Properties

Label 2646.2.a.bb.1.1
Level $2646$
Weight $2$
Character 2646.1
Self dual yes
Analytic conductor $21.128$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 378)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2646.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.00000 q^{5} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.00000 q^{5} +1.00000 q^{8} +2.00000 q^{10} +5.00000 q^{11} -6.00000 q^{13} +1.00000 q^{16} +4.00000 q^{17} +4.00000 q^{19} +2.00000 q^{20} +5.00000 q^{22} -4.00000 q^{23} -1.00000 q^{25} -6.00000 q^{26} +7.00000 q^{29} -3.00000 q^{31} +1.00000 q^{32} +4.00000 q^{34} +8.00000 q^{37} +4.00000 q^{38} +2.00000 q^{40} +6.00000 q^{41} +8.00000 q^{43} +5.00000 q^{44} -4.00000 q^{46} -6.00000 q^{47} -1.00000 q^{50} -6.00000 q^{52} -6.00000 q^{53} +10.0000 q^{55} +7.00000 q^{58} -7.00000 q^{59} -3.00000 q^{62} +1.00000 q^{64} -12.0000 q^{65} +10.0000 q^{67} +4.00000 q^{68} -4.00000 q^{71} -13.0000 q^{73} +8.00000 q^{74} +4.00000 q^{76} -3.00000 q^{79} +2.00000 q^{80} +6.00000 q^{82} +7.00000 q^{83} +8.00000 q^{85} +8.00000 q^{86} +5.00000 q^{88} -6.00000 q^{89} -4.00000 q^{92} -6.00000 q^{94} +8.00000 q^{95} +5.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) 5.00000 1.06600
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) 0 0
\(29\) 7.00000 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 5.00000 0.753778
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) −6.00000 −0.832050
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 10.0000 1.34840
\(56\) 0 0
\(57\) 0 0
\(58\) 7.00000 0.919145
\(59\) −7.00000 −0.911322 −0.455661 0.890153i \(-0.650597\pi\)
−0.455661 + 0.890153i \(0.650597\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −3.00000 −0.381000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) 4.00000 0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) −13.0000 −1.52153 −0.760767 0.649025i \(-0.775177\pi\)
−0.760767 + 0.649025i \(0.775177\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) −3.00000 −0.337526 −0.168763 0.985657i \(-0.553977\pi\)
−0.168763 + 0.985657i \(0.553977\pi\)
\(80\) 2.00000 0.223607
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 7.00000 0.768350 0.384175 0.923260i \(-0.374486\pi\)
0.384175 + 0.923260i \(0.374486\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) 5.00000 0.533002
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) 5.00000 0.507673 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 5.00000 0.497519 0.248759 0.968565i \(-0.419977\pi\)
0.248759 + 0.968565i \(0.419977\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 10.0000 0.953463
\(111\) 0 0
\(112\) 0 0
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 7.00000 0.649934
\(117\) 0 0
\(118\) −7.00000 −0.644402
\(119\) 0 0
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) −3.00000 −0.269408
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −12.0000 −1.05247
\(131\) −13.0000 −1.13582 −0.567908 0.823092i \(-0.692247\pi\)
−0.567908 + 0.823092i \(0.692247\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.0000 0.863868
\(135\) 0 0
\(136\) 4.00000 0.342997
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.00000 −0.335673
\(143\) −30.0000 −2.50873
\(144\) 0 0
\(145\) 14.0000 1.16264
\(146\) −13.0000 −1.07589
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) 9.00000 0.737309 0.368654 0.929567i \(-0.379819\pi\)
0.368654 + 0.929567i \(0.379819\pi\)
\(150\) 0 0
\(151\) −17.0000 −1.38344 −0.691720 0.722166i \(-0.743147\pi\)
−0.691720 + 0.722166i \(0.743147\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) −3.00000 −0.238667
