119\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.50000 2.59808i −0.0799503 0.138478i
\(353\) −1.50000 2.59808i −0.0798369 0.138282i 0.823343 0.567545i \(-0.192107\pi\)
−0.903179 + 0.429263i \(0.858773\pi\)
\(354\) 0 0
\(355\) 18.0000 31.1769i 0.955341 1.65470i
\(356\) −1.50000 2.59808i −0.0794998 0.137698i
\(357\) 0 0
\(358\) −10.5000 + 18.1865i −0.554942 + 0.961188i
\(359\) 4.50000 + 7.79423i 0.237501 + 0.411364i 0.959997 0.280012i \(-0.0903384\pi\)
−0.722496 + 0.691375i \(0.757005\pi\)
\(360\) 0 0
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) −2.00000 −0.105118
\(363\) 0 0
\(364\) 0 0
\(365\) 16.5000 + 28.5788i 0.863649 + 1.49588i
\(366\) 0 0
\(367\) 8.50000 + 14.7224i 0.443696 + 0.768505i 0.997960 0.0638362i \(-0.0203335\pi\)
−0.554264 + 0.832341i \(0.687000\pi\)
\(368\) −4.50000 + 7.79423i −0.234579 + 0.406302i
\(369\) 0 0
\(370\) −3.00000 −0.155963
\(371\) 0 0
\(372\) 0 0
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 9.00000 0.465379
\(375\) 0 0
\(376\) 0 0
\(377\) −3.00000 −0.154508
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 21.0000 1.07728
\(381\) 0 0
\(382\) 0 0
\(383\) −7.50000 + 12.9904i −0.383232 + 0.663777i −0.991522 0.129937i \(-0.958522\pi\)
0.608290 + 0.793715i \(0.291856\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 0 0
\(388\) −0.500000 + 0.866025i −0.0253837 + 0.0439658i
\(389\) 13.5000 + 23.3827i 0.684477 + 1.18555i 0.973601 + 0.228257i \(0.0733028\pi\)
−0.289124 + 0.957292i \(0.593364\pi\)
\(390\) 0 0
\(391\) −13.5000 23.3827i −0.682724 1.18251i
\(392\) 0 0
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) 24.0000 41.5692i 1.20757 2.09157i
\(396\) 0 0
\(397\) −6.50000 11.2583i −0.326226 0.565039i 0.655534 0.755166i \(-0.272444\pi\)
−0.981760 + 0.190126i \(0.939110\pi\)
\(398\) −12.5000 + 21.6506i −0.626568 + 1.08525i
\(399\) 0 0
\(400\) −2.00000 3.46410i −0.100000 0.173205i
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) 0 0
\(403\) 4.00000 + 6.92820i 0.199254 + 0.345118i
\(404\) −1.50000 2.59808i −0.0746278 0.129259i
\(405\) 0 0
\(406\) 0 0
\(407\) 1.50000 2.59808i 0.0743522 0.128782i
\(408\) 0 0
\(409\) 34.0000 1.68119 0.840596 0.541663i \(-0.182205\pi\)
0.840596 + 0.541663i \(0.182205\pi\)
\(410\) 9.00000 0.444478
\(411\) 0 0
\(412\) −6.50000 + 11.2583i −0.320232 + 0.554658i
\(413\) 0 0
\(414\) 0 0
\(415\) 13.5000 + 23.3827i 0.662689 + 1.14781i
\(416\) −0.500000 0.866025i −0.0245145 0.0424604i
\(417\) 0 0
\(418\) −10.5000 + 18.1865i −0.513572 + 0.889532i
\(419\) −4.50000 7.79423i −0.219839 0.380773i 0.734919 0.678155i \(-0.237220\pi\)
−0.954759 + 0.297382i \(0.903887\pi\)
\(420\) 0 0
\(421\) −17.5000 + 30.3109i −0.852898 + 1.47726i 0.0256838 + 0.999670i \(0.491824\pi\)
−0.878582 + 0.477592i \(0.841510\pi\)
\(422\) −2.50000 4.33013i −0.121698 0.210787i
\(423\) 0 0
\(424\) 1.50000 2.59808i 0.0728464 0.126174i
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 0 0
\(428\) 4.50000 + 7.79423i 0.217516 + 0.376748i
\(429\) 0 0
\(430\) 1.50000 + 2.59808i 0.0723364 + 0.125290i
\(431\) 13.5000 23.3827i 0.650272 1.12630i −0.332785 0.943003i \(-0.607988\pi\)
