Properties

Label 2645.2.a.n.1.5
Level $2645$
Weight $2$
Character 2645.1
Self dual yes
Analytic conductor $21.120$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2645,2,Mod(1,2645)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2645, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2645.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2645 = 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2645.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.1204313346\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 115)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.30972\) of defining polynomial
Character \(\chi\) \(=\) 2645.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.22871 q^{2} -1.00000 q^{3} +2.96714 q^{4} -1.00000 q^{5} -2.22871 q^{6} +0.0881559 q^{7} +2.15546 q^{8} -2.00000 q^{9} -2.22871 q^{10} +2.44009 q^{11} -2.96714 q^{12} -3.60149 q^{13} +0.196474 q^{14} +1.00000 q^{15} -1.13037 q^{16} +3.38296 q^{17} -4.45741 q^{18} -2.86103 q^{19} -2.96714 q^{20} -0.0881559 q^{21} +5.43826 q^{22} -2.15546 q^{24} +1.00000 q^{25} -8.02667 q^{26} +5.00000 q^{27} +0.261571 q^{28} -7.44592 q^{29} +2.22871 q^{30} -1.72352 q^{31} -6.83020 q^{32} -2.44009 q^{33} +7.53964 q^{34} -0.0881559 q^{35} -5.93427 q^{36} +0.707778 q^{37} -6.37640 q^{38} +3.60149 q^{39} -2.15546 q^{40} -5.55113 q^{41} -0.196474 q^{42} -2.39725 q^{43} +7.24009 q^{44} +2.00000 q^{45} -11.6146 q^{47} +1.13037 q^{48} -6.99223 q^{49} +2.22871 q^{50} -3.38296 q^{51} -10.6861 q^{52} -10.3751 q^{53} +11.1435 q^{54} -2.44009 q^{55} +0.190017 q^{56} +2.86103 q^{57} -16.5948 q^{58} +11.5533 q^{59} +2.96714 q^{60} +4.06175 q^{61} -3.84121 q^{62} -0.176312 q^{63} -12.9618 q^{64} +3.60149 q^{65} -5.43826 q^{66} -12.2089 q^{67} +10.0377 q^{68} -0.196474 q^{70} +1.89679 q^{71} -4.31093 q^{72} -5.51637 q^{73} +1.57743 q^{74} -1.00000 q^{75} -8.48907 q^{76} +0.215109 q^{77} +8.02667 q^{78} +7.00855 q^{79} +1.13037 q^{80} +1.00000 q^{81} -12.3718 q^{82} +4.17259 q^{83} -0.261571 q^{84} -3.38296 q^{85} -5.34276 q^{86} +7.44592 q^{87} +5.25954 q^{88} -15.9469 q^{89} +4.45741 q^{90} -0.317493 q^{91} +1.72352 q^{93} -25.8855 q^{94} +2.86103 q^{95} +6.83020 q^{96} +14.3797 q^{97} -15.5836 q^{98} -4.88019 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} - 5 q^{3} + 5 q^{4} - 5 q^{5} + 3 q^{6} - 3 q^{7} + 3 q^{8} - 10 q^{9} + 3 q^{10} + 4 q^{11} - 5 q^{12} + 4 q^{14} + 5 q^{15} - 3 q^{16} + 5 q^{17} + 6 q^{18} - q^{19} - 5 q^{20} + 3 q^{21}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.22871 1.57593 0.787967 0.615717i \(-0.211134\pi\)
0.787967 + 0.615717i \(0.211134\pi\)
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 2.96714 1.48357
\(5\) −1.00000 −0.447214
\(6\) −2.22871 −0.909866
\(7\) 0.0881559 0.0333198 0.0166599 0.999861i \(-0.494697\pi\)
0.0166599 + 0.999861i \(0.494697\pi\)
\(8\) 2.15546 0.762072
\(9\) −2.00000 −0.666667
\(10\) −2.22871 −0.704779
\(11\) 2.44009 0.735716 0.367858 0.929882i \(-0.380091\pi\)
0.367858 + 0.929882i \(0.380091\pi\)
\(12\) −2.96714 −0.856539
\(13\) −3.60149 −0.998874 −0.499437 0.866350i \(-0.666460\pi\)
−0.499437 + 0.866350i \(0.666460\pi\)
\(14\) 0.196474 0.0525098
\(15\) 1.00000 0.258199
\(16\) −1.13037 −0.282593
\(17\) 3.38296 0.820489 0.410245 0.911976i \(-0.365443\pi\)
0.410245 + 0.911976i \(0.365443\pi\)
\(18\) −4.45741 −1.05062
\(19\) −2.86103 −0.656366 −0.328183 0.944614i \(-0.606436\pi\)
−0.328183 + 0.944614i \(0.606436\pi\)
\(20\) −2.96714 −0.663472
\(21\) −0.0881559 −0.0192372
\(22\) 5.43826 1.15944
\(23\) 0 0
\(24\) −2.15546 −0.439982
\(25\) 1.00000 0.200000
\(26\) −8.02667 −1.57416
\(27\) 5.00000 0.962250
\(28\) 0.261571 0.0494322
\(29\) −7.44592 −1.38267 −0.691336 0.722533i \(-0.742978\pi\)
−0.691336 + 0.722533i \(0.742978\pi\)
\(30\) 2.22871 0.406904
\(31\) −1.72352 −0.309553 −0.154776 0.987950i \(-0.549466\pi\)
−0.154776 + 0.987950i \(0.549466\pi\)
\(32\) −6.83020 −1.20742
\(33\) −2.44009 −0.424766
\(34\) 7.53964 1.29304
\(35\) −0.0881559 −0.0149011
\(36\) −5.93427 −0.989046
\(37\) 0.707778 0.116358 0.0581790 0.998306i \(-0.481471\pi\)
0.0581790 + 0.998306i \(0.481471\pi\)
\(38\) −6.37640 −1.03439
\(39\) 3.60149 0.576700
\(40\) −2.15546 −0.340809
\(41\) −5.55113 −0.866941 −0.433470 0.901168i \(-0.642711\pi\)
−0.433470 + 0.901168i \(0.642711\pi\)
\(42\) −0.196474 −0.0303166
\(43\) −2.39725 −0.365577 −0.182788 0.983152i \(-0.558512\pi\)
−0.182788 + 0.983152i \(0.558512\pi\)
\(44\) 7.24009 1.09149
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) −11.6146 −1.69416 −0.847079 0.531466i \(-0.821641\pi\)
−0.847079 + 0.531466i \(0.821641\pi\)
\(48\) 1.13037 0.163155
\(49\) −6.99223 −0.998890
\(50\) 2.22871 0.315187
\(51\) −3.38296 −0.473710
\(52\) −10.6861 −1.48190
\(53\) −10.3751 −1.42513 −0.712564 0.701607i \(-0.752466\pi\)
−0.712564 + 0.701607i \(0.752466\pi\)
\(54\) 11.1435 1.51644
\(55\) −2.44009 −0.329022
\(56\) 0.190017 0.0253921
\(57\) 2.86103 0.378953
\(58\) −16.5948 −2.17900
\(59\) 11.5533 1.50412 0.752059 0.659096i \(-0.229061\pi\)
0.752059 + 0.659096i \(0.229061\pi\)
\(60\) 2.96714 0.383056
\(61\) 4.06175 0.520054 0.260027 0.965601i \(-0.416269\pi\)
0.260027 + 0.965601i \(0.416269\pi\)