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) 0 0
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 7.00000 0.543305
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 8.00000 0.613572
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) −1.00000 −0.0760286 −0.0380143 0.999277i \(-0.512103\pi\)
−0.0380143 + 0.999277i \(0.512103\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.00000 0.376889
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −15.0000 −1.12115 −0.560576 0.828103i \(-0.689420\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) 16.0000 1.17634
\(186\) 0 0
\(187\) 20.0000 1.46254
\(188\) −6.00000 −0.437595
\(189\) 0 0
\(190\) 8.00000 0.580381
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) −19.0000 −1.36765 −0.683825 0.729646i \(-0.739685\pi\)
−0.683825 + 0.729646i \(0.739685\pi\)
\(194\) 5.00000 0.358979
\(195\) 0 0
\(196\) 0 0
\(197\) −25.0000 −1.78118 −0.890588 0.454811i \(-0.849707\pi\)
−0.890588 + 0.454811i \(0.849707\pi\)
\(198\) 0 0
\(199\) 19.0000 1.34687 0.673437 0.739244i \(-0.264817\pi\)
0.673437 + 0.739244i \(0.264817\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) 5.00000 0.351799
\(203\) 0 0
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −6.00000 −0.416025
\(209\) 20.0000 1.38343
\(210\) 0 0
\(211\) 26.0000 1.78991 0.894957 0.446153i \(-0.147206\pi\)
0.894957 + 0.446153i \(0.147206\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 16.0000 1.09119
\(216\) 0 0
\(217\) 0 0
\(218\) 16.0000 1.08366
\(219\) 0 0
\(220\) 10.0000 0.674200
\(221\) −24.0000 −1.61441
\(222\) 0 0
\(223\) 1.00000 0.0669650 0.0334825 0.999439i \(-0.489340\pi\)
0.0334825 + 0.999439i \(0.489340\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4.00000 0.266076
\(227\) 27.0000 1.79205 0.896026 0.444001i \(-0.146441\pi\)
0.896026 + 0.444001i \(0.146441\pi\)
\(228\) 0 0
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) 7.00000 0.459573
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) −7.00000 −0.455661
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) 14.0000 0.899954
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −24.0000 −1.52708
\(248\) −3.00000 −0.190500
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) 21.0000 1.32551 0.662754 0.748837i \(-0.269387\pi\)
0.662754 + 0.748837i \(0.269387\pi\)
\(252\) 0 0
\(253\) −20.0000 −1.25739
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −12.0000 −0.744208
\(261\) 0 0
\(262\) −13.0000 −0.803143
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) 10.0000 0.610847
\(269\) −31.0000 −1.89010 −0.945052 0.326921i \(-0.893989\pi\)
−0.945052 + 0.326921i \(0.893989\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) −8.00000 −0.483298
\(275\) −5.00000 −0.301511
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 8.00000 0.479808
\(279\) 0 0
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) −4.00000 −0.237356
\(285\) 0 0
\(286\) −30.0000 −1.77394
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 14.0000 0.822108
\(291\) 0 0
\(292\) −13.0000 −0.760767
\(293\) −27.0000 −1.57736 −0.788678 0.614806i \(-0.789234\pi\)
−0.788678 + 0.614806i \(0.789234\pi\)
\(294\) 0 0
\(295\) −14.0000 −0.815112
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 9.00000 0.521356
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 0 0
\(302\) −17.0000 −0.978240
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −6.00000 −0.340777
\(311\) −22.0000 −1.24751 −0.623753 0.781622i \(-0.714393\pi\)
−0.623753 + 0.781622i \(0.714393\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −3.00000 −0.168763