0.983057 0.183301i \(-0.0586785\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.50000 11.2583i 0.311294 0.539176i
\(437\) 63.0000 3.01370
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 9.00000 0.429058
\(441\) 0 0
\(442\) 3.00000 0.142695
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) 9.00000 0.426641
\(446\) −0.500000 + 0.866025i −0.0236757 + 0.0410075i
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −4.50000 + 7.79423i −0.211897 + 0.367016i
\(452\) −4.50000 7.79423i −0.211662 0.366610i
\(453\) 0 0
\(454\) 1.50000 + 2.59808i 0.0703985 + 0.121934i
\(455\) 0 0
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) −6.50000 + 11.2583i −0.303725 + 0.526067i
\(459\) 0 0
\(460\) −13.5000 23.3827i −0.629441 1.09022i
\(461\) 4.50000 7.79423i 0.209586 0.363013i −0.741998 0.670402i \(-0.766122\pi\)
0.951584 + 0.307388i \(0.0994551\pi\)
\(462\) 0 0
\(463\) −20.5000 35.5070i −0.952716 1.65015i −0.739511 0.673145i \(-0.764943\pi\)
−0.213205 0.977007i \(-0.568390\pi\)
\(464\) 1.50000 2.59808i 0.0696358 0.120613i
\(465\) 0 0
\(466\) 1.50000 + 2.59808i 0.0694862 + 0.120354i
\(467\) 1.50000 + 2.59808i 0.0694117 + 0.120225i 0.898642 0.438682i \(-0.144554\pi\)
−0.829231 + 0.558906i \(0.811221\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.00000 −0.137940
\(474\) 0 0
\(475\) −14.0000 + 24.2487i −0.642364 + 1.11261i
\(476\) 0 0
\(477\) 0 0
\(478\) −1.50000 2.59808i −0.0686084 0.118833i
\(479\) 1.50000 + 2.59808i 0.0685367 + 0.118709i 0.898257 0.439470i \(-0.144834\pi\)
−0.829721 + 0.558179i \(0.811500\pi\)
\(480\) 0 0
\(481\) 0.500000 0.866025i 0.0227980 0.0394874i
\(482\) −6.50000 11.2583i −0.296067 0.512803i
\(483\) 0 0
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) −1.50000 2.59808i −0.0681115 0.117973i
\(486\) 0 0
\(487\) 12.5000 21.6506i 0.566429 0.981084i −0.430486 0.902597i \(-0.641658\pi\)
0.996915 0.0784867i \(-0.0250088\pi\)
\(488\) −2.00000 −0.0905357
\(489\) 0 0
\(490\) 0 0
\(491\) 10.5000 + 18.1865i 0.473858 + 0.820747i 0.999552 0.0299272i \(-0.00952753\pi\)
−0.525694 + 0.850674i \(0.676194\pi\)
\(492\) 0 0
\(493\) 4.50000 + 7.79423i 0.202670 + 0.351034i
\(494\) −3.50000 + 6.06218i −0.157472 + 0.272750i
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 12.5000 21.6506i 0.559577 0.969216i −0.437955 0.898997i \(-0.644297\pi\)
0.997532 0.0702185i \(-0.0223697\pi\)
\(500\) −3.00000 −0.134164
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 27.0000 1.20030
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) 4.50000 7.79423i 0.199459 0.345473i −0.748894 0.662690i \(-0.769415\pi\)
0.948353 + 0.317217i \(0.102748\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 10.5000 18.1865i 0.463135 0.802174i
\(515\) −19.5000 33.7750i −0.859273 1.48830i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 3.00000 0.131559
\(521\) −1.50000 + 2.59808i −0.0657162 + 0.113824i −0.897011 0.442007i \(-0.854267\pi\)
0.831295 + 0.555831i \(0.187600\pi\)
\(522\) 0 0
\(523\) −3.50000 6.06218i −0.153044 0.265081i 0.779301 0.626650i \(-0.215574\pi\)
−0.932345 + 0.361569i \(0.882241\pi\)
\(524\) −7.50000 + 12.9904i −0.327639 + 0.567487i
\(525\) 0 0
\(526\) 4.50000 + 7.79423i 0.196209 + 0.339845i