\(62\) −3.84121 −0.487835
\(63\) −0.176312 −0.0222132
\(64\) −12.9618 −1.62022
\(65\) 3.60149 0.446710
\(66\) −5.43826 −0.669403
\(67\) −12.2089 −1.49156 −0.745778 0.666194i \(-0.767922\pi\)
−0.745778 + 0.666194i \(0.767922\pi\)
\(68\) 10.0377 1.21725
\(69\) 0 0
\(70\) −0.196474 −0.0234831
\(71\) 1.89679 0.225108 0.112554 0.993646i \(-0.464097\pi\)
0.112554 + 0.993646i \(0.464097\pi\)
\(72\) −4.31093 −0.508048
\(73\) −5.51637 −0.645643 −0.322821 0.946460i \(-0.604631\pi\)
−0.322821 + 0.946460i \(0.604631\pi\)
\(74\) 1.57743 0.183373
\(75\) −1.00000 −0.115470
\(76\) −8.48907 −0.973763
\(77\) 0.215109 0.0245139
\(78\) 8.02667 0.908842
\(79\) 7.00855 0.788523 0.394261 0.918998i \(-0.371000\pi\)
0.394261 + 0.918998i \(0.371000\pi\)
\(80\) 1.13037 0.126380
\(81\) 1.00000 0.111111
\(82\) −12.3718 −1.36624
\(83\) 4.17259 0.458001 0.229001 0.973426i \(-0.426454\pi\)
0.229001 + 0.973426i \(0.426454\pi\)
\(84\) −0.261571 −0.0285397
\(85\) −3.38296 −0.366934
\(86\) −5.34276 −0.576125
\(87\) 7.44592 0.798287
\(88\) 5.25954 0.560669
\(89\) −15.9469 −1.69036 −0.845182 0.534478i \(-0.820508\pi\)
−0.845182 + 0.534478i \(0.820508\pi\)
\(90\) 4.45741 0.469853
\(91\) −0.317493 −0.0332823
\(92\) 0 0
\(93\) 1.72352 0.178720
\(94\) −25.8855 −2.66988
\(95\) 2.86103 0.293536
\(96\) 6.83020 0.697104
\(97\) 14.3797 1.46003 0.730017 0.683429i \(-0.239512\pi\)
0.730017 + 0.683429i \(0.239512\pi\)
\(98\) −15.5836 −1.57418
\(99\) −4.88019 −0.490477
\(100\) 2.96714 0.296714
\(101\) 17.3832 1.72970 0.864848 0.502034i \(-0.167415\pi\)
0.864848 + 0.502034i \(0.167415\pi\)
\(102\) −7.53964 −0.746535
\(103\) 1.16334 0.114628 0.0573138 0.998356i \(-0.481746\pi\)
0.0573138 + 0.998356i \(0.481746\pi\)
\(104\) −7.76289 −0.761214
\(105\) 0.0881559 0.00860314
\(106\) −23.1230 −2.24591
\(107\) 17.1503 1.65799 0.828993 0.559259i \(-0.188914\pi\)
0.828993 + 0.559259i \(0.188914\pi\)
\(108\) 14.8357 1.42756
\(109\) 2.61471 0.250444 0.125222 0.992129i \(-0.460036\pi\)
0.125222 + 0.992129i \(0.460036\pi\)
\(110\) −5.43826 −0.518517
\(111\) −0.707778 −0.0671793
\(112\) −0.0996491 −0.00941595
\(113\) −17.9160 −1.68539 −0.842696 0.538390i \(-0.819033\pi\)
−0.842696 + 0.538390i \(0.819033\pi\)
\(114\) 6.37640 0.597205
\(115\) 0 0
\(116\) −22.0931 −2.05129
\(117\) 7.20299 0.665916
\(118\) 25.7490 2.37039
\(119\) 0.298228 0.0273385
\(120\) 2.15546 0.196766
\(121\) −5.04594 −0.458722
\(122\) 9.05245 0.819570
\(123\) 5.55113 0.500529
\(124\) −5.11391 −0.459242
\(125\) −1.00000 −0.0894427
\(126\) −0.392948 −0.0350065
\(127\) 2.99178 0.265477 0.132739 0.991151i \(-0.457623\pi\)
0.132739 + 0.991151i \(0.457623\pi\)
\(128\) −15.2276 −1.34594
\(129\) 2.39725 0.211066
\(130\) 8.02667 0.703986
\(131\) −13.4235 −1.17282 −0.586408 0.810016i \(-0.699458\pi\)
−0.586408 + 0.810016i \(0.699458\pi\)
\(132\) −7.24009 −0.630169
\(133\) −0.252217 −0.0218700
\(134\) −27.2101 −2.35060
\(135\) −5.00000 −0.430331
\(136\) 7.29186 0.625272
\(137\) 19.2932 1.64833 0.824165 0.566350i \(-0.191645\pi\)
0.824165 + 0.566350i \(0.191645\pi\)
\(138\) 0 0
\(139\) 15.4962 1.31437 0.657185 0.753729i \(-0.271747\pi\)
0.657185 + 0.753729i \(0.271747\pi\)
\(140\) −0.261571 −0.0221068
\(141\) 11.6146 0.978123
\(142\) 4.22739 0.354755
\(143\) −8.78798 −0.734888
\(144\) 2.26075 0.188396
\(145\) 7.44592 0.618350
\(146\) −12.2944 −1.01749
\(147\) 6.99223 0.576709
\(148\) 2.10007 0.172625
\(149\) −15.9525 −1.30688 −0.653440 0.756978i \(-0.726675\pi\)
−0.653440 + 0.756978i \(0.726675\pi\)
\(150\) −2.22871 −0.181973
\(151\) 0.442267 0.0359912 0.0179956 0.999838i \(-0.494272\pi\)
0.0179956 + 0.999838i \(0.494272\pi\)
\(152\) −6.16685 −0.500198
\(153\) −6.76593 −0.546993
\(154\) 0.479415 0.0386323
\(155\) 1.72352 0.138436
\(156\) 10.6861 0.855575
\(157\) 7.11870 0.568134 0.284067 0.958804i \(-0.408316\pi\)
0.284067 + 0.958804i \(0.408316\pi\)
\(158\) 15.6200 1.24266
\(159\) 10.3751 0.822798
\(160\) 6.83020 0.539975
\(161\) 0 0
\(162\) 2.22871 0.175104
\(163\) −7.14635 −0.559745 −0.279872 0.960037i \(-0.590292\pi\)
−0.279872 + 0.960037i \(0.590292\pi\)
\(164\) −16.4710 −1.28617
\(165\) 2.44009 0.189961
\(166\) 9.29948 0.721780
\(167\) 1.33264 0.103123 0.0515614 0.998670i \(-0.483580\pi\)
0.0515614 + 0.998670i \(0.483580\pi\)
\(168\) −0.190017 −0.0146601
\(169\) −0.0292481 −0.00224985
\(170\) −7.53964 −0.578264
\(171\) 5.72206 0.437577
\(172\) −7.11296 −0.542358
\(173\) 2.70076 0.205335 0.102667 0.994716i \(-0.467262\pi\)
0.102667 + 0.994716i \(0.467262\pi\)
\(174\) 16.5948 1.25805
\(175\) 0.0881559 0.00666396
\(176\) −2.75822 −0.207908
\(177\) −11.5533 −0.868402
\(178\) −35.5409 −2.66390
\(179\) −19.7880 −1.47902 −0.739512 0.673144i \(-0.764944\pi\)
−0.739512 + 0.673144i \(0.764944\pi\)
\(180\) 5.93427 0.442315
\(181\) 3.98546 0.296237 0.148118 0.988970i \(-0.452678\pi\)
0.148118 + 0.988970i \(0.452678\pi\)
\(182\) −0.707599 −0.0524507
\(183\) −4.06175 −0.300253
\(184\) 0 0
\(185\) −0.707778 −0.0520369
\(186\) 3.84121 0.281651
\(187\) 8.25475 0.603647
\(188\) −34.4620 −2.51340
\(189\) 0.440780 0.0320620
\(190\) 6.37640 0.462593
\(191\) −5.97924 −0.432643 −0.216321 0.976322i \(-0.569406\pi\)