\(317\) −33.0000 −1.85346 −0.926732 0.375722i \(-0.877395\pi\)
−0.926732 + 0.375722i \(0.877395\pi\)
\(318\) 0 0
\(319\) 35.0000 1.95962
\(320\) 2.00000 0.111803
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) 6.00000 0.332820
\(326\) 2.00000 0.110770
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) 7.00000 0.384175
\(333\) 0 0
\(334\) 14.0000 0.766046
\(335\) 20.0000 1.09272
\(336\) 0 0
\(337\) −27.0000 −1.47078 −0.735392 0.677642i \(-0.763002\pi\)
−0.735392 + 0.677642i \(0.763002\pi\)
\(338\) 23.0000 1.25104
\(339\) 0 0
\(340\) 8.00000 0.433861
\(341\) −15.0000 −0.812296
\(342\) 0 0
\(343\) 0 0
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) −1.00000 −0.0537603
\(347\) −27.0000 −1.44944 −0.724718 0.689046i \(-0.758030\pi\)
−0.724718 + 0.689046i \(0.758030\pi\)
\(348\) 0 0
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.00000 0.266501
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −15.0000 −0.792775
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −26.0000 −1.36090
\(366\) 0 0
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 16.0000 0.831800
\(371\) 0 0
\(372\) 0 0
\(373\) −20.0000 −1.03556 −0.517780 0.855514i \(-0.673242\pi\)
−0.517780 + 0.855514i \(0.673242\pi\)
\(374\) 20.0000 1.03418
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) −42.0000 −2.16311
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) 8.00000 0.410391
\(381\) 0 0
\(382\) −18.0000 −0.920960
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −19.0000 −0.967075
\(387\) 0 0
\(388\) 5.00000 0.253837
\(389\) 1.00000 0.0507020 0.0253510 0.999679i \(-0.491930\pi\)
0.0253510 + 0.999679i \(0.491930\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) −25.0000 −1.25948
\(395\) −6.00000 −0.301893
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 19.0000 0.952384
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 18.0000 0.896644
\(404\) 5.00000 0.248759
\(405\) 0 0
\(406\) 0 0
\(407\) 40.0000 1.98273
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 12.0000 0.592638
\(411\) 0 0
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) 14.0000 0.687233
\(416\) −6.00000 −0.294174
\(417\) 0 0
\(418\) 20.0000 0.978232
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 26.0000 1.26566
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 16.0000 0.771589
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 0 0
\(433\) 7.00000 0.336399 0.168199 0.985753i \(-0.446205\pi\)
0.168199 + 0.985753i \(0.446205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 16.0000 0.766261
\(437\) −16.0000 −0.765384
\(438\) 0 0
\(439\) −3.00000 −0.143182 −0.0715911 0.997434i \(-0.522808\pi\)
−0.0715911 + 0.997434i \(0.522808\pi\)
\(440\) 10.0000 0.476731
\(441\) 0 0
\(442\) −24.0000 −1.14156
\(443\) 11.0000 0.522626 0.261313 0.965254i \(-0.415845\pi\)
0.261313 + 0.965254i \(0.415845\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 1.00000 0.0473514
\(447\) 0 0
\(448\) 0 0
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) 0 0
\(451\) 30.0000 1.41264
\(452\) 4.00000 0.188144
\(453\) 0 0
\(454\) 27.0000 1.26717
\(455\) 0 0
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) −4.00000 −0.186908
\(459\) 0 0
\(460\) −8.00000 −0.373002
\(461\) 23.0000 1.07122 0.535608 0.844466i \(-0.320082\pi\)
0.535608 + 0.844466i \(0.320082\pi\)
\(462\) 0 0
\(463\) −29.0000 −1.34774 −0.673872 0.738848i \(-0.735370\pi\)
−0.673872 + 0.738848i \(0.735370\pi\)
\(464\) 7.00000 0.324967
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) −7.00000 −0.323921 −0.161961 0.986797i \(-0.551782\pi\)