\(527\) 12.0000 20.7846i 0.522728 0.905392i
\(528\) 0 0
\(529\) −29.0000 50.2295i −1.26087 2.18389i
\(530\) 4.50000 + 7.79423i 0.195468 + 0.338560i
\(531\) 0 0
\(532\) 0 0
\(533\) −1.50000 + 2.59808i −0.0649722 + 0.112535i
\(534\) 0 0
\(535\) −27.0000 −1.16731
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) −7.50000 + 12.9904i −0.323348 + 0.560055i
\(539\) 0 0
\(540\) 0 0
\(541\) −5.50000 9.52628i −0.236463 0.409567i 0.723234 0.690604i \(-0.242655\pi\)
−0.959697 + 0.281037i \(0.909322\pi\)
\(542\) 2.50000 + 4.33013i 0.107384 + 0.185995i
\(543\) 0 0
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) 19.5000 + 33.7750i 0.835288 + 1.44676i
\(546\) 0 0
\(547\) −5.50000 + 9.52628i −0.235163 + 0.407314i −0.959320 0.282321i \(-0.908896\pi\)
0.724157 + 0.689635i \(0.242229\pi\)
\(548\) −4.50000 7.79423i −0.192230 0.332953i
\(549\) 0 0
\(550\) −6.00000 + 10.3923i −0.255841 + 0.443129i
\(551\) −21.0000 −0.894630
\(552\) 0 0
\(553\) 0 0
\(554\) 0.500000 + 0.866025i 0.0212430 + 0.0367939i
\(555\) 0 0
\(556\) −3.50000 6.06218i −0.148433 0.257094i
\(557\) −4.50000 + 7.79423i −0.190671 + 0.330252i −0.945473 0.325701i \(-0.894400\pi\)
0.754802 + 0.655953i \(0.227733\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) −10.5000 + 18.1865i −0.442916 + 0.767153i
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 27.0000 1.13590
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) −1.50000 + 2.59808i −0.0627182 + 0.108631i
\(573\) 0 0
\(574\) 0 0
\(575\) 36.0000 1.50130
\(576\) 0 0
\(577\) −12.5000 + 21.6506i −0.520382 + 0.901328i 0.479337 + 0.877631i \(0.340877\pi\)
−0.999719 + 0.0236970i \(0.992456\pi\)
\(578\) 4.00000 + 6.92820i 0.166378 + 0.288175i
\(579\) 0 0
\(580\) 4.50000 + 7.79423i 0.186852 + 0.323638i
\(581\) 0 0
\(582\) 0 0
\(583\) −9.00000 −0.372742
\(584\) 5.50000 9.52628i 0.227592 0.394200i
\(585\) 0 0
\(586\) 4.50000 + 7.79423i 0.185893 + 0.321977i
\(587\) −1.50000 + 2.59808i −0.0619116 + 0.107234i −0.895320 0.445424i \(-0.853053\pi\)
0.833408 + 0.552658i \(0.186386\pi\)
\(588\) 0 0
\(589\) 28.0000 + 48.4974i 1.15372 + 1.99830i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) −19.5000 33.7750i −0.800769 1.38697i −0.919111 0.394000i \(-0.871091\pi\)
0.118342 0.992973i \(-0.462242\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.50000 + 7.79423i −0.184327 + 0.319264i
\(597\) 0 0
\(598\) 9.00000 0.368037
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −12.5000 + 21.6506i −0.509886 + 0.883148i 0.490049 + 0.871695i \(0.336979\pi\)
−0.999934 + 0.0114528i \(0.996354\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 3.50000 + 6.06218i 0.142413 + 0.246667i
\(605\) 3.00000 + 5.19615i 0.121967 + 0.211254i
\(606\) 0 0
\(607\) −6.50000 + 11.2583i −0.263827 + 0.456962i −0.967256 0.253804i \(-0.918318\pi\)
0.703429 + 0.710766i \(0.251651\pi\)
\(608\) −3.50000 6.06218i −0.141944 0.245854i
\(609\) 0 0
\(610\) 3.00000 5.19615i 0.121466 0.210386i
\(611\) 0 0
\(612\) 0 0
\(613\) −11.5000 + 19.9186i −0.464481 + 0.804504i −0.999178 0.0405396i \(-0.987092\pi\)
0.534697 + 0.845044i \(0.320426\pi\)
\(614\) 28.0000 1.12999
\(615\) 0 0
\(616\) 0 0