−0.216321 + 0.976322i \(0.569406\pi\)
\(192\) 12.9618 0.935435
\(193\) 10.0864 0.726035 0.363018 0.931782i \(-0.381746\pi\)
0.363018 + 0.931782i \(0.381746\pi\)
\(194\) 32.0481 2.30092
\(195\) −3.60149 −0.257908
\(196\) −20.7469 −1.48192
\(197\) −5.11562 −0.364473 −0.182236 0.983255i \(-0.558334\pi\)
−0.182236 + 0.983255i \(0.558334\pi\)
\(198\) −10.8765 −0.772960
\(199\) 26.5800 1.88420 0.942102 0.335327i \(-0.108847\pi\)
0.942102 + 0.335327i \(0.108847\pi\)
\(200\) 2.15546 0.152414
\(201\) 12.2089 0.861151
\(202\) 38.7421 2.72589
\(203\) −0.656402 −0.0460704
\(204\) −10.0377 −0.702781
\(205\) 5.55113 0.387708
\(206\) 2.59275 0.180646
\(207\) 0 0
\(208\) 4.07103 0.282275
\(209\) −6.98119 −0.482899
\(210\) 0.196474 0.0135580
\(211\) −14.7426 −1.01492 −0.507460 0.861675i \(-0.669416\pi\)
−0.507460 + 0.861675i \(0.669416\pi\)
\(212\) −30.7843 −2.11427
\(213\) −1.89679 −0.129966
\(214\) 38.2231 2.61288
\(215\) 2.39725 0.163491
\(216\) 10.7773 0.733304
\(217\) −0.151938 −0.0103142
\(218\) 5.82742 0.394683
\(219\) 5.51637 0.372762
\(220\) −7.24009 −0.488127
\(221\) −12.1837 −0.819566
\(222\) −1.57743 −0.105870
\(223\) −1.01193 −0.0677637 −0.0338818 0.999426i \(-0.510787\pi\)
−0.0338818 + 0.999426i \(0.510787\pi\)
\(224\) −0.602123 −0.0402310
\(225\) −2.00000 −0.133333
\(226\) −39.9294 −2.65607
\(227\) 5.04227 0.334667 0.167334 0.985900i \(-0.446484\pi\)
0.167334 + 0.985900i \(0.446484\pi\)
\(228\) 8.48907 0.562202
\(229\) −22.9504 −1.51661 −0.758304 0.651901i \(-0.773972\pi\)
−0.758304 + 0.651901i \(0.773972\pi\)
\(230\) 0 0
\(231\) −0.215109 −0.0141531
\(232\) −16.0494 −1.05370
\(233\) 21.5229 1.41001 0.705006 0.709201i \(-0.250944\pi\)
0.705006 + 0.709201i \(0.250944\pi\)
\(234\) 16.0533 1.04944
\(235\) 11.6146 0.757651
\(236\) 34.2803 2.23146
\(237\) −7.00855 −0.455254
\(238\) 0.664664 0.0430837
\(239\) −8.76977 −0.567269 −0.283634 0.958932i \(-0.591540\pi\)
−0.283634 + 0.958932i \(0.591540\pi\)
\(240\) −1.13037 −0.0729653
\(241\) 8.81811 0.568024 0.284012 0.958821i \(-0.408334\pi\)
0.284012 + 0.958821i \(0.408334\pi\)
\(242\) −11.2459 −0.722915
\(243\) −16.0000 −1.02640
\(244\) 12.0518 0.771535
\(245\) 6.99223 0.446717
\(246\) 12.3718 0.788800
\(247\) 10.3040 0.655627
\(248\) −3.71498 −0.235901
\(249\) −4.17259 −0.264427
\(250\) −2.22871 −0.140956
\(251\) −5.89202 −0.371901 −0.185950 0.982559i \(-0.559536\pi\)
−0.185950 + 0.982559i \(0.559536\pi\)
\(252\) −0.523141 −0.0329548
\(253\) 0 0
\(254\) 6.66780 0.418375
\(255\) 3.38296 0.211849
\(256\) −8.01431 −0.500895
\(257\) −7.71341 −0.481149 −0.240575 0.970631i \(-0.577336\pi\)
−0.240575 + 0.970631i \(0.577336\pi\)
\(258\) 5.34276 0.332626
\(259\) 0.0623948 0.00387703
\(260\) 10.6861 0.662725
\(261\) 14.8918 0.921782
\(262\) −29.9170 −1.84828
\(263\) 22.3906 1.38067 0.690333 0.723492i \(-0.257464\pi\)
0.690333 + 0.723492i \(0.257464\pi\)
\(264\) −5.25954 −0.323702
\(265\) 10.3751 0.637336
\(266\) −0.562117 −0.0344656
\(267\) 15.9469 0.975932
\(268\) −36.2255 −2.21283
\(269\) 9.26230 0.564732 0.282366 0.959307i \(-0.408881\pi\)
0.282366 + 0.959307i \(0.408881\pi\)
\(270\) −11.1435 −0.678174
\(271\) 21.9586 1.33389 0.666944 0.745108i \(-0.267602\pi\)
0.666944 + 0.745108i \(0.267602\pi\)
\(272\) −3.82401 −0.231865
\(273\) 0.317493 0.0192155
\(274\) 42.9989 2.59766
\(275\) 2.44009 0.147143
\(276\) 0 0
\(277\) 12.5089 0.751589 0.375795 0.926703i \(-0.377370\pi\)
0.375795 + 0.926703i \(0.377370\pi\)
\(278\) 34.5365 2.07136
\(279\) 3.44703 0.206368
\(280\) −0.190017 −0.0113557
\(281\) −24.5232 −1.46293 −0.731467 0.681877i \(-0.761164\pi\)
−0.731467 + 0.681877i \(0.761164\pi\)
\(282\) 25.8855 1.54146
\(283\) −17.6658 −1.05012 −0.525061 0.851065i \(-0.675957\pi\)
−0.525061 + 0.851065i \(0.675957\pi\)
\(284\) 5.62804 0.333963
\(285\) −2.86103 −0.169473
\(286\) −19.5858 −1.15814
\(287\) −0.489365 −0.0288863
\(288\) 13.6604 0.804947
\(289\) −5.55555 −0.326797
\(290\) 16.5948 0.974479
\(291\) −14.3797 −0.842951
\(292\) −16.3678 −0.957855
\(293\) 8.49029 0.496008 0.248004 0.968759i \(-0.420225\pi\)
0.248004 + 0.968759i \(0.420225\pi\)
\(294\) 15.5836 0.908856
\(295\) −11.5533 −0.672662
\(296\) 1.52559 0.0886732
\(297\) 12.2005 0.707943
\(298\) −35.5535 −2.05956
\(299\) 0 0
\(300\) −2.96714 −0.171308
\(301\) −0.211332 −0.0121810
\(302\) 0.985683 0.0567197
\(303\) −17.3832 −0.998641
\(304\) 3.23403 0.185484
\(305\) −4.06175 −0.232575
\(306\) −15.0793 −0.862025
\(307\) −14.6797 −0.837813 −0.418906 0.908029i \(-0.637586\pi\)
−0.418906 + 0.908029i \(0.637586\pi\)
\(308\) 0.638257 0.0363681
\(309\) −1.16334 −0.0661803
\(310\) 3.84121 0.218166
\(311\) 30.1760 1.71112 0.855561 0.517703i \(-0.173213\pi\)
0.855561 + 0.517703i \(0.173213\pi\)
\(312\) 7.76289 0.439487
\(313\) −5.56602 −0.314610 −0.157305 0.987550i \(-0.550281\pi\)
−0.157305 + 0.987550i \(0.550281\pi\)
\(314\) 15.8655 0.895342
\(315\) 0.176312 0.00993405
\(316\) 20.7953 1.16983
\(317\) 2.81109 0.157887 0.0789434 0.996879i \(-0.474845\pi\)
0.0789434 + 0.996879i \(0.474845\pi\)
\(318\) 23.1230 1.29668
\(319\) −18.1688 −1.01725
\(320\) 12.9618 0.724585
\(321\) −17.1503 −0.957238
\(322\) 0 0
\(323\) −9.67876 −0.538541
\(324\) 2.96714 0.164841