−0.161961 + 0.986797i \(0.551782\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −12.0000 −0.553519
\(471\) 0 0
\(472\) −7.00000 −0.322201
\(473\) 40.0000 1.83920
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −26.0000 −1.18797 −0.593985 0.804476i \(-0.702446\pi\)
−0.593985 + 0.804476i \(0.702446\pi\)
\(480\) 0 0
\(481\) −48.0000 −2.18861
\(482\) 1.00000 0.0455488
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) −13.0000 −0.589086 −0.294543 0.955638i \(-0.595167\pi\)
−0.294543 + 0.955638i \(0.595167\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 28.0000 1.26106
\(494\) −24.0000 −1.07981
\(495\) 0 0
\(496\) −3.00000 −0.134704
\(497\) 0 0
\(498\) 0 0
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) −12.0000 −0.536656
\(501\) 0 0
\(502\) 21.0000 0.937276
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) −20.0000 −0.889108
\(507\) 0 0
\(508\) 0 0
\(509\) −3.00000 −0.132973 −0.0664863 0.997787i \(-0.521179\pi\)
−0.0664863 + 0.997787i \(0.521179\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0 0
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) −30.0000 −1.31940
\(518\) 0 0
\(519\) 0 0
\(520\) −12.0000 −0.526235
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −26.0000 −1.13690 −0.568450 0.822718i \(-0.692457\pi\)
−0.568450 + 0.822718i \(0.692457\pi\)
\(524\) −13.0000 −0.567908
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −12.0000 −0.521247
\(531\) 0 0
\(532\) 0 0
\(533\) −36.0000 −1.55933
\(534\) 0 0
\(535\) 24.0000 1.03761
\(536\) 10.0000 0.431934
\(537\) 0 0
\(538\) −31.0000 −1.33650
\(539\) 0 0
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 4.00000 0.171499
\(545\) 32.0000 1.37073
\(546\) 0 0
\(547\) −18.0000 −0.769624 −0.384812 0.922995i \(-0.625734\pi\)
−0.384812 + 0.922995i \(0.625734\pi\)
\(548\) −8.00000 −0.341743
\(549\) 0 0
\(550\) −5.00000 −0.213201
\(551\) 28.0000 1.19284
\(552\) 0 0
\(553\) 0 0
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) 8.00000 0.339276
\(557\) −11.0000 −0.466085 −0.233042 0.972467i \(-0.574868\pi\)
−0.233042 + 0.972467i \(0.574868\pi\)
\(558\) 0 0
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) 0 0
\(562\) 2.00000 0.0843649
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) 8.00000 0.336563
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) −4.00000 −0.167836
\(569\) −12.0000 −0.503066 −0.251533 0.967849i \(-0.580935\pi\)
−0.251533 + 0.967849i \(0.580935\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) −30.0000 −1.25436
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −43.0000 −1.79011 −0.895057 0.445952i \(-0.852865\pi\)
−0.895057 + 0.445952i \(0.852865\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 14.0000 0.581318
\(581\) 0 0
\(582\) 0 0
\(583\) −30.0000 −1.24247
\(584\) −13.0000 −0.537944
\(585\) 0 0
\(586\) −27.0000 −1.11536
\(587\) −20.0000 −0.825488 −0.412744 0.910847i \(-0.635430\pi\)
−0.412744 + 0.910847i \(0.635430\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) −14.0000 −0.576371
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.00000 0.368654
\(597\) 0 0
\(598\) 24.0000 0.981433
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −17.0000 −0.691720
\(605\) 28.0000 1.13836
\(606\) 0 0
\(607\) 9.00000 0.365299 0.182649 0.983178i \(-0.441533\pi\)
0.182649 + 0.983178i \(0.441533\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) −6.00000 −0.242338 −0.121169 0.992632i \(-0.538664\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) 2.00000 0.0807134
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) −6.00000 −0.240966
