Properties

Label 2646.2.d.e
Level $2646$
Weight $2$
Character orbit 2646.d
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{48})\)
Defining polynomial: \(x^{16} - x^{8} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{48}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{48}^{12} q^{2} - q^{4} + ( \zeta_{48}^{2} + \zeta_{48}^{3} + \zeta_{48}^{5} + \zeta_{48}^{6} + \zeta_{48}^{10} - \zeta_{48}^{13} - 2 \zeta_{48}^{14} ) q^{5} + \zeta_{48}^{12} q^{8} +O(q^{10})\) \( q -\zeta_{48}^{12} q^{2} - q^{4} + ( \zeta_{48}^{2} + \zeta_{48}^{3} + \zeta_{48}^{5} + \zeta_{48}^{6} + \zeta_{48}^{10} - \zeta_{48}^{13} - 2 \zeta_{48}^{14} ) q^{5} + \zeta_{48}^{12} q^{8} + ( -\zeta_{48}^{2} + \zeta_{48}^{6} - \zeta_{48}^{9} - \zeta_{48}^{10} - 2 \zeta_{48}^{14} - \zeta_{48}^{15} ) q^{10} + ( \zeta_{48}^{3} - \zeta_{48}^{5} - 2 \zeta_{48}^{11} - 2 \zeta_{48}^{12} - \zeta_{48}^{13} ) q^{11} + ( -1 - \zeta_{48}^{3} + \zeta_{48}^{5} + 2 \zeta_{48}^{8} + \zeta_{48}^{9} - \zeta_{48}^{13} + \zeta_{48}^{15} ) q^{13} + q^{16} + ( -2 \zeta_{48}^{4} - 3 \zeta_{48}^{9} + \zeta_{48}^{12} + 3 \zeta_{48}^{15} ) q^{17} + ( 2 + \zeta_{48}^{2} - \zeta_{48}^{3} + \zeta_{48}^{5} - \zeta_{48}^{6} - 4 \zeta_{48}^{8} + \zeta_{48}^{10} - \zeta_{48}^{13} + 2 \zeta_{48}^{14} ) q^{19} + ( -\zeta_{48}^{2} - \zeta_{48}^{3} - \zeta_{48}^{5} - \zeta_{48}^{6} - \zeta_{48}^{10} + \zeta_{48}^{13} + 2 \zeta_{48}^{14} ) q^{20} + ( -2 - 2 \zeta_{48} - 2 \zeta_{48}^{7} + \zeta_{48}^{9} + \zeta_{48}^{15} ) q^{22} + ( -2 \zeta_{48} + 2 \zeta_{48}^{2} + \zeta_{48}^{3} - \zeta_{48}^{5} - 2 \zeta_{48}^{6} + 2 \zeta_{48}^{7} + \zeta_{48}^{9} - 2 \zeta_{48}^{10} - 2 \zeta_{48}^{11} - 3 \zeta_{48}^{12} - \zeta_{48}^{13} - \zeta_{48}^{15} ) q^{23} + ( 3 + 4 \zeta_{48} + \zeta_{48}^{2} + 2 \zeta_{48}^{3} + 2 \zeta_{48}^{5} + \zeta_{48}^{6} + 4 \zeta_{48}^{7} - 2 \zeta_{48}^{9} - \zeta_{48}^{10} - 4 \zeta_{48}^{11} + 2 \zeta_{48}^{13} - 2 \zeta_{48}^{15} ) q^{25} + ( \zeta_{48}^{3} + 2 \zeta_{48}^{4} + \zeta_{48}^{5} - \zeta_{48}^{9} - \zeta_{48}^{12} - \zeta_{48}^{13} + \zeta_{48}^{15} ) q^{26} + ( 2 \zeta_{48}^{2} + \zeta_{48}^{3} - \zeta_{48}^{5} - 