\(325\) −3.60149 −0.199775
\(326\) −15.9271 −0.882121
\(327\) −2.61471 −0.144594
\(328\) −11.9653 −0.660671
\(329\) −1.02389 −0.0564490
\(330\) 5.43826 0.299366
\(331\) −13.8531 −0.761435 −0.380717 0.924691i \(-0.624323\pi\)
−0.380717 + 0.924691i \(0.624323\pi\)
\(332\) 12.3806 0.679476
\(333\) −1.41556 −0.0775720
\(334\) 2.97007 0.162515
\(335\) 12.2089 0.667045
\(336\) 0.0996491 0.00543630
\(337\) 21.5800 1.17554 0.587770 0.809028i \(-0.300006\pi\)
0.587770 + 0.809028i \(0.300006\pi\)
\(338\) −0.0651854 −0.00354562
\(339\) 17.9160 0.973061
\(340\) −10.0377 −0.544372
\(341\) −4.20554 −0.227743
\(342\) 12.7528 0.689593
\(343\) −1.23350 −0.0666026
\(344\) −5.16718 −0.278596
\(345\) 0 0
\(346\) 6.01920 0.323594
\(347\) 18.9076 1.01501 0.507506 0.861648i \(-0.330567\pi\)
0.507506 + 0.861648i \(0.330567\pi\)
\(348\) 22.0931 1.18431
\(349\) 20.9290 1.12030 0.560152 0.828390i \(-0.310743\pi\)
0.560152 + 0.828390i \(0.310743\pi\)
\(350\) 0.196474 0.0105020
\(351\) −18.0075 −0.961167
\(352\) −16.6663 −0.888319
\(353\) 1.61202 0.0857993 0.0428996 0.999079i \(-0.486340\pi\)
0.0428996 + 0.999079i \(0.486340\pi\)
\(354\) −25.7490 −1.36854
\(355\) −1.89679 −0.100671
\(356\) −47.3165 −2.50777
\(357\) −0.298228 −0.0157839
\(358\) −44.1016 −2.33084
\(359\) 34.8162 1.83753 0.918764 0.394808i \(-0.129189\pi\)
0.918764 + 0.394808i \(0.129189\pi\)
\(360\) 4.31093 0.227206
\(361\) −10.8145 −0.569184
\(362\) 8.88243 0.466850
\(363\) 5.04594 0.264843
\(364\) −0.942045 −0.0493766
\(365\) 5.51637 0.288740
\(366\) −9.05245 −0.473179
\(367\) −22.6244 −1.18098 −0.590491 0.807044i \(-0.701066\pi\)
−0.590491 + 0.807044i \(0.701066\pi\)
\(368\) 0 0
\(369\) 11.1023 0.577961
\(370\) −1.57743 −0.0820067
\(371\) −0.914625 −0.0474850
\(372\) 5.11391 0.265144
\(373\) 10.7952 0.558955 0.279477 0.960152i \(-0.409839\pi\)
0.279477 + 0.960152i \(0.409839\pi\)
\(374\) 18.3974 0.951308
\(375\) 1.00000 0.0516398
\(376\) −25.0348 −1.29107
\(377\) 26.8164 1.38112
\(378\) 0.982369 0.0505276
\(379\) −3.68722 −0.189400 −0.0946999 0.995506i \(-0.530189\pi\)
−0.0946999 + 0.995506i \(0.530189\pi\)
\(380\) 8.48907 0.435480
\(381\) −2.99178 −0.153273
\(382\) −13.3260 −0.681816
\(383\) −5.94274 −0.303660 −0.151830 0.988407i \(-0.548517\pi\)
−0.151830 + 0.988407i \(0.548517\pi\)
\(384\) 15.2276 0.777080
\(385\) −0.215109 −0.0109630
\(386\) 22.4796 1.14418
\(387\) 4.79450 0.243718
\(388\) 42.6665 2.16606
\(389\) 6.64224 0.336775 0.168387 0.985721i \(-0.446144\pi\)
0.168387 + 0.985721i \(0.446144\pi\)
\(390\) −8.02667 −0.406446
\(391\) 0 0
\(392\) −15.0715 −0.761226
\(393\) 13.4235 0.677126
\(394\) −11.4012 −0.574385
\(395\) −7.00855 −0.352638
\(396\) −14.4802 −0.727657
\(397\) −4.55745 −0.228732 −0.114366 0.993439i \(-0.536484\pi\)
−0.114366 + 0.993439i \(0.536484\pi\)
\(398\) 59.2390 2.96938
\(399\) 0.252217 0.0126266
\(400\) −1.13037 −0.0565187
\(401\) −27.9113 −1.39382 −0.696912 0.717157i \(-0.745443\pi\)
−0.696912 + 0.717157i \(0.745443\pi\)
\(402\) 27.2101 1.35712
\(403\) 6.20723 0.309204
\(404\) 51.5784 2.56612
\(405\) −1.00000 −0.0496904
\(406\) −1.46293 −0.0726039
\(407\) 1.72705 0.0856065
\(408\) −7.29186 −0.361001
\(409\) 8.11904 0.401461 0.200730 0.979647i \(-0.435668\pi\)
0.200730 + 0.979647i \(0.435668\pi\)
\(410\) 12.3718 0.611002
\(411\) −19.2932 −0.951664
\(412\) 3.45180 0.170058
\(413\) 1.01850 0.0501169
\(414\) 0 0
\(415\) −4.17259 −0.204824
\(416\) 24.5989 1.20606
\(417\) −15.4962 −0.758852
\(418\) −15.5590 −0.761017
\(419\) −27.7342 −1.35490 −0.677452 0.735567i \(-0.736916\pi\)
−0.677452 + 0.735567i \(0.736916\pi\)
\(420\) 0.261571 0.0127633
\(421\) −34.9538 −1.70355 −0.851773 0.523911i \(-0.824472\pi\)
−0.851773 + 0.523911i \(0.824472\pi\)
\(422\) −32.8569 −1.59945
\(423\) 23.2291 1.12944
\(424\) −22.3631 −1.08605
\(425\) 3.38296 0.164098
\(426\) −4.22739 −0.204818
\(427\) 0.358067 0.0173281
\(428\) 50.8874 2.45973
\(429\) 8.78798 0.424288
\(430\) 5.34276 0.257651
\(431\) −9.26697 −0.446374 −0.223187 0.974776i \(-0.571646\pi\)
−0.223187 + 0.974776i \(0.571646\pi\)
\(432\) −5.65187 −0.271925
\(433\) 22.6284 1.08745 0.543726 0.839263i \(-0.317013\pi\)
0.543726 + 0.839263i \(0.317013\pi\)
\(434\) −0.338626 −0.0162546
\(435\) −7.44592 −0.357005
\(436\) 7.75820 0.371550
\(437\) 0 0
\(438\) 12.2944 0.587448
\(439\) −18.4978 −0.882854 −0.441427 0.897297i \(-0.645528\pi\)
−0.441427 + 0.897297i \(0.645528\pi\)
\(440\) −5.25954 −0.250739
\(441\) 13.9845 0.665927
\(442\) −27.1540 −1.29158
\(443\) −22.3789 −1.06325 −0.531627 0.846978i \(-0.678419\pi\)
−0.531627 + 0.846978i \(0.678419\pi\)
\(444\) −2.10007 −0.0996651
\(445\) 15.9469 0.755954
\(446\) −2.25529 −0.106791
\(447\) 15.9525 0.754528
\(448\) −1.14266 −0.0539855
\(449\) 4.91420 0.231916 0.115958 0.993254i \(-0.463006\pi\)
0.115958 + 0.993254i \(0.463006\pi\)
\(450\) −4.45741 −0.210125
\(451\) −13.5453 −0.637822
\(452\) −53.1591 −2.50039
\(453\) −0.442267 −0.0207795
\(454\) 11.2378 0.527414
\(455\) 0.317493 0.0148843
\(456\) 6.16685 0.288789
\(457\) 11.5825 0.541808 0.270904 0.962606i \(-0.412677\pi\)
0.270904 + 0.962606i \(0.412677\pi\)
\(458\) −51.1498 −2.39007
\(459\) 16.9148 0.789516
\(460\) 0 0