\(617\) −22.5000 38.9711i −0.905816 1.56892i −0.819818 0.572624i \(-0.805926\pi\)
−0.0859976 0.996295i \(-0.527408\pi\)
\(618\) 0 0
\(619\) 8.50000 + 14.7224i 0.341644 + 0.591744i 0.984738 0.174042i \(-0.0556830\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 12.0000 20.7846i 0.481932 0.834730i
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 0 0
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) 22.0000 0.877896
\(629\) −3.00000 −0.119618
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −16.0000 −0.636446
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) 6.00000 10.3923i 0.238103 0.412406i
\(636\) 0 0
\(637\) 0 0
\(638\) −9.00000 −0.356313
\(639\) 0 0
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) −16.5000 28.5788i −0.651711 1.12880i −0.982708 0.185164i \(-0.940718\pi\)
0.330997 0.943632i \(-0.392615\pi\)
\(642\) 0 0
\(643\) 14.5000 + 25.1147i 0.571824 + 0.990429i 0.996379 + 0.0850262i \(0.0270974\pi\)
−0.424555 + 0.905402i \(0.639569\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 21.0000 0.826234
\(647\) 10.5000 18.1865i 0.412798 0.714986i −0.582397 0.812905i \(-0.697885\pi\)
0.995194 + 0.0979182i \(0.0312184\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −2.00000 + 3.46410i −0.0784465 + 0.135873i
\(651\) 0 0
\(652\) 9.50000 + 16.4545i 0.372049 + 0.644407i
\(653\) 7.50000 12.9904i 0.293498 0.508353i −0.681137 0.732156i \(-0.738514\pi\)
0.974634 + 0.223803i \(0.0718474\pi\)
\(654\) 0 0
\(655\) −22.5000 38.9711i −0.879148 1.52273i
\(656\) −1.50000 2.59808i −0.0585652 0.101438i
\(657\) 0 0
\(658\) 0 0
\(659\) 1.50000 2.59808i 0.0584317 0.101207i −0.835330 0.549749i \(-0.814723\pi\)
0.893762 + 0.448542i \(0.148057\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 8.00000 0.310929
\(663\) 0 0
\(664\) 4.50000 7.79423i 0.174634 0.302475i
\(665\) 0 0
\(666\) 0 0
\(667\) 13.5000 + 23.3827i 0.522722 + 0.905381i
\(668\) 7.50000 + 12.9904i 0.290184 + 0.502613i
\(669\) 0 0
\(670\) 6.00000 10.3923i 0.231800 0.401490i
\(671\) 3.00000 + 5.19615i 0.115814 + 0.200595i
\(672\) 0 0
\(673\) −17.5000 + 30.3109i −0.674575 + 1.16840i 0.302017 + 0.953302i \(0.402340\pi\)
−0.976593 + 0.215096i \(0.930993\pi\)
\(674\) 6.50000 + 11.2583i 0.250371 + 0.433655i
\(675\) 0 0
\(676\) 6.00000 10.3923i 0.230769 0.399704i
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4.50000 7.79423i −0.172567 0.298895i
\(681\) 0 0
\(682\) 12.0000 + 20.7846i 0.459504 + 0.795884i
\(683\) −4.50000 + 7.79423i −0.172188 + 0.298238i −0.939184 0.343413i \(-0.888417\pi\)
0.766997 + 0.641651i \(0.221750\pi\)
\(684\) 0 0
\(685\) 27.0000 1.03162
\(686\) 0 0
\(687\) 0 0
\(688\) 0.500000 0.866025i 0.0190623 0.0330169i
\(689\) −3.00000 −0.114291
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 21.0000 0.796575
\(696\) 0 0
\(697\) 9.00000 0.340899
\(698\) 11.5000 19.9186i 0.435281 0.753930i
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 3.50000 6.06218i 0.132005 0.228639i
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 0 0
\(706\) −1.50000 2.59808i −0.0564532 0.0977799i
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 18.0000 31.1769i 0.675528 1.17005i
\(711\) 0 0
\(712\) −1.50000 2.59808i −0.0562149 0.0973670i