2 \zeta_{48}^{6} - 2 \zeta_{48}^{10} - 2 \zeta_{48}^{11} + \zeta_{48}^{12} - \zeta_{48}^{13} ) q^{29} + ( 1 - \zeta_{48}^{2} - \zeta_{48}^{3} + \zeta_{48}^{5} + \zeta_{48}^{6} - 2 \zeta_{48}^{8} + 2 \zeta_{48}^{9} - \zeta_{48}^{10} - \zeta_{48}^{13} - 2 \zeta_{48}^{14} + 2 \zeta_{48}^{15} ) q^{31} -\zeta_{48}^{12} q^{32} + ( -1 + 3 \zeta_{48}^{3} - 3 \zeta_{48}^{5} + 2 \zeta_{48}^{8} + 3 \zeta_{48}^{13} ) q^{34} + ( -2 - 2 \zeta_{48} - 3 \zeta_{48}^{3} - 3 \zeta_{48}^{5} - 2 \zeta_{48}^{7} + \zeta_{48}^{9} + 6 \zeta_{48}^{11} - 3 \zeta_{48}^{13} + \zeta_{48}^{15} ) q^{37} + ( \zeta_{48}^{2} - 4 \zeta_{48}^{4} + \zeta_{48}^{6} - \zeta_{48}^{9} + \zeta_{48}^{10} + 2 \zeta_{48}^{12} - 2 \zeta_{48}^{14} + \zeta_{48}^{15} ) q^{38} + ( \zeta_{48}^{2} - \zeta_{48}^{6} + \zeta_{48}^{9} + \zeta_{48}^{10} + 2 \zeta_{48}^{14} + \zeta_{48}^{15} ) q^{40} + ( -\zeta_{48}^{2} - 3 \zeta_{48}^{3} + 4 \zeta_{48}^{4} - 3 \zeta_{48}^{5} - \zeta_{48}^{6} - \zeta_{48}^{9} - \zeta_{48}^{10} - 2 \zeta_{48}^{12} + 3 \zeta_{48}^{13} + 2 \zeta_{48}^{14} + \zeta_{48}^{15} ) q^{41} + ( 1 - 6 \zeta_{48} + \zeta_{48}^{2} + 2 \zeta_{48}^{3} + 2 \zeta_{48}^{5} + \zeta_{48}^{6} - 6 \zeta_{48}^{7} + 3 \zeta_{48}^{9} - \zeta_{48}^{10} - 4 \zeta_{48}^{11} + 2 \zeta_{48}^{13} + 3 \zeta_{48}^{15} ) q^{43} + ( -\zeta_{48}^{3} + \zeta_{48}^{5} + 2 \zeta_{48}^{11} + 2 \zeta_{48}^{12} + \zeta_{48}^{13} ) q^{44} + ( -3 - 2 \zeta_{48} - 2 \zeta_{48}^{2} + \zeta_{48}^{3} + \zeta_{48}^{5} - 2 \zeta_{48}^{6} - 2 \zeta_{48}^{7} + \zeta_{48}^{9} + 2 \zeta_{48}^{10} - 2 \zeta_{48}^{11} + \zeta_{48}^{13} + \zeta_{48}^{15} ) q^{46} + ( 2 \zeta_{48}^{2} + 4 \zeta_{48}^{4} + 2 \zeta_{48}^{6} - \zeta_{48}^{9} + 2 \zeta_{48}^{10} - 2 \zeta_{48}^{12} - 4 \zeta_{48}^{14} + \zeta_{48}^{15} ) q^{47} + ( 4 \zeta_{48} + \zeta_{48}^{2} + 2 \zeta_{48}^{3} - 2 \zeta_{48}^{5} - \zeta_{48}^{6} - 4 \zeta_{48}^{7} - 2 \zeta_{48}^{9} - \zeta_{48}^{10} - 4 \zeta_{48}^{11} - 3 \zeta_{48}^{12} - 2 \zeta_{48}^{13} + 2 \zeta_{48}^{15} ) q^{50} + ( 1 + \zeta_{48}^{3} - \zeta_{48}^{5} - 2 \zeta_{48}^{8} - \zeta_{48}^{9} + \zeta_{48}^{13} - \zeta_{48}^{15} ) q^{52} + ( -2 \zeta_{48} - 3 \zeta_{48}^{2} + 2 \zeta_{48}^{3} - 2 \zeta_{48}^{5} + 3 \zeta_{48}^{6} + 2 \zeta_{48}^{7} + \zeta_{48}^{9} + 3 \zeta_{48}^{10} - 4 \zeta_{48}^{11} + \zeta_{48}^{12} - 2 \zeta_{48}^{13} - \zeta_{48}^{15} ) q^{53} + ( 2 - 3 \zeta_{48}^{2} - 3 \zeta_{48}^{3} + 3 \zeta_{48}^{5} + 3 \zeta_{48}^{6} - 4 \zeta_{48}^{8} - 5 \zeta_{48}^{9} - 3 \zeta_{48}^{10} - 3 \zeta_{48}^{13} - 6 \zeta_{48}^{14} - 5 \zeta_{48}^{15} ) q^{55} + ( 1 - 2 \zeta_{48} - 2 \zeta_{48}^{2} - 2 \zeta_{48}^{6} - 2 \zeta_{48}^{7} + \zeta_{48}^{9} + 2 \zeta_{48}^{10} + \zeta_{48}^{15} ) q^{58} + ( 2 \zeta_{48}^{2} - 2 \zeta_{48}^{3} + 2 \zeta_{48}^{4} - 2 \zeta_{48}^{5} + 2 \zeta_{48}^{6} + 4 \zeta_{48}^{9} + 2 \zeta_{48}^{10} - \zeta_{48}^{12} + 2 \zeta_{48}^{13} - 4 \zeta_{48}^{14} - 4 \zeta_{48}^{15} ) q^{59} + ( 2 + 4 \zeta_{48}^{3} - 4 \zeta_{48}^{5} - 4 \zeta_{48}^{8} - 4 \zeta_{48}^{9} + 4 \zeta_{48}^{13} - 4 \zeta_{48}^{15} ) q^{61} + ( -\zeta_{48}^{2} + 2 \zeta_{48}^{3} - 2 \zeta_{48}^{4} + 2 \zeta_{48}^{5} - \zeta_{48}^{6} - \zeta_{48}^{9} - \zeta_{48}^{10} + \zeta_{48}^{12} - 2 \zeta_{48}^{13} + 2 \zeta_{48}^{14} + \zeta_{48}^{15} ) q^{62} - q^{64} + ( -4 \zeta_{48} - 3 \zeta_{48}^{2} - \zeta_{48}^{3} + \zeta_{48}^{5} + 3 \zeta_{48}^{6} + 4 \zeta_{48}^{7} + 2 \zeta_{48}^{9} + 3 \zeta_{48}^{10} + 2 \zeta_{48}^{11} + 2 \zeta_{48}^{12} + \zeta_{48}^{13} - 2 \zeta_{48}^{15} ) q^{65} + ( 1 + 4 \zeta_{48} + 3 \zeta_{48}^{3} + 3 \zeta_{48}^{5} + 4 \zeta_{48}^{7} - 2 \zeta_{48}^{9} - 6 \zeta_{48}^{11} + 3 \zeta_{48}^{13} - 2 \zeta_{48}^{15} ) q^{67} + ( 2 \zeta_{48}^{4} + 3 \zeta_{48}^{9} - \zeta_{48}^{12} - 3 \zeta_{48}^{15} ) q^{68} + ( -2 \zeta_{48} - \zeta_{48}^{2} + \zeta_{48}^{3} - \zeta_{48}^{5} + \zeta_{48}^{6} + 2 \zeta_{48}^{7} + \zeta_{48}^{9} + \zeta_{48}^{10} - 2 \zeta_{48}^{11} + \zeta_{48}^{12} - \zeta_{48}^{13} - \zeta_{48}^{15} ) q^{71} + ( -4 \zeta_{48}^{2} + 3 \zeta_{48}^{3} - 3 \zeta_{48}^{5} + 4 \zeta_{48}^{6} + 2 \zeta_{48}^{9} - 4 \zeta_{48}^{10} + 3 \zeta_{48}^{13} - 8 \zeta_{48}^{14} + 2 \zeta_{48}^{15} ) q^{73} + ( -6 \zeta_{48} - \zeta_{48}^{3} + \zeta_{48}^{5} + 