\(621\) 0 0
\(622\) −22.0000 −0.882120
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 32.0000 1.27592
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) −3.00000 −0.119334
\(633\) 0 0
\(634\) −33.0000 −1.31060
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 35.0000 1.38566
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) 14.0000 0.552967 0.276483 0.961019i \(-0.410831\pi\)
0.276483 + 0.961019i \(0.410831\pi\)
\(642\) 0 0
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 16.0000 0.629512
\(647\) 18.0000 0.707653 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(648\) 0 0
\(649\) −35.0000 −1.37387
\(650\) 6.00000 0.235339
\(651\) 0 0
\(652\) 2.00000 0.0783260
\(653\) 18.0000 0.704394 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(654\) 0 0
\(655\) −26.0000 −1.01590
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 0 0
\(659\) 41.0000 1.59713 0.798567 0.601906i \(-0.205592\pi\)
0.798567 + 0.601906i \(0.205592\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 32.0000 1.24372
\(663\) 0 0
\(664\) 7.00000 0.271653
\(665\) 0 0
\(666\) 0 0
\(667\) −28.0000 −1.08416
\(668\) 14.0000 0.541676
\(669\) 0 0
\(670\) 20.0000 0.772667
\(671\) 0 0
\(672\) 0 0
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) −27.0000 −1.04000
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) −9.00000 −0.345898 −0.172949 0.984931i \(-0.555330\pi\)
−0.172949 + 0.984931i \(0.555330\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 8.00000 0.306786
\(681\) 0 0
\(682\) −15.0000 −0.574380
\(683\) 21.0000 0.803543 0.401771 0.915740i \(-0.368395\pi\)
0.401771 + 0.915740i \(0.368395\pi\)
\(684\) 0 0
\(685\) −16.0000 −0.611329
\(686\) 0 0
\(687\) 0 0
\(688\) 8.00000 0.304997
\(689\) 36.0000 1.37149
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) −1.00000 −0.0380143
\(693\) 0 0
\(694\) −27.0000 −1.02491
\(695\) 16.0000 0.606915
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 20.0000 0.757011
\(699\) 0 0
\(700\) 0 0
\(701\) −14.0000 −0.528773 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(702\) 0 0
\(703\) 32.0000 1.20690
\(704\) 5.00000 0.188445
\(705\) 0 0
\(706\) 30.0000 1.12906
\(707\) 0 0
\(708\) 0 0
\(709\) 8.00000 0.300446 0.150223 0.988652i \(-0.452001\pi\)
0.150223 + 0.988652i \(0.452001\pi\)
\(710\) −8.00000 −0.300235
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) 12.0000 0.449404
\(714\) 0 0
\(715\) −60.0000 −2.24387
\(716\) −15.0000 −0.560576
\(717\) 0 0
\(718\) 16.0000 0.597115
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 0 0
\(725\) −7.00000 −0.259973
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −26.0000 −0.962303
\(731\) 32.0000 1.18356
\(732\) 0 0
\(733\) 36.0000 1.32969 0.664845 0.746981i \(-0.268498\pi\)
0.664845 + 0.746981i \(0.268498\pi\)
\(734\) 4.00000 0.147643
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 50.0000 1.84177
\(738\) 0 0
\(739\) −6.00000 −0.220714 −0.110357 0.993892i \(-0.535199\pi\)
−0.110357 + 0.993892i \(0.535199\pi\)
\(740\) 16.0000 0.588172
\(741\) 0 0
\(742\) 0 0
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) −20.0000 −0.732252
\(747\) 0 0
\(748\) 20.0000 0.731272
\(749\) 0 0
\(750\) 0 0
\(751\) 12.0000 0.437886 0.218943 0.975738i \(-0.429739\pi\)
0.218943 + 0.975738i \(0.429739\pi\)
\(752\) −6.00000 −0.218797
\(753\) 0 0
\(754\) −42.0000 −1.52955
\(755\) −34.0000 −1.23739
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) 10.0000 0.363216
\(759\) 0 0
\(760\) 8.00000 0.290191
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) 4.00000 0.144526