\(461\) −15.5495 −0.724210 −0.362105 0.932137i \(-0.617942\pi\)
−0.362105 + 0.932137i \(0.617942\pi\)
\(462\) −0.479415 −0.0223044
\(463\) 10.1271 0.470646 0.235323 0.971917i \(-0.424385\pi\)
0.235323 + 0.971917i \(0.424385\pi\)
\(464\) 8.41667 0.390734
\(465\) −1.72352 −0.0799261
\(466\) 47.9683 2.22209
\(467\) 0.159849 0.00739693 0.00369847 0.999993i \(-0.498823\pi\)
0.00369847 + 0.999993i \(0.498823\pi\)
\(468\) 21.3722 0.987932
\(469\) −1.07629 −0.0496984
\(470\) 25.8855 1.19401
\(471\) −7.11870 −0.328012
\(472\) 24.9028 1.14625
\(473\) −5.84951 −0.268961
\(474\) −15.6200 −0.717450
\(475\) −2.86103 −0.131273
\(476\) 0.884884 0.0405586
\(477\) 20.7502 0.950085
\(478\) −19.5452 −0.893979
\(479\) 5.87472 0.268423 0.134211 0.990953i \(-0.457150\pi\)
0.134211 + 0.990953i \(0.457150\pi\)
\(480\) −6.83020 −0.311755
\(481\) −2.54906 −0.116227
\(482\) 19.6530 0.895169
\(483\) 0 0
\(484\) −14.9720 −0.680545
\(485\) −14.3797 −0.652947
\(486\) −35.6593 −1.61754
\(487\) −6.93404 −0.314211 −0.157106 0.987582i \(-0.550216\pi\)
−0.157106 + 0.987582i \(0.550216\pi\)
\(488\) 8.75496 0.396318
\(489\) 7.14635 0.323169
\(490\) 15.5836 0.703997
\(491\) −21.9565 −0.990883 −0.495442 0.868641i \(-0.664994\pi\)
−0.495442 + 0.868641i \(0.664994\pi\)
\(492\) 16.4710 0.742568
\(493\) −25.1893 −1.13447
\(494\) 22.9646 1.03322
\(495\) 4.88019 0.219348
\(496\) 1.94822 0.0874775
\(497\) 0.167213 0.00750055
\(498\) −9.29948 −0.416720
\(499\) −28.4517 −1.27367 −0.636836 0.770999i \(-0.719757\pi\)
−0.636836 + 0.770999i \(0.719757\pi\)
\(500\) −2.96714 −0.132694
\(501\) −1.33264 −0.0595380
\(502\) −13.1316 −0.586091
\(503\) 34.3525 1.53170 0.765850 0.643019i \(-0.222318\pi\)
0.765850 + 0.643019i \(0.222318\pi\)
\(504\) −0.380034 −0.0169281
\(505\) −17.3832 −0.773544
\(506\) 0 0
\(507\) 0.0292481 0.00129895
\(508\) 8.87701 0.393854
\(509\) −6.88147 −0.305016 −0.152508 0.988302i \(-0.548735\pi\)
−0.152508 + 0.988302i \(0.548735\pi\)
\(510\) 7.53964 0.333861
\(511\) −0.486301 −0.0215127
\(512\) 12.5936 0.556565
\(513\) −14.3052 −0.631588
\(514\) −17.1909 −0.758260
\(515\) −1.16334 −0.0512630
\(516\) 7.11296 0.313131
\(517\) −28.3406 −1.24642
\(518\) 0.139060 0.00610994
\(519\) −2.70076 −0.118550
\(520\) 7.76289 0.340425
\(521\) −5.51528 −0.241629 −0.120814 0.992675i \(-0.538551\pi\)
−0.120814 + 0.992675i \(0.538551\pi\)
\(522\) 33.1896 1.45267
\(523\) −4.75922 −0.208106 −0.104053 0.994572i \(-0.533181\pi\)
−0.104053 + 0.994572i \(0.533181\pi\)
\(524\) −39.8293 −1.73995
\(525\) −0.0881559 −0.00384744
\(526\) 49.9022 2.17584
\(527\) −5.83059 −0.253985
\(528\) 2.75822 0.120036
\(529\) 0 0
\(530\) 23.1230 1.00440
\(531\) −23.1067 −1.00274
\(532\) −0.748362 −0.0324456
\(533\) 19.9924 0.865965
\(534\) 35.5409 1.53801
\(535\) −17.1503 −0.741474
\(536\) −26.3159 −1.13667
\(537\) 19.7880 0.853915
\(538\) 20.6430 0.889981
\(539\) −17.0617 −0.734899
\(540\) −14.8357 −0.638426
\(541\) −16.9095 −0.726997 −0.363499 0.931595i \(-0.618418\pi\)
−0.363499 + 0.931595i \(0.618418\pi\)
\(542\) 48.9392 2.10212
\(543\) −3.98546 −0.171032
\(544\) −23.1063 −0.990675
\(545\) −2.61471 −0.112002
\(546\) 0.707599 0.0302824
\(547\) −38.5686 −1.64907 −0.824537 0.565808i \(-0.808564\pi\)
−0.824537 + 0.565808i \(0.808564\pi\)
\(548\) 57.2456 2.44541
\(549\) −8.12350 −0.346702
\(550\) 5.43826 0.231888
\(551\) 21.3030 0.907539
\(552\) 0 0
\(553\) 0.617845 0.0262734
\(554\) 27.8788 1.18445
\(555\) 0.707778 0.0300435
\(556\) 45.9793 1.94996
\(557\) 42.1360 1.78536 0.892680 0.450690i \(-0.148822\pi\)
0.892680 + 0.450690i \(0.148822\pi\)
\(558\) 7.68243 0.325223
\(559\) 8.63367 0.365165
\(560\) 0.0996491 0.00421094
\(561\) −8.25475 −0.348516
\(562\) −54.6551 −2.30549
\(563\) −6.01962 −0.253697 −0.126848 0.991922i \(-0.540486\pi\)
−0.126848 + 0.991922i \(0.540486\pi\)
\(564\) 34.4620 1.45111
\(565\) 17.9160 0.753730
\(566\) −39.3718 −1.65492
\(567\) 0.0881559 0.00370220
\(568\) 4.08847 0.171548
\(569\) −17.4865 −0.733074 −0.366537 0.930404i \(-0.619457\pi\)
−0.366537 + 0.930404i \(0.619457\pi\)
\(570\) −6.37640 −0.267078
\(571\) 13.1986 0.552346 0.276173 0.961108i \(-0.410934\pi\)
0.276173 + 0.961108i \(0.410934\pi\)
\(572\) −26.0751 −1.09026
\(573\) 5.97924 0.249786
\(574\) −1.09065 −0.0455229
\(575\) 0 0
\(576\) 25.9235 1.08015
\(577\) −32.4864 −1.35242 −0.676212 0.736707i \(-0.736380\pi\)
−0.676212 + 0.736707i \(0.736380\pi\)
\(578\) −12.3817 −0.515011
\(579\) −10.0864 −0.419177
\(580\) 22.0931 0.917365
\(581\) 0.367839 0.0152605
\(582\) −32.0481 −1.32844
\(583\) −25.3162 −1.04849
\(584\) −11.8903 −0.492026
\(585\) −7.20299 −0.297807
\(586\) 18.9224 0.781676
\(587\) −13.1715 −0.543644 −0.271822 0.962348i \(-0.587626\pi\)
−0.271822 + 0.962348i \(0.587626\pi\)
\(588\) 20.7469 0.855588
\(589\) 4.93103 0.203180
\(590\) −25.7490 −1.06007
\(591\) 5.11562 0.210429
\(592\) −0.800053 −0.0328820
\(593\) 31.5836 1.29698 0.648492 0.761222i \(-0.275400\pi\)
0.648492 + 0.761222i \(0.275400\pi\)
\(594\) 27.1913 1.11567
\(595\) −0.298228 −0.0122262
\(596\) −47.3333 −1.93885
\(597\) −26.5800 −1.08785
\(598\) 0 0
\(599\) −5.38162 −0.219887 −0.109943 0.993938i \(-0.535067\pi\)
−0.109943 + 0.993938i \(0.535067\pi\)