6 \zeta_{48}^{7} + 3 \zeta_{48}^{9} + 2 \zeta_{48}^{11} + 2 \zeta_{48}^{12} + \zeta_{48}^{13} - 3 \zeta_{48}^{15} ) q^{74} + ( -2 - \zeta_{48}^{2} + \zeta_{48}^{3} - \zeta_{48}^{5} + \zeta_{48}^{6} + 4 \zeta_{48}^{8} - \zeta_{48}^{10} + \zeta_{48}^{13} - 2 \zeta_{48}^{14} ) q^{76} + ( -4 \zeta_{48} + 5 \zeta_{48}^{2} + \zeta_{48}^{3} + \zeta_{48}^{5} + 5 \zeta_{48}^{6} - 4 \zeta_{48}^{7} + 2 \zeta_{48}^{9} - 5 \zeta_{48}^{10} - 2 \zeta_{48}^{11} + \zeta_{48}^{13} + 2 \zeta_{48}^{15} ) q^{79} + ( \zeta_{48}^{2} + \zeta_{48}^{3} + \zeta_{48}^{5} + \zeta_{48}^{6} + \zeta_{48}^{10} - \zeta_{48}^{13} - 2 \zeta_{48}^{14} ) q^{80} + ( 2 + \zeta_{48}^{2} + \zeta_{48}^{3} - \zeta_{48}^{5} - \zeta_{48}^{6} - 4 \zeta_{48}^{8} + 3 \zeta_{48}^{9} + \zeta_{48}^{10} + \zeta_{48}^{13} + 2 \zeta_{48}^{14} + 3 \zeta_{48}^{15} ) q^{82} + ( 3 \zeta_{48}^{2} + 2 \zeta_{48}^{3} + 4 \zeta_{48}^{4} + 2 \zeta_{48}^{5} + 3 \zeta_{48}^{6} + 2 \zeta_{48}^{9} + 3 \zeta_{48}^{10} - 2 \zeta_{48}^{12} - 2 \zeta_{48}^{13} - 6 \zeta_{48}^{14} - 2 \zeta_{48}^{15} ) q^{83} + ( -8 \zeta_{48} - 6 \zeta_{48}^{2} + 3 \zeta_{48}^{3} + 3 \zeta_{48}^{5} - 6 \zeta_{48}^{6} - 8 \zeta_{48}^{7} + 4 \zeta_{48}^{9} + 6 \zeta_{48}^{10} - 6 \zeta_{48}^{11} + 3 \zeta_{48}^{13} + 4 \zeta_{48}^{15} ) q^{85} + ( 4 \zeta_{48} + \zeta_{48}^{2} - 3 \zeta_{48}^{3} + 3 \zeta_{48}^{5} - \zeta_{48}^{6} - 4 \zeta_{48}^{7} - 2 \zeta_{48}^{9} - \zeta_{48}^{10} + 6 \zeta_{48}^{11} - \zeta_{48}^{12} + 3 \zeta_{48}^{13} + 2 \zeta_{48}^{15} ) q^{86} + ( 2 + 2 \zeta_{48} + 2 \zeta_{48}^{7} - \zeta_{48}^{9} - \zeta_{48}^{15} ) q^{88} + ( 2 \zeta_{48}^{2} - 2 \zeta_{48}^{3} - 2 \zeta_{48}^{4} - 2 \zeta_{48}^{5} + 2 \zeta_{48}^{6} - \zeta_{48}^{9} + 2 \zeta_{48}^{10} + \zeta_{48}^{12} + 2 \zeta_{48}^{13} - 4 \zeta_{48}^{14} + \zeta_{48}^{15} ) q^{89} + ( 2 \zeta_{48} - 2 \zeta_{48}^{2} - \zeta_{48}^{3} + \zeta_{48}^{5} + 2 \zeta_{48}^{6} - 2 \zeta_{48}^{7} - \zeta_{48}^{9} + 2 \zeta_{48}^{10} + 2 \zeta_{48}^{11} + 3 \zeta_{48}^{12} + \zeta_{48}^{13} + \zeta_{48}^{15} ) q^{92} + ( 2 - 2 \zeta_{48}^{2} + \zeta_{48}^{3} - \zeta_{48}^{5} + 2 \zeta_{48}^{6} - 4 \zeta_{48}^{8} - 2 \zeta_{48}^{10} + \zeta_{48}^{13} - 4 \zeta_{48}^{14} ) q^{94} + ( -4 \zeta_{48} + 7 \zeta_{48}^{2} + 2 \zeta_{48}^{3} - 2 \zeta_{48}^{5} - 7 \zeta_{48}^{6} + 4 \zeta_{48}^{7} + 2 \zeta_{48}^{9} - 7 \zeta_{48}^{10} - 4 \zeta_{48}^{11} + 6 \zeta_{48}^{12} - 2 \zeta_{48}^{13} - 2 \zeta_{48}^{15} ) q^{95} + ( -4 - 2 \zeta_{48}^{2} + 3 \zeta_{48}^{3} - 3 \zeta_{48}^{5} + 2 \zeta_{48}^{6} + 8 \zeta_{48}^{8} + 7 \zeta_{48}^{9} - 2 \zeta_{48}^{10} + 3 \zeta_{48}^{13} - 4 \zeta_{48}^{14} + 7 \zeta_{48}^{15} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 16q^{4} + O(q^{10}) \) \( 16q - 16q^{4} + 16q^{16} - 32q^{22} + 48q^{25} - 32q^{37} + 16q^{43} - 48q^{46} + 16q^{58} - 16q^{64} + 16q^{67} + 32q^{88} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2645.1
0.608761 0.793353i
0.130526 0.991445i
−0.130526 + 0.991445i
−0.608761 + 0.793353i
−0.991445 0.130526i
0.793353 + 0.608761i
−0.793353 0.608761i
0.991445 + 0.130526i
0.608761 + 0.793353i
0.130526 + 0.991445i
−0.130526 0.991445i
−0.608761 0.793353i
−0.991445 + 0.130526i
0.793353 0.608761i
−0.793353 + 0.608761i
0.991445 0.130526i
1.00000i 0 −1.00000 −4.29725 0 0 1.00000i 0 4.29725i
2645.2 1.00000i 0 −1.00000 −3.21486 0 0 1.00000i 0 3.21486i
2645.3 1.00000i 0 −1.00000 −1.68412 0 0 1.00000i 0 1.68412i
2645.4 1.00000i 0 −1.00000 −0.601731 0 0 1.00000i 0 0.601731i
2645.5 1.00000i 0 −1.00000 0.601731 0 0 1.00000i 0 0.601731i
2645.6 1.00000i 0 −1.00000 1.68412 0 0 1.00000i 0 1.68412i
2645.7 1.00000i 0 −1.00000 3.21486 0 0 1.00000i 0 3.21486i
2645.8 1.00000i 0 −1.00000 4.29725 0 0 1.00000i 0 4.29725i
2645.9 1.00000i 0 −1.00000 −4.29725 0 0 1.00000i 0 4.29725i
2645.10 1.00000i 0 −1.00000 −3.21486 0 0 1.00000i 0 3.21486i
2645.11 1.00000i 0 −1.00000 −1.68412 0 0 1.00000i 0 1.68412i
2645.12 1.00000i 0 −1.00000 −0.601731 0 0 1.00000i 0 0.601731i
2645.13 1.00000i 0 −1.00000 0.601731 0 0 1.00000i 0 0.601731i
2645.14 1.00000i 0 −1.00000 1.68412 0 0 1.00000i 0 1.68412i
2645.15 1.00000i 0 −1.00000 3.21486 0 0 1.00000i 0 3.21486i
2645.16 1.00000i 0 −1.00000 4.29725 0 0 1.00000i 0 4.29725i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2645.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.d.e 16