\(767\) 42.0000 1.51653
\(768\) 0 0
\(769\) −1.00000 −0.0360609 −0.0180305 0.999837i \(-0.505740\pi\)
−0.0180305 + 0.999837i \(0.505740\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −19.0000 −0.683825
\(773\) 38.0000 1.36677 0.683383 0.730061i \(-0.260508\pi\)
0.683383 + 0.730061i \(0.260508\pi\)
\(774\) 0 0
\(775\) 3.00000 0.107763
\(776\) 5.00000 0.179490
\(777\) 0 0
\(778\) 1.00000 0.0358517
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) −16.0000 −0.572159
\(783\) 0 0
\(784\) 0 0
\(785\) −28.0000 −0.999363
\(786\) 0 0
\(787\) −18.0000 −0.641631 −0.320815 0.947142i \(-0.603957\pi\)
−0.320815 + 0.947142i \(0.603957\pi\)
\(788\) −25.0000 −0.890588
\(789\) 0 0
\(790\) −6.00000 −0.213470
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 18.0000 0.638796
\(795\) 0 0
\(796\) 19.0000 0.673437
\(797\) −33.0000 −1.16892 −0.584460 0.811423i \(-0.698694\pi\)
−0.584460 + 0.811423i \(0.698694\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) −18.0000 −0.635602
\(803\) −65.0000 −2.29380
\(804\) 0 0
\(805\) 0 0
\(806\) 18.0000 0.634023
\(807\) 0 0
\(808\) 5.00000 0.175899
\(809\) 34.0000 1.19538 0.597688 0.801729i \(-0.296086\pi\)
0.597688 + 0.801729i \(0.296086\pi\)
\(810\) 0 0
\(811\) 50.0000 1.75574 0.877869 0.478901i \(-0.158965\pi\)
0.877869 + 0.478901i \(0.158965\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 40.0000 1.40200
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) 12.0000 0.419058
\(821\) −49.0000 −1.71011 −0.855056 0.518536i \(-0.826477\pi\)
−0.855056 + 0.518536i \(0.826477\pi\)
\(822\) 0 0
\(823\) 13.0000 0.453152 0.226576 0.973994i \(-0.427247\pi\)
0.226576 + 0.973994i \(0.427247\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) 51.0000 1.77344 0.886722 0.462303i \(-0.152977\pi\)
0.886722 + 0.462303i \(0.152977\pi\)
\(828\) 0 0
\(829\) −22.0000 −0.764092 −0.382046 0.924143i \(-0.624780\pi\)
−0.382046 + 0.924143i \(0.624780\pi\)
\(830\) 14.0000 0.485947
\(831\) 0 0
\(832\) −6.00000 −0.208013
\(833\) 0 0
\(834\) 0 0
\(835\) 28.0000 0.968980
\(836\) 20.0000 0.691714
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) 4.00000 0.138095 0.0690477 0.997613i \(-0.478004\pi\)
0.0690477 + 0.997613i \(0.478004\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) −18.0000 −0.620321
\(843\) 0 0
\(844\) 26.0000 0.894957
\(845\) 46.0000 1.58245
\(846\) 0 0
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) −4.00000 −0.137199
\(851\) −32.0000 −1.09695
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 0 0
\(859\) 16.0000 0.545913 0.272956 0.962026i \(-0.411998\pi\)
0.272956 + 0.962026i \(0.411998\pi\)
\(860\) 16.0000 0.545595
\(861\) 0 0
\(862\) −18.0000 −0.613082
\(863\) −38.0000 −1.29354 −0.646768 0.762687i \(-0.723880\pi\)
−0.646768 + 0.762687i \(0.723880\pi\)
\(864\) 0 0
\(865\) −2.00000 −0.0680020
\(866\) 7.00000 0.237870
\(867\) 0 0
\(868\) 0 0
\(869\) −15.0000 −0.508840
\(870\) 0 0
\(871\) −60.0000 −2.03302
\(872\) 16.0000 0.541828
\(873\) 0 0
\(874\) −16.0000 −0.541208
\(875\) 0 0
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) −3.00000 −0.101245
\(879\) 0 0
\(880\) 10.0000 0.337100
\(881\) 54.0000 1.81931 0.909653 0.415369i \(-0.136347\pi\)
0.909653 + 0.415369i \(0.136347\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) −24.0000 −0.807207
\(885\) 0 0
\(886\) 11.0000 0.369552
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) 1.00000 0.0334825
\(893\) −24.0000 −0.803129
\(894\) 0 0
\(895\) −30.0000 −1.00279
\(896\) 0 0
\(897\) 0 0
\(898\) −14.0000 −0.467186
\(899\) −21.0000 −0.700389