\(713\) 36.0000 62.3538i 1.34821 2.33517i
\(714\) 0 0
\(715\) −4.50000 7.79423i −0.168290 0.291488i
\(716\) −10.5000 + 18.1865i −0.392403 + 0.679663i
\(717\) 0 0
\(718\) 4.50000 + 7.79423i 0.167939 + 0.290878i
\(719\) 7.50000 + 12.9904i 0.279703 + 0.484459i 0.971311 0.237814i \(-0.0764307\pi\)
−0.691608 + 0.722273i \(0.743097\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.0000 + 25.9808i −0.558242 + 0.966904i
\(723\) 0 0
\(724\) −2.00000 −0.0743294
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) −6.50000 + 11.2583i −0.241072 + 0.417548i −0.961020 0.276479i \(-0.910832\pi\)
0.719948 + 0.694028i \(0.244166\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 16.5000 + 28.5788i 0.610692 + 1.05775i
\(731\) 1.50000 + 2.59808i 0.0554795 + 0.0960933i
\(732\) 0 0
\(733\) −0.500000 + 0.866025i −0.0184679 + 0.0319874i −0.875112 0.483921i \(-0.839212\pi\)
0.856644 + 0.515908i \(0.172546\pi\)
\(734\) 8.50000 + 14.7224i 0.313741 + 0.543415i
\(735\) 0 0
\(736\) −4.50000 + 7.79423i −0.165872 + 0.287299i
\(737\) 6.00000 + 10.3923i 0.221013 + 0.382805i
\(738\) 0 0
\(739\) −11.5000 + 19.9186i −0.423034 + 0.732717i −0.996235 0.0866983i \(-0.972368\pi\)
0.573200 + 0.819415i \(0.305702\pi\)
\(740\) −3.00000 −0.110282
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5000 + 18.1865i 0.385208 + 0.667199i 0.991798 0.127815i \(-0.0407965\pi\)
−0.606590 + 0.795015i \(0.707463\pi\)
\(744\) 0 0
\(745\) −13.5000 23.3827i −0.494602 0.856675i
\(746\) 6.50000 11.2583i 0.237982 0.412197i
\(747\) 0 0
\(748\) 9.00000 0.329073
\(749\) 0 0
\(750\) 0 0
\(751\) 6.50000 11.2583i 0.237188 0.410822i −0.722718 0.691143i \(-0.757107\pi\)
0.959906 + 0.280321i \(0.0904408\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −3.00000 −0.109254
\(755\) −21.0000 −0.764268
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −28.0000 −1.01701
\(759\) 0 0
\(760\) 21.0000 0.761750
\(761\) 22.5000 38.9711i 0.815624 1.41270i −0.0932544 0.995642i \(-0.529727\pi\)
0.908879 0.417061i \(-0.136940\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −7.50000 + 12.9904i −0.270986 + 0.469362i
\(767\) 0 0
\(768\) 0 0
\(769\) 11.5000 + 19.9186i 0.414701 + 0.718283i 0.995397 0.0958377i \(-0.0305530\pi\)
−0.580696 + 0.814120i \(0.697220\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14.0000 0.503871
\(773\) −13.5000 + 23.3827i −0.485561 + 0.841017i −0.999862 0.0165929i \(-0.994718\pi\)
0.514301 + 0.857610i \(0.328051\pi\)
\(774\) 0 0
\(775\) 16.0000 + 27.7128i 0.574737 + 0.995474i
\(776\) −0.500000 + 0.866025i −0.0179490 + 0.0310885i
\(777\) 0 0
\(778\) 13.5000 + 23.3827i 0.483998 + 0.838310i
\(779\) −10.5000 + 18.1865i −0.376202 + 0.651600i
\(780\) 0 0
\(781\) 18.0000 + 31.1769i 0.644091 + 1.11560i
\(782\) −13.5000 23.3827i −0.482759 0.836163i
\(783\) 0 0
\(784\) 0 0
\(785\) −33.0000 + 57.1577i −1.17782 + 2.04004i
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) −18.0000 −0.641223
\(789\) 0 0
\(790\) 24.0000 41.5692i 0.853882 1.47897i
\(791\) 0 0
\(792\) 0 0
\(793\) 1.00000 + 1.73205i 0.0355110 + 0.0615069i
\(794\) −6.50000 11.2583i −0.230676 0.399543i
\(795\) 0 0
\(796\) −12.5000 + 21.6506i −0.443051 + 0.767386i
