# Properties

 Label 2646.2.e.e Level 2646 Weight 2 Character orbit 2646.e Analytic conductor 21.128 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2646 = 2 \cdot 3^{3} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2646.e (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$21.1284163748$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 126) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{4} + ( 3 - 3 \zeta_{6} ) q^{5} - q^{8} +O(q^{10})$$ $$q - q^{2} + q^{4} + ( 3 - 3 \zeta_{6} ) q^{5} - q^{8} + ( -3 + 3 \zeta_{6} ) q^{10} -3 \zeta_{6} q^{11} + 5 \zeta_{6} q^{13} + q^{16} + ( -3 + 3 \zeta_{6} ) q^{17} + 5 \zeta_{6} q^{19} + ( 3 - 3 \zeta_{6} ) q^{20} + 3 \zeta_{6} q^{22} + ( -3 + 3 \zeta_{6} ) q^{23} -4 \zeta_{6} q^{25} -5 \zeta_{6} q^{26} + ( -3 + 3 \zeta_{6} ) q^{29} + 4 q^{31} - q^{32} + ( 3 - 3 \zeta_{6} ) q^{34} + 7 \zeta_{6} q^{37} -5 \zeta_{6} q^{38} + ( -3 + 3 \zeta_{6} ) q^{40} + 9 \zeta_{6} q^{41} + ( -11 + 11 \zeta_{6} ) q^{43} -3 \zeta_{6} q^{44} + ( 3 - 3 \zeta_{6} ) q^{46} + 4 \zeta_{6} q^{50} + 5 \zeta_{6} q^{52} + ( -3 + 3 \zeta_{6} ) q^{53} -9 q^{55} + ( 3 - 3 \zeta_{6} ) q^{58} + 12 q^{59} -2 q^{61} -4 q^{62} + q^{64} + 15 q^{65} -4 q^{67} + ( -3 + 3 \zeta_{6} ) q^{68} + ( 11 - 11 \zeta_{6} ) q^{73} -7 \zeta_{6} q^{74} + 5 \zeta_{6} q^{76} + 8 q^{79} + ( 3 - 3 \zeta_{6} ) q^{80} -9 \zeta_{6} q^{82} + ( -3 + 3 \zeta_{6} ) q^{83} + 9 \zeta_{6} q^{85} + ( 11 - 11 \zeta_{6} ) q^{86} + 3 \zeta_{6} q^{88} -15 \zeta_{6} q^{89} + ( -3 + 3 \zeta_{6} ) q^{92} + 15 q^{95} + ( -1 + \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{2} + 2q^{4} + 3q^{5} - 2q^{8} + O(q^{10})$$ $$2q - 2q^{2} + 2q^{4} + 3q^{5} - 2q^{8} - 3q^{10} - 3q^{11} + 5q^{13} + 2q^{16} - 3q^{17} + 5q^{19} + 3q^{20} + 3q^{22} - 3q^{23} - 4q^{25} - 5q^{26} - 3q^{29} + 8q^{31} - 2q^{32} + 3q^{34} + 7q^{37} - 5q^{38} - 3q^{40} + 9q^{41} - 11q^{43} - 3q^{44} + 3q^{46} + 4q^{50} + 5q^{52} - 3q^{53} - 18q^{55} + 3q^{58} + 24q^{59} - 4q^{61} - 8q^{62} + 2q^{64} + 30q^{65} - 8q^{67} - 3q^{68} + 11q^{73} - 7q^{74} + 5q^{76} + 16q^{79} + 3q^{80} - 9q^{82} - 3q^{83} + 9q^{85} + 11q^{86} + 3q^{88} - 15q^{89} - 3q^{92} + 30q^{95} - q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1081$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1549.1
 0.5 − 0.866025i 0.5 + 0.866025i
−1.00000 0 1.00000 1.50000 + 2.59808i 0 0 −1.00000 0 −1.50000 2.59808i
2125.1 −1.00000 0 1.00000 1.50000 2.59808i 0 0 −1.00000 0 −1.50000 + 2.59808i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.e.e 2
3.b odd 2 1 882.2.e.h 2
7.b odd 2 1 378.2.e.a 2
7.c even 3 1 2646.2.f.i 2
7.c even 3 1 2646.2.h.f 2
7.d odd 6 1 378.2.h.b 2
7.d odd 6 1 2646.2.f.e 2
9.c even 3 1 2646.2.h.f 2
9.d odd 6 1 882.2.h.e 2
21.c even 2 1 126.2.e.b 2
21.g even 6 1 126.2.h.a yes 2
21.g even 6 1 882.2.f.e 2
21.h odd 6 1 882.2.f.a 2
21.h odd 6 1 882.2.h.e 2
28.d even 2 1 3024.2.q.a 2
28.f even 6 1 3024.2.t.f 2
63.g even 3 1 2646.2.f.i 2
63.h even 3 1 inner 2646.2.e.e 2