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 30.0000 0.998891
\(903\) 0 0
\(904\) 4.00000 0.133038
\(905\) 0 0
\(906\) 0 0
\(907\) −42.0000 −1.39459 −0.697294 0.716786i \(-0.745613\pi\)
−0.697294 + 0.716786i \(0.745613\pi\)
\(908\) 27.0000 0.896026
\(909\) 0 0
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 35.0000 1.15833
\(914\) −26.0000 −0.860004
\(915\) 0 0
\(916\) −4.00000 −0.132164
\(917\) 0 0
\(918\) 0 0
\(919\) 13.0000 0.428830 0.214415 0.976743i \(-0.431215\pi\)
0.214415 + 0.976743i \(0.431215\pi\)
\(920\) −8.00000 −0.263752
\(921\) 0 0
\(922\) 23.0000 0.757465
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) −29.0000 −0.952999
\(927\) 0 0
\(928\) 7.00000 0.229786
\(929\) −36.0000 −1.18112 −0.590561 0.806993i \(-0.701093\pi\)
−0.590561 + 0.806993i \(0.701093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −22.0000 −0.720634
\(933\) 0 0
\(934\) −7.00000 −0.229047
\(935\) 40.0000 1.30814
\(936\) 0 0
\(937\) −14.0000 −0.457360 −0.228680 0.973502i \(-0.573441\pi\)
−0.228680 + 0.973502i \(0.573441\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −12.0000 −0.391397
\(941\) −13.0000 −0.423788 −0.211894 0.977293i \(-0.567963\pi\)
−0.211894 + 0.977293i \(0.567963\pi\)
\(942\) 0 0
\(943\) −24.0000 −0.781548
\(944\) −7.00000 −0.227831
\(945\) 0 0
\(946\) 40.0000 1.30051
\(947\) 25.0000 0.812391 0.406195 0.913786i \(-0.366855\pi\)
0.406195 + 0.913786i \(0.366855\pi\)
\(948\) 0 0
\(949\) 78.0000 2.53199
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) 0 0
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) 0 0
\(955\) −36.0000 −1.16493
\(956\) 0 0
\(957\) 0 0
\(958\) −26.0000 −0.840022
\(959\) 0 0
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) −48.0000 −1.54758
\(963\) 0 0
\(964\) 1.00000 0.0322078
\(965\) −38.0000 −1.22326
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 14.0000 0.449977
\(969\) 0 0
\(970\) 10.0000 0.321081
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −13.0000 −0.416547
\(975\) 0 0
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −30.0000 −0.958804
\(980\) 0 0
\(981\) 0 0
\(982\) 12.0000 0.382935
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) −50.0000 −1.59313
\(986\) 28.0000 0.891702
\(987\) 0 0
\(988\) −24.0000 −0.763542
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) −3.00000 −0.0952501
\(993\) 0 0
\(994\) 0 0
\(995\) 38.0000 1.20468
\(996\) 0 0
\(997\) 58.0000 1.83688 0.918439 0.395562i \(-0.129450\pi\)
0.918439 + 0.395562i \(0.129450\pi\)
\(998\) −8.00000 −0.253236
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.a.bb.1.1 1
3.2 odd 2 2646.2.a.c.1.1 1
7.3 odd 6 378.2.g.c.163.1 yes 2
7.5 odd 6 378.2.g.c.109.1 2
7.6 odd 2 2646.2.a.t.1.1 1
21.5 even 6 378.2.g.d.109.1 yes 2
21.17 even 6 378.2.g.d.163.1 yes 2
21.20 even 2 2646.2.a.k.1.1 1
63.5 even 6 1134.2.e.b.865.1 2
63.31 odd 6 1134.2.h.b.541.1 2
63.38 even 6 1134.2.e.b.919.1 2
63.40 odd 6 1134.2.e.o.865.1 2
63.47 even 6 1134.2.h.o.109.1 2
63.52 odd 6 1134.2.e.o.919.1 2
63.59 even 6 1134.2.h.o.541.1 2
63.61 odd 6 1134.2.h.b.109.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
378.2.g.c.109.1 2 7.5 odd 6
378.2.g.c.163.1 yes 2 7.3 odd 6
378.2.g.d.109.1 yes 2 21.5 even 6
378.2.g.d.163.1 yes 2 21.17 even 6
1134.2.e.b.865.1 2 63.5 even 6
1134.2.e.b.919.1 2 63.38 even 6
1134.2.e.o.865.1 2 63.40 odd 6
1134.2.e.o.919.1 2 63.52 odd 6
1134.2.h.b.109.1 2 63.61 odd 6
1134.2.h.b.541.1 2 63.31 odd 6
1134.2.h.o.109.1 2 63.47 even 6
1134.2.h.o.541.1 2 63.59 even 6
2646.2.a.c.1.1 1 3.2 odd 2
2646.2.a.k.1.1 1 21.20 even 2
2646.2.a.t.1.1 1 7.6 odd 2
2646.2.a.bb.1.1 1 1.1 even 1 trivial