\(797\) 10.5000 + 18.1865i 0.371929 + 0.644200i 0.989862 0.142031i \(-0.0453631\pi\)
−0.617933 + 0.786231i \(0.712030\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.00000 3.46410i −0.0707107 0.122474i
\(801\) 0 0
\(802\) 13.5000 23.3827i 0.476702 0.825671i
\(803\) −33.0000 −1.16454
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 + 6.92820i 0.140894 + 0.244036i
\(807\) 0 0
\(808\) −1.50000 2.59808i −0.0527698 0.0914000i
\(809\) −16.5000 + 28.5788i −0.580109 + 1.00478i 0.415357 + 0.909659i \(0.363657\pi\)
−0.995466 + 0.0951198i \(0.969677\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.50000 2.59808i 0.0525750 0.0910625i
\(815\) −57.0000 −1.99662
\(816\) 0 0
\(817\) −7.00000 −0.244899
\(818\) 34.0000 1.18878
\(819\) 0 0
\(820\) 9.00000 0.314294
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) −6.50000 + 11.2583i −0.226438 + 0.392203i
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 5.50000 9.52628i 0.191023 0.330861i −0.754567 0.656223i \(-0.772153\pi\)
0.945589 + 0.325362i \(0.105486\pi\)
\(830\) 13.5000 + 23.3827i 0.468592 + 0.811625i
\(831\) 0 0
\(832\) −0.500000 0.866025i −0.0173344 0.0300240i
\(833\) 0 0
\(834\) 0 0
\(835\) −45.0000 −1.55729
\(836\) −10.5000 + 18.1865i −0.363150 + 0.628994i
\(837\) 0 0
\(838\) −4.50000 7.79423i −0.155450 0.269247i
\(839\) −7.50000 + 12.9904i −0.258929 + 0.448478i −0.965955 0.258709i \(-0.916703\pi\)
0.707026 + 0.707187i \(0.250036\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) −17.5000 + 30.3109i −0.603090 + 1.04458i
\(843\) 0 0
\(844\) −2.50000 4.33013i −0.0860535 0.149049i
\(845\) 18.0000 + 31.1769i 0.619219 + 1.07252i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.50000 2.59808i 0.0515102 0.0892183i
\(849\) 0 0
\(850\) 12.0000 0.411597
\(851\) −9.00000 −0.308516
\(852\) 0 0
\(853\) −0.500000 + 0.866025i −0.0171197 + 0.0296521i −0.874458 0.485101i \(-0.838783\pi\)
0.857339 + 0.514753i \(0.172116\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 4.50000 + 7.79423i 0.153807 + 0.266401i
\(857\) −1.50000 2.59808i −0.0512390 0.0887486i 0.839268 0.543718i \(-0.182984\pi\)
−0.890507 + 0.454969i \(0.849650\pi\)
\(858\) 0 0
\(859\) −12.5000 + 21.6506i −0.426494 + 0.738710i −0.996559 0.0828900i \(-0.973585\pi\)
0.570064 + 0.821600i \(0.306918\pi\)
\(860\) 1.50000 + 2.59808i 0.0511496 + 0.0885937i
\(861\) 0 0
\(862\) 13.5000 23.3827i 0.459812 0.796417i
\(863\) −25.5000 44.1673i −0.868030 1.50347i −0.864007 0.503480i \(-0.832053\pi\)
−0.00402340 0.999992i \(-0.501281\pi\)
\(864\) 0 0
\(865\) 9.00000 15.5885i 0.306009 0.530023i
\(866\) −2.00000 −0.0679628
\(867\) 0 0
\(868\) 0 0
\(869\) 24.0000 + 41.5692i 0.814144 + 1.41014i
\(870\) 0 0
\(871\) 2.00000 + 3.46410i 0.0677674 + 0.117377i
\(872\) 6.50000 11.2583i 0.220118 0.381255i
\(873\) 0 0
\(874\) 63.0000 2.13101
\(875\) 0 0
\(876\) 0 0
\(877\) −23.5000 + 40.7032i −0.793539 + 1.37445i 0.130224 + 0.991485i \(0.458430\pi\)
−0.923763 + 0.382965i \(0.874903\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 9.00000 0.303390
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 3.00000 0.100901
\(885\) 0 0
\(886\) −36.0000 −1.20944