\(600\) −2.15546 −0.0879965
\(601\) 33.8505 1.38079 0.690395 0.723433i \(-0.257437\pi\)
0.690395 + 0.723433i \(0.257437\pi\)
\(602\) −0.470996 −0.0191964
\(603\) 24.4178 0.994371
\(604\) 1.31227 0.0533953
\(605\) 5.04594 0.205147
\(606\) −38.7421 −1.57379
\(607\) 21.7913 0.884480 0.442240 0.896897i \(-0.354184\pi\)
0.442240 + 0.896897i \(0.354184\pi\)
\(608\) 19.5414 0.792509
\(609\) 0.656402 0.0265988
\(610\) −9.05245 −0.366523
\(611\) 41.8298 1.69225
\(612\) −20.0754 −0.811501
\(613\) −6.78176 −0.273913 −0.136956 0.990577i \(-0.543732\pi\)
−0.136956 + 0.990577i \(0.543732\pi\)
\(614\) −32.7167 −1.32034
\(615\) −5.55113 −0.223843
\(616\) 0.463659 0.0186814
\(617\) −32.2677 −1.29905 −0.649524 0.760341i \(-0.725032\pi\)
−0.649524 + 0.760341i \(0.725032\pi\)
\(618\) −2.59275 −0.104296
\(619\) −35.0977 −1.41069 −0.705347 0.708862i \(-0.749209\pi\)
−0.705347 + 0.708862i \(0.749209\pi\)
\(620\) 5.11391 0.205379
\(621\) 0 0
\(622\) 67.2534 2.69661
\(623\) −1.40581 −0.0563226
\(624\) −4.07103 −0.162972
\(625\) 1.00000 0.0400000
\(626\) −12.4050 −0.495805
\(627\) 6.98119 0.278802
\(628\) 21.1222 0.842866
\(629\) 2.39439 0.0954705
\(630\) 0.392948 0.0156554
\(631\) −13.0467 −0.519383 −0.259691 0.965692i \(-0.583621\pi\)
−0.259691 + 0.965692i \(0.583621\pi\)
\(632\) 15.1067 0.600911
\(633\) 14.7426 0.585964
\(634\) 6.26510 0.248819
\(635\) −2.99178 −0.118725
\(636\) 30.7843 1.22068
\(637\) 25.1825 0.997765
\(638\) −40.4928 −1.60313
\(639\) −3.79358 −0.150072
\(640\) 15.2276 0.601924
\(641\) −36.1324 −1.42715 −0.713573 0.700581i \(-0.752924\pi\)
−0.713573 + 0.700581i \(0.752924\pi\)
\(642\) −38.2231 −1.50854
\(643\) 31.5510 1.24425 0.622126 0.782917i \(-0.286269\pi\)
0.622126 + 0.782917i \(0.286269\pi\)
\(644\) 0 0
\(645\) −2.39725 −0.0943915
\(646\) −21.5711 −0.848705
\(647\) −13.8629 −0.545006 −0.272503 0.962155i \(-0.587851\pi\)
−0.272503 + 0.962155i \(0.587851\pi\)
\(648\) 2.15546 0.0846747
\(649\) 28.1912 1.10660
\(650\) −8.02667 −0.314832
\(651\) 0.151938 0.00595493
\(652\) −21.2042 −0.830420
\(653\) −5.65494 −0.221295 −0.110647 0.993860i \(-0.535292\pi\)
−0.110647 + 0.993860i \(0.535292\pi\)
\(654\) −5.82742 −0.227870
\(655\) 13.4235 0.524499
\(656\) 6.27485 0.244992
\(657\) 11.0327 0.430428
\(658\) −2.28196 −0.0889600
\(659\) 29.2694 1.14017 0.570087 0.821584i \(-0.306910\pi\)
0.570087 + 0.821584i \(0.306910\pi\)
\(660\) 7.24009 0.281820
\(661\) 16.0655 0.624876 0.312438 0.949938i \(-0.398854\pi\)
0.312438 + 0.949938i \(0.398854\pi\)
\(662\) −30.8745 −1.19997
\(663\) 12.1837 0.473177
\(664\) 8.99387 0.349030
\(665\) 0.252217 0.00978055
\(666\) −3.15486 −0.122248
\(667\) 0 0
\(668\) 3.95413 0.152990
\(669\) 1.01193 0.0391234
\(670\) 27.2101 1.05122
\(671\) 9.91105 0.382612
\(672\) 0.602123 0.0232274
\(673\) 3.82334 0.147379 0.0736895 0.997281i \(-0.476523\pi\)
0.0736895 + 0.997281i \(0.476523\pi\)
\(674\) 48.0956 1.85257
\(675\) 5.00000 0.192450
\(676\) −0.0867830 −0.00333781
\(677\) 16.4258 0.631296 0.315648 0.948876i \(-0.397778\pi\)
0.315648 + 0.948876i \(0.397778\pi\)
\(678\) 39.9294 1.53348
\(679\) 1.26765 0.0486481
\(680\) −7.29186 −0.279630
\(681\) −5.04227 −0.193220
\(682\) −9.37292 −0.358908
\(683\) 7.36144 0.281678 0.140839 0.990033i \(-0.455020\pi\)
0.140839 + 0.990033i \(0.455020\pi\)
\(684\) 16.9781 0.649175
\(685\) −19.2932 −0.737156
\(686\) −2.74911 −0.104961
\(687\) 22.9504 0.875614
\(688\) 2.70978 0.103310
\(689\) 37.3658 1.42352
\(690\) 0 0
\(691\) −9.67502 −0.368055 −0.184028 0.982921i \(-0.558914\pi\)
−0.184028 + 0.982921i \(0.558914\pi\)
\(692\) 8.01352 0.304628
\(693\) −0.430218 −0.0163426
\(694\) 42.1395 1.59959
\(695\) −15.4962 −0.587804
\(696\) 16.0494 0.608352
\(697\) −18.7793 −0.711316
\(698\) 46.6446 1.76552
\(699\) −21.5229 −0.814071
\(700\) 0.261571 0.00988644
\(701\) 42.5690 1.60781 0.803905 0.594758i \(-0.202752\pi\)
0.803905 + 0.594758i \(0.202752\pi\)
\(702\) −40.1334 −1.51474
\(703\) −2.02497 −0.0763734
\(704\) −31.6279 −1.19202
\(705\) −11.6146 −0.437430
\(706\) 3.59273 0.135214
\(707\) 1.53243 0.0576331
\(708\) −34.2803 −1.28833
\(709\) 35.0710 1.31712 0.658559 0.752529i \(-0.271166\pi\)
0.658559 + 0.752529i \(0.271166\pi\)
\(710\) −4.22739 −0.158651
\(711\) −14.0171 −0.525682
\(712\) −34.3729 −1.28818
\(713\) 0 0
\(714\) −0.664664 −0.0248744
\(715\) 8.78798 0.328652
\(716\) −58.7137 −2.19423
\(717\) 8.76977 0.327513
\(718\) 77.5951 2.89582
\(719\) 22.2022 0.828003 0.414001 0.910276i \(-0.364131\pi\)
0.414001 + 0.910276i \(0.364131\pi\)
\(720\) −2.26075 −0.0842530
\(721\) 0.102556 0.00381937
\(722\) −24.1024 −0.896997
\(723\) −8.81811 −0.327949
\(724\) 11.8254 0.439488
\(725\) −7.44592 −0.276535
\(726\) 11.2459 0.417375
\(727\) 0.698686 0.0259128 0.0129564 0.999916i \(-0.495876\pi\)
0.0129564 + 0.999916i \(0.495876\pi\)
\(728\) −0.684345 −0.0253635
\(729\) 13.0000 0.481481
\(730\) 12.2944 0.455036
\(731\) −8.10980 −0.299952
\(732\) −12.0518 −0.445446
\(733\) −37.3028 −1.37781 −0.688905 0.724852i \(-0.741908\pi\)
−0.688905 + 0.724852i \(0.741908\pi\)
\(734\) −50.4231 −1.86115
\(735\) −6.99223 −0.257912
\(736\) 0 0
\(737\) −29.7909 −1.09736
\(738\) 24.7437 0.910828
