Properties

Label 2640.2.d.i.529.5
Level $2640$
Weight $2$
Character 2640.529
Analytic conductor $21.081$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(529,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.0805061336\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.5
Root \(1.45161 + 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 2640.529
Dual form 2640.2.d.i.529.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(0.311108 - 2.21432i) q^{5} +4.90321i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +(0.311108 - 2.21432i) q^{5} +4.90321i q^{7} -1.00000 q^{9} +1.00000 q^{11} +4.14764i q^{13} +(2.21432 + 0.311108i) q^{15} +5.33185i q^{17} -5.18421 q^{19} -4.90321 q^{21} -4.00000i q^{23} +(-4.80642 - 1.37778i) q^{25} -1.00000i q^{27} -1.80642 q^{29} -2.62222 q^{31} +1.00000i q^{33} +(10.8573 + 1.52543i) q^{35} -5.80642i q^{37} -4.14764 q^{39} +1.80642 q^{41} -4.90321i q^{43} +(-0.311108 + 2.21432i) q^{45} +7.05086i q^{47} -17.0415 q^{49} -5.33185 q^{51} -7.18421i q^{53} +(0.311108 - 2.21432i) q^{55} -5.18421i q^{57} +1.67307 q^{59} +0.755569 q^{61} -4.90321i q^{63} +(9.18421 + 1.29036i) q^{65} -4.85728i q^{67} +4.00000 q^{69} -0.428639 q^{71} +12.7096i q^{73} +(1.37778 - 4.80642i) q^{75} +4.90321i q^{77} -6.42864 q^{79} +1.00000 q^{81} +2.90321i q^{83} +(11.8064 + 1.65878i) q^{85} -1.80642i q^{87} -0.622216 q^{89} -20.3368 q^{91} -2.62222i q^{93} +(-1.61285 + 11.4795i) q^{95} +2.75557i q^{97} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{5} - 6 q^{9} + 6 q^{11} - 4 q^{19} - 16 q^{21} - 2 q^{25} + 16 q^{29} - 16 q^{31} + 12 q^{35} - 12 q^{39} - 16 q^{41} - 2 q^{45} - 22 q^{49} + 8 q^{51} + 2 q^{55} - 16 q^{59} + 4 q^{61} + 28 q^{65} + 24 q^{69} + 24 q^{71} + 8 q^{75} - 12 q^{79} + 6 q^{81} + 44 q^{85} - 4 q^{89} - 16 q^{91} + 44 q^{95} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.311108 2.21432i 0.139132 0.990274i
\(6\) 0 0
\(7\) 4.90321i 1.85324i 0.375999 + 0.926620i \(0.377300\pi\)
−0.375999 + 0.926620i \(0.622700\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.14764i 1.15035i 0.818031 + 0.575175i \(0.195066\pi\)
−0.818031 + 0.575175i \(0.804934\pi\)
\(14\) 0 0
\(15\) 2.21432 + 0.311108i 0.571735 + 0.0803277i
\(16\) 0 0
\(17\) 5.33185i 1.29316i 0.762845 + 0.646582i \(0.223802\pi\)
−0.762845 + 0.646582i \(0.776198\pi\)
\(18\) 0 0
\(19\) −5.18421 −1.18934 −0.594669 0.803970i \(-0.702717\pi\)
−0.594669 + 0.803970i \(0.702717\pi\)
\(20\) 0 0
\(21\) −4.90321 −1.06997
\(22\) 0 0
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) −4.80642 1.37778i −0.961285 0.275557i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −1.80642 −0.335444 −0.167722 0.985834i \(-0.553641\pi\)
−0.167722 + 0.985834i \(0.553641\pi\)
\(30\) 0 0
\(31\) −2.62222 −0.470964 −0.235482 0.971879i \(-0.575667\pi\)
−0.235482 + 0.971879i \(0.575667\pi\)
\(32\) 0 0
\(33\) 1.00000i 0.174078i
\(34\) 0 0
\(35\) 10.8573 + 1.52543i 1.83522 + 0.257844i
\(36\) 0 0
\(37\) 5.80642i 0.954570i −0.878749 0.477285i \(-0.841621\pi\)
0.878749 0.477285i \(-0.158379\pi\)
\(38\) 0 0
\(39\) −4.14764 −0.664154
\(40\) 0 0
\(41\) 1.80642 0.282116 0.141058 0.990001i \(-0.454950\pi\)
0.141058 + 0.990001i \(0.454950\pi\)
\(42\) 0 0
\(43\) 4.90321i 0.747733i −0.927483 0.373866i \(-0.878032\pi\)
0.927483 0.373866i \(-0.121968\pi\)
\(44\) 0 0
\(45\) −0.311108 + 2.21432i −0.0463772 + 0.330091i
\(46\) 0 0
\(47\) 7.05086i 1.02847i 0.857648 + 0.514236i \(0.171925\pi\)
−0.857648 + 0.514236i \(0.828075\pi\)
\(48\) 0 0
\(49\) −17.0415 −2.43450
\(50\) 0 0