3.b odd 2 1 inner 2646.2.d.e 16
7.b odd 2 1 inner 2646.2.d.e 16
21.c even 2 1 inner 2646.2.d.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2646.2.d.e 16 1.a even 1 1 trivial
2646.2.d.e 16 3.b odd 2 1 inner
2646.2.d.e 16 7.b odd 2 1 inner
2646.2.d.e 16 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} - 32 T_{5}^{6} + 284 T_{5}^{4} - 640 T_{5}^{2} + 196 \) acting on \(S_{2}^{\mathrm{new}}(2646, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T^{2} )^{8} \)
$3$ \( T^{16} \)
$5$ \( ( 196 - 640 T^{2} + 284 T^{4} - 32 T^{6} + T^{8} )^{2} \)
$7$ \( T^{16} \)
$11$ \( ( 196 + 592 T^{2} + 372 T^{4} + 40 T^{6} + T^{8} )^{2} \)
$13$ \( ( 49 + 188 T^{2} + 182 T^{4} + 28 T^{6} + T^{8} )^{2} \)
$17$ \( ( 3969 - 13068 T^{2} + 1890 T^{4} - 84 T^{6} + T^{8} )^{2} \)
$19$ \( ( 196 + 3232 T^{2} + 1244 T^{4} + 80 T^{6} + T^{8} )^{2} \)
$23$ \( ( 388129 + 69428 T^{2} + 4422 T^{4} + 116 T^{6} + T^{8} )^{2} \)
$29$ \( ( 7921 + 6084 T^{2} + 1106 T^{4} + 60 T^{6} + T^{8} )^{2} \)
$31$ \( ( 9409 + 8084 T^{2} + 1442 T^{4} + 76 T^{6} + T^{8} )^{2} \)
$37$ \( ( 3064 - 448 T - 96 T^{2} + 8 T^{3} + T^{4} )^{4} \)
$41$ \( ( 1817104 - 204448 T^{2} + 8456 T^{4} - 152 T^{6} + T^{8} )^{2} \)
$43$ \( ( 4567 + 484 T - 154 T^{2} - 4 T^{3} + T^{4} )^{4} \)
$47$ \( ( 8836 - 52912 T^{2} + 6356 T^{4} - 152 T^{6} + T^{8} )^{2} \)
$53$ \( ( 1681 + 60220 T^{2} + 10098 T^{4} + 196 T^{6} + T^{8} )^{2} \)
$59$ \( ( 9186961 - 769772 T^{2} + 22646 T^{4} - 268 T^{6} + T^{8} )^{2} \)
$61$ \( ( 430336 + 592640 T^{2} + 24416 T^{4} + 304 T^{6} + T^{8} )^{2} \)
$67$ \( ( 5047 + 308 T - 150 T^{2} - 4 T^{3} + T^{4} )^{4} \)
$71$ \( ( 2209 + 7932 T^{2} + 1190 T^{4} + 60 T^{6} + T^{8} )^{2} \)
$73$ \( ( 23059204 + 2493904 T^{2} + 69140 T^{4} + 488 T^{6} + T^{8} )^{2} \)
$79$ \( ( 382 + 120 T - 160 T^{2} + T^{4} )^{4} \)
$83$ \( ( 868624 - 348704 T^{2} + 19544 T^{4} - 328 T^{6} + T^{8} )^{2} \)
$89$ \( ( 187489 - 123788 T^{2} + 7298 T^{4} - 148 T^{6} + T^{8} )^{2} \)
$97$ \( ( 1015314496 + 23761792 T^{2} + 203600 T^{4} + 752 T^{6} + T^{8} )^{2} \)
show more
show less