\(887\) 16.5000 28.5788i 0.554016 0.959583i −0.443964 0.896045i \(-0.646428\pi\)
0.997979 0.0635387i \(-0.0202386\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 9.00000 0.301681
\(891\) 0 0
\(892\) −0.500000 + 0.866025i −0.0167412 + 0.0289967i
\(893\) 0 0
\(894\) 0 0
\(895\) −31.5000 54.5596i −1.05293 1.82373i
\(896\) 0 0
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) −12.0000 + 20.7846i −0.400222 + 0.693206i
\(900\) 0 0
\(901\) 4.50000 + 7.79423i 0.149917 + 0.259663i
\(902\) −4.50000 + 7.79423i −0.149834 + 0.259519i
\(903\) 0 0
\(904\) −4.50000 7.79423i −0.149668 0.259232i
\(905\) 3.00000 5.19615i 0.0997234 0.172726i
\(906\) 0 0
\(907\) 21.5000 + 37.2391i 0.713896 + 1.23650i 0.963384 + 0.268126i \(0.0864043\pi\)
−0.249488 + 0.968378i \(0.580262\pi\)
\(908\) 1.50000 + 2.59808i 0.0497792 + 0.0862202i
\(909\) 0 0
\(910\) 0 0
\(911\) 19.5000 33.7750i 0.646064 1.11902i −0.337991 0.941149i \(-0.609747\pi\)
0.984055 0.177866i \(-0.0569194\pi\)
\(912\) 0 0
\(913\) −27.0000 −0.893570
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −6.50000 + 11.2583i −0.214766 + 0.371986i
\(917\) 0 0
\(918\) 0 0
\(919\) −26.5000 45.8993i −0.874154 1.51408i −0.857661 0.514216i \(-0.828083\pi\)
−0.0164935 0.999864i \(-0.505250\pi\)
\(920\) −13.5000 23.3827i −0.445082 0.770904i
\(921\) 0 0
\(922\) 4.50000 7.79423i 0.148200 0.256689i
\(923\) 6.00000 + 10.3923i 0.197492 + 0.342067i
\(924\) 0 0
\(925\) 2.00000 3.46410i 0.0657596 0.113899i
\(926\) −20.5000 35.5070i −0.673672 1.16683i
\(927\) 0 0
\(928\) 1.50000 2.59808i 0.0492399 0.0852860i
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.50000 + 2.59808i 0.0491341 + 0.0851028i
\(933\) 0 0
\(934\) 1.50000 + 2.59808i 0.0490815 + 0.0850117i
\(935\) −13.5000 + 23.3827i −0.441497 + 0.764696i
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) 27.0000 0.879241
\(944\) 0 0
\(945\) 0 0
\(946\) −3.00000 −0.0975384
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) −11.0000 −0.357075
\(950\) −14.0000 + 24.2487i −0.454220 + 0.786732i
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.50000 2.59808i −0.0485135 0.0840278i
\(957\) 0 0
\(958\) 1.50000 + 2.59808i 0.0484628 + 0.0839400i
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0.500000 0.866025i 0.0161206 0.0279218i
\(963\) 0 0
\(964\) −6.50000 11.2583i −0.209351 0.362606i
\(965\) −21.0000 + 36.3731i −0.676014 + 1.17089i
\(966\) 0 0
\(967\) −20.5000 35.5070i −0.659236 1.14183i −0.980814 0.194946i \(-0.937547\pi\)
0.321578 0.946883i \(-0.395787\pi\)
\(968\) 1.00000 1.73205i 0.0321412 0.0556702i
\(969\) 0 0
\(970\) −1.50000 2.59808i −0.0481621 0.0834192i
\(971\) −16.5000 28.5788i −0.529510 0.917139i −0.999408 0.0344175i \(-0.989042\pi\)
0.469897 0.882721i \(-0.344291\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 12.5000 21.6506i 0.400526 0.693731i
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) −4.50000 + 7.79423i −0.143821 + 0.249105i
\(980\) 0 0
\(981\) 0 0
\(982\) 10.5000 + 18.1865i 0.335068 + 0.580356i
\(983\) 7.50000 + 12.9904i 0.239213 + 0.414329i 0.960489 0.278319i \(-0.0897773\pi\)
−0.721276 + 0.692648i \(0.756444\pi\)
\(984\) 0 0
\(985\) 27.0000 46.7654i 0.860292 1.49007i
