Properties

Label 2646.2.a.bb
Level $2646$
Weight $2$
Character orbit 2646.a
Self dual yes
Analytic conductor $21.128$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 378)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + 2q^{5} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} + 2q^{5} + q^{8} + 2q^{10} + 5q^{11} - 6q^{13} + q^{16} + 4q^{17} + 4q^{19} + 2q^{20} + 5q^{22} - 4q^{23} - q^{25} - 6q^{26} + 7q^{29} - 3q^{31} + q^{32} + 4q^{34} + 8q^{37} + 4q^{38} + 2q^{40} + 6q^{41} + 8q^{43} + 5q^{44} - 4q^{46} - 6q^{47} - q^{50} - 6q^{52} - 6q^{53} + 10q^{55} + 7q^{58} - 7q^{59} - 3q^{62} + q^{64} - 12q^{65} + 10q^{67} + 4q^{68} - 4q^{71} - 13q^{73} + 8q^{74} + 4q^{76} - 3q^{79} + 2q^{80} + 6q^{82} + 7q^{83} + 8q^{85} + 8q^{86} + 5q^{88} - 6q^{89} - 4q^{92} - 6q^{94} + 8q^{95} + 5q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 2.00000 0 0 1.00000 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.a.bb 1
3.b odd 2 1 2646.2.a.c 1
7.b odd 2 1 2646.2.a.t 1
7.d odd 6 2 378.2.g.c 2
21.c even 2 1 2646.2.a.k 1
21.g even 6 2 378.2.g.d yes 2
63.i even 6 2 1134.2.e.b 2
63.k odd 6 2 1134.2.h.b 2
63.s even 6 2 1134.2.h.o 2
63.t odd 6 2 1134.2.e.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.g.c 2 7.d odd 6 2
378.2.g.d yes 2 21.g even 6 2
1134.2.e.b 2 63.i even 6 2
1134.2.e.o 2 63.t odd 6 2
1134.2.h.b 2 63.k odd 6 2
1134.2.h.o 2 63.s even 6 2
2646.2.a.c 1 3.b odd 2 1
2646.2.a.k 1 21.c even 2 1
2646.2.a.t 1 7.b odd 2 1
2646.2.a.bb 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2646))\):

\( T_{5} - 2 \)
\( T_{11} - 5 \)
\( T_{13} + 6 \)
\( T_{17} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( -2 + T \)
$7$ \( T \)
$11$ \( -5 + T \)
$13$ \( 6 + T \)
$17$ \( -4 + T \)
$19$ \( -4 + T \)
$23$ \( 4 + T \)
$29$ \( -7 + T \)
$31$ \( 3 + T \)
$37$ \( -8 + T \)
$41$ \( -6 + T \)
$43$ \( -8 + T \)
$47$ \( 6 + T \)
$53$ \( 6 + T \)
$59$ \( 7 + T \)
$61$ \( T \)
$67$ \( -10 + T \)
$71$ \( 4 + T \)
$73$ \( 13 + T \)
$79$ \( 3 + T \)
$83$ \( -7 + T \)
$89$ \( 6 + T \)
$97$ \( -5 + T \)
show more
show less