\(739\) −24.5705 −0.903841 −0.451920 0.892058i \(-0.649261\pi\)
−0.451920 + 0.892058i \(0.649261\pi\)
\(740\) −2.10007 −0.0772003
\(741\) −10.3040 −0.378526
\(742\) −2.03843 −0.0748332
\(743\) 41.3598 1.51735 0.758673 0.651472i \(-0.225848\pi\)
0.758673 + 0.651472i \(0.225848\pi\)
\(744\) 3.71498 0.136198
\(745\) 15.9525 0.584455
\(746\) 24.0594 0.880876
\(747\) −8.34518 −0.305334
\(748\) 24.4930 0.895552
\(749\) 1.51190 0.0552438
\(750\) 2.22871 0.0813809
\(751\) −40.9702 −1.49502 −0.747511 0.664249i \(-0.768751\pi\)
−0.747511 + 0.664249i \(0.768751\pi\)
\(752\) 13.1288 0.478758
\(753\) 5.89202 0.214717
\(754\) 59.7660 2.17655
\(755\) −0.442267 −0.0160957
\(756\) 1.30785 0.0475662
\(757\) 9.98856 0.363040 0.181520 0.983387i \(-0.441898\pi\)
0.181520 + 0.983387i \(0.441898\pi\)
\(758\) −8.21774 −0.298482
\(759\) 0 0
\(760\) 6.16685 0.223695
\(761\) −16.8603 −0.611184 −0.305592 0.952163i \(-0.598854\pi\)
−0.305592 + 0.952163i \(0.598854\pi\)
\(762\) −6.66780 −0.241549
\(763\) 0.230502 0.00834473
\(764\) −17.7412 −0.641855
\(765\) 6.76593 0.244623
\(766\) −13.2446 −0.478548
\(767\) −41.6093 −1.50242
\(768\) 8.01431 0.289192
\(769\) −43.7692 −1.57836 −0.789180 0.614162i \(-0.789494\pi\)
−0.789180 + 0.614162i \(0.789494\pi\)
\(770\) −0.479415 −0.0172769
\(771\) 7.71341 0.277792
\(772\) 29.9277 1.07712
\(773\) 33.6293 1.20956 0.604780 0.796392i \(-0.293261\pi\)
0.604780 + 0.796392i \(0.293261\pi\)
\(774\) 10.6855 0.384083
\(775\) −1.72352 −0.0619105
\(776\) 30.9949 1.11265
\(777\) −0.0623948 −0.00223840
\(778\) 14.8036 0.530735
\(779\) 15.8820 0.569030
\(780\) −10.6861 −0.382625
\(781\) 4.62835 0.165615
\(782\) 0 0
\(783\) −37.2296 −1.33048
\(784\) 7.90383 0.282280
\(785\) −7.11870 −0.254077
\(786\) 29.9170 1.06711
\(787\) 1.25077 0.0445850 0.0222925 0.999751i \(-0.492903\pi\)
0.0222925 + 0.999751i \(0.492903\pi\)
\(788\) −15.1787 −0.540721
\(789\) −22.3906 −0.797128
\(790\) −15.6200 −0.555735
\(791\) −1.57940 −0.0561569
\(792\) −10.5191 −0.373779
\(793\) −14.6284 −0.519468
\(794\) −10.1572 −0.360466
\(795\) −10.3751 −0.367966
\(796\) 78.8664 2.79535
\(797\) −12.2211 −0.432893 −0.216447 0.976294i \(-0.569447\pi\)
−0.216447 + 0.976294i \(0.569447\pi\)
\(798\) 0.562117 0.0198987
\(799\) −39.2917 −1.39004
\(800\) −6.83020 −0.241484
\(801\) 31.8937 1.12691
\(802\) −62.2061 −2.19657
\(803\) −13.4605 −0.475010
\(804\) 36.2255 1.27758
\(805\) 0 0
\(806\) 13.8341 0.487285
\(807\) −9.26230 −0.326048
\(808\) 37.4689 1.31815
\(809\) −26.8027 −0.942333 −0.471166 0.882044i \(-0.656167\pi\)
−0.471166 + 0.882044i \(0.656167\pi\)
\(810\) −2.22871 −0.0783088
\(811\) −39.5899 −1.39019 −0.695095 0.718918i \(-0.744638\pi\)
−0.695095 + 0.718918i \(0.744638\pi\)
\(812\) −1.94763 −0.0683486
\(813\) −21.9586 −0.770121
\(814\) 3.84908 0.134910
\(815\) 7.14635 0.250326
\(816\) 3.82401 0.133867
\(817\) 6.85860 0.239952
\(818\) 18.0950 0.632676
\(819\) 0.634986 0.0221882
\(820\) 16.4710 0.575191
\(821\) −31.6627 −1.10504 −0.552518 0.833501i \(-0.686333\pi\)
−0.552518 + 0.833501i \(0.686333\pi\)
\(822\) −42.9989 −1.49976
\(823\) −46.9147 −1.63535 −0.817673 0.575683i \(-0.804736\pi\)
−0.817673 + 0.575683i \(0.804736\pi\)
\(824\) 2.50754 0.0873545
\(825\) −2.44009 −0.0849532
\(826\) 2.26993 0.0789809
\(827\) −24.2676 −0.843869 −0.421934 0.906626i \(-0.638649\pi\)
−0.421934 + 0.906626i \(0.638649\pi\)
\(828\) 0 0
\(829\) −21.8597 −0.759220 −0.379610 0.925147i \(-0.623942\pi\)
−0.379610 + 0.925147i \(0.623942\pi\)
\(830\) −9.29948 −0.322790
\(831\) −12.5089 −0.433930
\(832\) 46.6817 1.61840
\(833\) −23.6545 −0.819578
\(834\) −34.5365 −1.19590
\(835\) −1.33264 −0.0461179
\(836\) −20.7141 −0.716413
\(837\) −8.61758 −0.297867
\(838\) −61.8114 −2.13524
\(839\) −27.3006 −0.942522 −0.471261 0.881994i \(-0.656201\pi\)
−0.471261 + 0.881994i \(0.656201\pi\)
\(840\) 0.190017 0.00655621
\(841\) 26.4417 0.911784
\(842\) −77.9019 −2.68468
\(843\) 24.5232 0.844625
\(844\) −43.7432 −1.50570
\(845\) 0.0292481 0.00100616
\(846\) 51.7710 1.77992
\(847\) −0.444829 −0.0152845
\(848\) 11.7277 0.402731
\(849\) 17.6658 0.606288
\(850\) 7.53964 0.258607
\(851\) 0 0
\(852\) −5.62804 −0.192813
\(853\) −28.1686 −0.964473 −0.482237 0.876041i \(-0.660175\pi\)
−0.482237 + 0.876041i \(0.660175\pi\)
\(854\) 0.798027 0.0273079
\(855\) −5.72206 −0.195690
\(856\) 36.9669 1.26350
\(857\) −11.2388 −0.383909 −0.191954 0.981404i \(-0.561483\pi\)
−0.191954 + 0.981404i \(0.561483\pi\)
\(858\) 19.5858 0.668650
\(859\) −8.80436 −0.300401 −0.150200 0.988656i \(-0.547992\pi\)
−0.150200 + 0.988656i \(0.547992\pi\)
\(860\) 7.11296 0.242550
\(861\) 0.489365 0.0166775
\(862\) −20.6534 −0.703457
\(863\) −47.8623 −1.62925 −0.814626 0.579987i \(-0.803058\pi\)
−0.814626 + 0.579987i \(0.803058\pi\)
\(864\) −34.1510 −1.16184
\(865\) −2.70076 −0.0918285
\(866\) 50.4321 1.71375
\(867\) 5.55555 0.188677
\(868\) −0.450821 −0.0153019
\(869\) 17.1015 0.580129
\(870\) −16.5948 −0.562616
\(871\) 43.9703 1.48988
\(872\) 5.63591 0.190856
\(873\) −28.7593 −0.973356
\(874\) 0 0
\(875\) −0.0881559 −0.00298021
\(876\) 16.3678 0.553018
\(877\) −47.1535 −1.59226 −0.796130 0.605125i \(-0.793123\pi\)
−0.796130 + 0.605125i \(0.793123\pi\)