\(986\) 4.50000 + 7.79423i 0.143309 + 0.248219i
\(987\) 0 0
\(988\) −3.50000 + 6.06218i −0.111350 + 0.192864i
\(989\) 4.50000 + 7.79423i 0.143092 + 0.247842i
\(990\) 0 0
\(991\) 12.5000 21.6506i 0.397076 0.687755i −0.596288 0.802771i \(-0.703358\pi\)
0.993364 + 0.115015i \(0.0366917\pi\)
\(992\) −8.00000 −0.254000
\(993\) 0 0
\(994\) 0 0
\(995\) −37.5000 64.9519i −1.18883 2.05911i
\(996\) 0 0
\(997\) −6.50000 11.2583i −0.205857 0.356555i 0.744548 0.667568i \(-0.232665\pi\)
−0.950405 + 0.311014i \(0.899332\pi\)
\(998\) 12.5000 21.6506i 0.395681 0.685339i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.e.g.2125.1 2
3.2 odd 2 882.2.e.c.655.1 2
7.2 even 3 2646.2.h.d.667.1 2
7.3 odd 6 2646.2.f.d.883.1 2
7.4 even 3 2646.2.f.a.883.1 2
7.5 odd 6 378.2.h.a.289.1 2
7.6 odd 2 378.2.e.b.235.1 2
9.4 even 3 2646.2.h.d.361.1 2
9.5 odd 6 882.2.h.i.67.1 2
21.2 odd 6 882.2.h.i.79.1 2
21.5 even 6 126.2.h.b.79.1 yes 2
21.11 odd 6 882.2.f.g.295.1 2
21.17 even 6 882.2.f.i.295.1 2
21.20 even 2 126.2.e.a.25.1 2
28.19 even 6 3024.2.t.a.289.1 2
28.27 even 2 3024.2.q.f.2881.1 2
63.4 even 3 2646.2.f.a.1765.1 2
63.5 even 6 126.2.e.a.121.1 yes 2
63.11 odd 6 7938.2.a.b.1.1 1
63.13 odd 6 378.2.h.a.361.1 2
63.20 even 6 1134.2.g.e.487.1 2
63.23 odd 6 882.2.e.c.373.1 2
63.25 even 3 7938.2.a.be.1.1 1
63.31 odd 6 2646.2.f.d.1765.1 2
63.32 odd 6 882.2.f.g.589.1 2
63.34 odd 6 1134.2.g.c.487.1 2
63.38 even 6 7938.2.a.m.1.1 1
63.40 odd 6 378.2.e.b.37.1 2
63.41 even 6 126.2.h.b.67.1 yes 2
63.47 even 6 1134.2.g.e.163.1 2
63.52 odd 6 7938.2.a.t.1.1 1
63.58 even 3 inner 2646.2.e.g.1549.1 2
63.59 even 6 882.2.f.i.589.1 2
63.61 odd 6 1134.2.g.c.163.1 2
84.47 odd 6 1008.2.t.f.961.1 2
84.83 odd 2 1008.2.q.a.529.1 2
252.103 even 6 3024.2.q.f.2305.1 2
252.131 odd 6 1008.2.q.a.625.1 2
252.139 even 6 3024.2.t.a.1873.1 2
252.167 odd 6 1008.2.t.f.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.a.25.1 2 21.20 even 2
126.2.e.a.121.1 yes 2 63.5 even 6
126.2.h.b.67.1 yes 2 63.41 even 6
126.2.h.b.79.1 yes 2 21.5 even 6
378.2.e.b.37.1 2 63.40 odd 6
378.2.e.b.235.1 2 7.6 odd 2
378.2.h.a.289.1 2 7.5 odd 6
378.2.h.a.361.1 2 63.13 odd 6
882.2.e.c.373.1 2 63.23 odd 6
882.2.e.c.655.1 2 3.2 odd 2
882.2.f.g.295.1 2 21.11 odd 6
882.2.f.g.589.1 2 63.32 odd 6
882.2.f.i.295.1 2 21.17 even 6
882.2.f.i.589.1 2 63.59 even 6
882.2.h.i.67.1 2 9.5 odd 6
882.2.h.i.79.1 2 21.2 odd 6
1008.2.q.a.529.1 2 84.83 odd 2
1008.2.q.a.625.1 2 252.131 odd 6
1008.2.t.f.193.1 2 252.167 odd 6
1008.2.t.f.961.1 2 84.47 odd 6
1134.2.g.c.163.1 2 63.61 odd 6
1134.2.g.c.487.1 2 63.34 odd 6
1134.2.g.e.163.1 2 63.47 even 6
1134.2.g.e.487.1 2 63.20 even 6
2646.2.e.g.1549.1 2 63.58 even 3 inner
2646.2.e.g.2125.1 2 1.1 even 1 trivial
2646.2.f.a.883.1 2 7.4 even 3
2646.2.f.a.1765.1 2 63.4 even 3
2646.2.f.d.883.1 2 7.3 odd 6
2646.2.f.d.1765.1 2 63.31 odd 6
2646.2.h.d.361.1 2 9.4 even 3
2646.2.h.d.667.1 2 7.2 even 3
3024.2.q.f.2305.1 2 252.103 even 6
3024.2.q.f.2881.1 2 28.27 even 2
3024.2.t.a.289.1 2 28.19 even 6
3024.2.t.a.1873.1 2 252.139 even 6
7938.2.a.b.1.1 1 63.11 odd 6
7938.2.a.m.1.1 1 63.38 even 6
7938.2.a.t.1.1 1 63.52 odd 6
7938.2.a.be.1.1 1 63.25 even 3