63.h even 3 1 7938.2.a.c 1
63.i even 6 1 126.2.e.b 2
63.i even 6 1 7938.2.a.r 1
63.j odd 6 1 882.2.e.h 2
63.j odd 6 1 7938.2.a.bd 1
63.k odd 6 1 1134.2.g.f 2
63.k odd 6 1 2646.2.f.e 2
63.l odd 6 1 378.2.h.b 2
63.l odd 6 1 1134.2.g.f 2
63.n odd 6 1 882.2.f.a 2
63.o even 6 1 126.2.h.a yes 2
63.o even 6 1 1134.2.g.d 2
63.s even 6 1 882.2.f.e 2
63.s even 6 1 1134.2.g.d 2
63.t odd 6 1 378.2.e.a 2
63.t odd 6 1 7938.2.a.o 1
84.h odd 2 1 1008.2.q.e 2
84.j odd 6 1 1008.2.t.c 2
252.r odd 6 1 1008.2.q.e 2
252.s odd 6 1 1008.2.t.c 2
252.bi even 6 1 3024.2.t.f 2
252.bj even 6 1 3024.2.q.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.b 2 21.c even 2 1
126.2.e.b 2 63.i even 6 1
126.2.h.a yes 2 21.g even 6 1
126.2.h.a yes 2 63.o even 6 1
378.2.e.a 2 7.b odd 2 1
378.2.e.a 2 63.t odd 6 1
378.2.h.b 2 7.d odd 6 1
378.2.h.b 2 63.l odd 6 1
882.2.e.h 2 3.b odd 2 1
882.2.e.h 2 63.j odd 6 1
882.2.f.a 2 21.h odd 6 1
882.2.f.a 2 63.n odd 6 1
882.2.f.e 2 21.g even 6 1
882.2.f.e 2 63.s even 6 1
882.2.h.e 2 9.d odd 6 1
882.2.h.e 2 21.h odd 6 1
1008.2.q.e 2 84.h odd 2 1
1008.2.q.e 2 252.r odd 6 1
1008.2.t.c 2 84.j odd 6 1
1008.2.t.c 2 252.s odd 6 1
1134.2.g.d 2 63.o even 6 1
1134.2.g.d 2 63.s even 6 1
1134.2.g.f 2 63.k odd 6 1
1134.2.g.f 2 63.l odd 6 1
2646.2.e.e 2 1.a even 1 1 trivial
2646.2.e.e 2 63.h even 3 1 inner
2646.2.f.e 2 7.d odd 6 1
2646.2.f.e 2 63.k odd 6 1
2646.2.f.i 2 7.c even 3 1
2646.2.f.i 2 63.g even 3 1
2646.2.h.f 2 7.c even 3 1
2646.2.h.f 2 9.c even 3 1
3024.2.q.a 2 28.d even 2 1
3024.2.q.a 2 252.bj even 6 1
3024.2.t.f 2 28.f even 6 1
3024.2.t.f 2 252.bi even 6 1
7938.2.a.c 1 63.h even 3 1
7938.2.a.o 1 63.t odd 6 1
7938.2.a.r 1 63.i even 6 1
7938.2.a.bd 1 63.j odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2646, [\chi])$$:

 $$T_{5}^{2} - 3 T_{5} + 9$$ $$T_{11}^{2} + 3 T_{11} + 9$$ $$T_{13}^{2} - 5 T_{13} + 25$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 1 + T )^{2}$$
$3$ 1
$5$ $$1 - 3 T + 4 T^{2} - 15 T^{3} + 25 T^{4}$$
$7$ 1
$11$ $$1 + 3 T - 2 T^{2} + 33 T^{3} + 121 T^{4}$$
$13$ $$( 1 - 7 T + 13 T^{2} )( 1 + 2 T + 13 T^{2} )$$
$17$ $$1 + 3 T - 8 T^{2} + 51 T^{3} + 289 T^{4}$$
$19$ $$1 - 5 T + 6 T^{2} - 95 T^{3} + 361 T^{4}$$
$23$ $$1 + 3 T - 14 T^{2} + 69 T^{3} + 529 T^{4}$$
$29$ $$1 + 3 T - 20 T^{2} + 87 T^{3} + 841 T^{4}$$
$31$ $$( 1 - 4 T + 31 T^{2} )^{2}$$
$37$ $$1 - 7 T + 12 T^{2} - 259 T^{3} + 1369 T^{4}$$
$41$ $$1 - 9 T + 40 T^{2} - 369 T^{3} + 1681 T^{4}$$
$43$ $$1 + 11 T + 78 T^{2} + 473 T^{3} + 1849 T^{4}$$
$47$ $$( 1 + 47 T^{2} )^{2}$$
$53$ $$1 + 3 T - 44 T^{2} + 159 T^{3} + 2809 T^{4}$$
$59$ $$( 1 - 12 T + 59 T^{2} )^{2}$$
$61$ $$( 1 + 2 T + 61 T^{2} )^{2}$$
$67$ $$( 1 + 4 T + 67 T^{2} )^{2}$$
$71$ $$( 1 + 71 T^{2} )^{2}$$
$73$ $$1 - 11 T + 48 T^{2} - 803 T^{3} + 5329 T^{4}$$
$79$ $$( 1 - 8 T + 79 T^{2} )^{2}$$
$83$ $$1 + 3 T - 74 T^{2} + 249 T^{3} + 6889 T^{4}$$
$89$ $$1 + 15 T + 136 T^{2} + 1335 T^{3} + 7921 T^{4}$$
$97$ $$1 + T - 96 T^{2} + 97 T^{3} + 9409 T^{4}$$