\(878\) −41.2263 −1.39132
\(879\) −8.49029 −0.286370
\(880\) 2.75822 0.0929795
\(881\) 36.9722 1.24562 0.622812 0.782371i \(-0.285990\pi\)
0.622812 + 0.782371i \(0.285990\pi\)
\(882\) 31.1673 1.04946
\(883\) −54.5603 −1.83610 −0.918050 0.396466i \(-0.870237\pi\)
−0.918050 + 0.396466i \(0.870237\pi\)
\(884\) −36.1508 −1.21588
\(885\) 11.5533 0.388361
\(886\) −49.8761 −1.67562
\(887\) −14.1790 −0.476083 −0.238041 0.971255i \(-0.576505\pi\)
−0.238041 + 0.971255i \(0.576505\pi\)
\(888\) −1.52559 −0.0511955
\(889\) 0.263743 0.00884565
\(890\) 35.5409 1.19133
\(891\) 2.44009 0.0817462
\(892\) −3.00253 −0.100532
\(893\) 33.2296 1.11199
\(894\) 35.5535 1.18909
\(895\) 19.7880 0.661439
\(896\) −1.34240 −0.0448465
\(897\) 0 0
\(898\) 10.9523 0.365484
\(899\) 12.8332 0.428010
\(900\) −5.93427 −0.197809
\(901\) −35.0985 −1.16930
\(902\) −30.1885 −1.00517
\(903\) 0.211332 0.00703267
\(904\) −38.6172 −1.28439
\(905\) −3.98546 −0.132481
\(906\) −0.985683 −0.0327471
\(907\) 49.8093 1.65389 0.826945 0.562283i \(-0.190077\pi\)
0.826945 + 0.562283i \(0.190077\pi\)
\(908\) 14.9611 0.496502
\(909\) −34.7665 −1.15313
\(910\) 0.707599 0.0234567
\(911\) −21.1307 −0.700092 −0.350046 0.936733i \(-0.613834\pi\)
−0.350046 + 0.936733i \(0.613834\pi\)
\(912\) −3.23403 −0.107090
\(913\) 10.1815 0.336959
\(914\) 25.8141 0.853854
\(915\) 4.06175 0.134277
\(916\) −68.0971 −2.24999
\(917\) −1.18336 −0.0390780
\(918\) 37.6982 1.24423
\(919\) −1.66022 −0.0547657 −0.0273829 0.999625i \(-0.508717\pi\)
−0.0273829 + 0.999625i \(0.508717\pi\)
\(920\) 0 0
\(921\) 14.6797 0.483711
\(922\) −34.6552 −1.14131
\(923\) −6.83128 −0.224854
\(924\) −0.638257 −0.0209971
\(925\) 0.707778 0.0232716
\(926\) 22.5703 0.741707
\(927\) −2.32669 −0.0764184
\(928\) 50.8571 1.66947
\(929\) 29.1773 0.957275 0.478637 0.878013i \(-0.341131\pi\)
0.478637 + 0.878013i \(0.341131\pi\)
\(930\) −3.84121 −0.125958
\(931\) 20.0050 0.655637
\(932\) 63.8614 2.09185
\(933\) −30.1760 −0.987916
\(934\) 0.356257 0.0116571
\(935\) −8.25475 −0.269959
\(936\) 15.5258 0.507476
\(937\) 18.4120 0.601495 0.300748 0.953704i \(-0.402764\pi\)
0.300748 + 0.953704i \(0.402764\pi\)
\(938\) −2.39873 −0.0783214
\(939\) 5.56602 0.181640
\(940\) 34.4620 1.12403
\(941\) 43.3084 1.41181 0.705907 0.708304i \(-0.250539\pi\)
0.705907 + 0.708304i \(0.250539\pi\)
\(942\) −15.8655 −0.516926
\(943\) 0 0
\(944\) −13.0596 −0.425053
\(945\) −0.440780 −0.0143386
\(946\) −13.0368 −0.423865
\(947\) −21.0783 −0.684951 −0.342476 0.939527i \(-0.611265\pi\)
−0.342476 + 0.939527i \(0.611265\pi\)
\(948\) −20.7953 −0.675400
\(949\) 19.8672 0.644916
\(950\) −6.37640 −0.206878
\(951\) −2.81109 −0.0911559
\(952\) 0.642821 0.0208339
\(953\) 14.7442 0.477610 0.238805 0.971067i \(-0.423244\pi\)
0.238805 + 0.971067i \(0.423244\pi\)
\(954\) 46.2461 1.49727
\(955\) 5.97924 0.193484
\(956\) −26.0211 −0.841582
\(957\) 18.1688 0.587312
\(958\) 13.0930 0.423017
\(959\) 1.70081 0.0549220
\(960\) −12.9618 −0.418339
\(961\) −28.0295 −0.904177
\(962\) −5.68110 −0.183166
\(963\) −34.3007 −1.10532
\(964\) 26.1645 0.842703
\(965\) −10.0864 −0.324693
\(966\) 0 0
\(967\) −25.3720 −0.815909 −0.407955 0.913002i \(-0.633758\pi\)
−0.407955 + 0.913002i \(0.633758\pi\)
\(968\) −10.8763 −0.349579
\(969\) 9.67876 0.310927
\(970\) −32.0481 −1.02900
\(971\) −39.1100 −1.25510 −0.627549 0.778577i \(-0.715942\pi\)
−0.627549 + 0.778577i \(0.715942\pi\)
\(972\) −47.4742 −1.52274
\(973\) 1.36608 0.0437945
\(974\) −15.4539 −0.495176
\(975\) 3.60149 0.115340
\(976\) −4.59129 −0.146964
\(977\) −23.2542 −0.743967 −0.371984 0.928239i \(-0.621322\pi\)
−0.371984 + 0.928239i \(0.621322\pi\)
\(978\) 15.9271 0.509293
\(979\) −38.9119 −1.24363
\(980\) 20.7469 0.662735
\(981\) −5.22942 −0.166962
\(982\) −48.9346 −1.56157
\(983\) 0.657692 0.0209771 0.0104886 0.999945i \(-0.496661\pi\)
0.0104886 + 0.999945i \(0.496661\pi\)
\(984\) 11.9653 0.381439
\(985\) 5.11562 0.162997
\(986\) −56.1395 −1.78785
\(987\) 1.02389 0.0325909
\(988\) 30.5733 0.972667
\(989\) 0 0
\(990\) 10.8765 0.345678
\(991\) 3.15685 0.100281 0.0501403 0.998742i \(-0.484033\pi\)
0.0501403 + 0.998742i \(0.484033\pi\)
\(992\) 11.7720 0.373760
\(993\) 13.8531 0.439614
\(994\) 0.372670 0.0118204
\(995\) −26.5800 −0.842642
\(996\) −12.3806 −0.392296
\(997\) −8.80815 −0.278957 −0.139479 0.990225i \(-0.544543\pi\)
−0.139479 + 0.990225i \(0.544543\pi\)
\(998\) −63.4105 −2.00722
\(999\) 3.53889 0.111966
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2645.2.a.n.1.5 5
23.2 even 11 115.2.g.a.96.1 yes 10
23.12 even 11 115.2.g.a.6.1 10
23.22 odd 2 2645.2.a.o.1.5 5
115.2 odd 44 575.2.p.a.349.1 20
115.12 odd 44 575.2.p.a.374.2 20
115.48 odd 44 575.2.p.a.349.2 20
115.58 odd 44 575.2.p.a.374.1 20
115.94 even 22 575.2.k.a.326.1 10
115.104 even 22 575.2.k.a.351.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.2.g.a.6.1 10 23.12 even 11
115.2.g.a.96.1 yes 10 23.2 even 11
575.2.k.a.326.1 10 115.94 even 22
575.2.k.a.351.1 10 115.104 even 22
575.2.p.a.349.1 20 115.2 odd 44
575.2.p.a.349.2 20 115.48 odd 44
575.2.p.a.374.1 20 115.58 odd 44
575.2.p.a.374.2 20 115.12 odd 44
2645.2.a.n.1.5 5 1.1 even 1 trivial
2645.2.a.o.1.5 5 23.22 odd 2