\(51\) −5.33185 −0.746609
\(52\) 0 0
\(53\) 7.18421i 0.986827i −0.869795 0.493413i \(-0.835749\pi\)
0.869795 0.493413i \(-0.164251\pi\)
\(54\) 0 0
\(55\) 0.311108 2.21432i 0.0419498 0.298579i
\(56\) 0 0
\(57\) 5.18421i 0.686665i
\(58\) 0 0
\(59\) 1.67307 0.217815 0.108908 0.994052i \(-0.465265\pi\)
0.108908 + 0.994052i \(0.465265\pi\)
\(60\) 0 0
\(61\) 0.755569 0.0967407 0.0483703 0.998829i \(-0.484597\pi\)
0.0483703 + 0.998829i \(0.484597\pi\)
\(62\) 0 0
\(63\) 4.90321i 0.617747i
\(64\) 0 0
\(65\) 9.18421 + 1.29036i 1.13916 + 0.160050i
\(66\) 0 0
\(67\) 4.85728i 0.593411i −0.954969 0.296706i \(-0.904112\pi\)
0.954969 0.296706i \(-0.0958880\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −0.428639 −0.0508701 −0.0254351 0.999676i \(-0.508097\pi\)
−0.0254351 + 0.999676i \(0.508097\pi\)
\(72\) 0 0
\(73\) 12.7096i 1.48755i 0.668430 + 0.743775i \(0.266967\pi\)
−0.668430 + 0.743775i \(0.733033\pi\)
\(74\) 0 0
\(75\) 1.37778 4.80642i 0.159093 0.554998i
\(76\) 0 0
\(77\) 4.90321i 0.558773i
\(78\) 0 0
\(79\) −6.42864 −0.723278 −0.361639 0.932318i \(-0.617783\pi\)
−0.361639 + 0.932318i \(0.617783\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.90321i 0.318669i 0.987225 + 0.159334i \(0.0509348\pi\)
−0.987225 + 0.159334i \(0.949065\pi\)
\(84\) 0 0
\(85\) 11.8064 + 1.65878i 1.28059 + 0.179920i
\(86\) 0 0
\(87\) 1.80642i 0.193669i
\(88\) 0 0
\(89\) −0.622216 −0.0659547 −0.0329774 0.999456i \(-0.510499\pi\)
−0.0329774 + 0.999456i \(0.510499\pi\)
\(90\) 0 0
\(91\) −20.3368 −2.13187
\(92\) 0 0
\(93\) 2.62222i 0.271911i
\(94\) 0 0
\(95\) −1.61285 + 11.4795i −0.165475 + 1.17777i
\(96\) 0 0
\(97\) 2.75557i 0.279786i 0.990167 + 0.139893i \(0.0446758\pi\)
−0.990167 + 0.139893i \(0.955324\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) −17.8064 −1.77181 −0.885903 0.463871i \(-0.846460\pi\)
−0.885903 + 0.463871i \(0.846460\pi\)
\(102\) 0 0
\(103\) 4.94914i 0.487654i −0.969819 0.243827i \(-0.921597\pi\)
0.969819 0.243827i \(-0.0784029\pi\)
\(104\) 0 0
\(105\) −1.52543 + 10.8573i −0.148866 + 1.05956i
\(106\) 0 0
\(107\) 11.1985i 1.08260i 0.840830 + 0.541300i \(0.182068\pi\)
−0.840830 + 0.541300i \(0.817932\pi\)
\(108\) 0 0
\(109\) −15.7146 −1.50518 −0.752591 0.658488i \(-0.771196\pi\)
−0.752591 + 0.658488i \(0.771196\pi\)
\(110\) 0 0
\(111\) 5.80642 0.551121
\(112\) 0 0
\(113\) 1.76494i 0.166031i −0.996548 0.0830156i \(-0.973545\pi\)
0.996548 0.0830156i \(-0.0264551\pi\)
\(114\) 0 0
\(115\) −8.85728 1.24443i −0.825946 0.116044i
\(116\) 0 0
\(117\) 4.14764i 0.383450i
\(118\) 0 0
\(119\) −26.1432 −2.39654
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 1.80642i 0.162880i
\(124\) 0 0
\(125\) −4.54617 + 10.2143i −0.406622 + 0.913597i
\(126\) 0 0
\(127\) 18.7096i 1.66021i 0.557606 + 0.830106i \(0.311720\pi\)
−0.557606 + 0.830106i \(0.688280\pi\)
\(128\) 0 0
\(129\) 4.90321 0.431704
\(130\) 0 0
\(131\) 1.24443 0.108726 0.0543632 0.998521i \(-0.482687\pi\)
0.0543632 + 0.998521i \(0.482687\pi\)
\(132\) 0 0
\(133\) 25.4193i 2.20413i
\(134\) 0 0
\(135\) −2.21432 0.311108i −0.190578 0.0267759i
\(136\) 0 0
\(137\) 18.7971i 1.60594i −0.596019 0.802970i \(-0.703252\pi\)
0.596019 0.802970i \(-0.296748\pi\)
\(138\) 0 0
\(139\) 14.0415 1.19098 0.595492 0.803361i \(-0.296957\pi\)
0.595492 + 0.803361i \(0.296957\pi\)
\(140\) 0 0
\(141\) −7.05086 −0.593789
\(142\) 0 0
\(143\) 4.14764i 0.346843i
\(144\) 0 0
\(145\) −0.561993 + 4.00000i −0.0466709 + 0.332182i
\(146\) 0 0
\(147\) 17.0415i 1.40556i
\(148\) 0 0
\(149\) 3.05086 0.249936 0.124968 0.992161i \(-0.460117\pi\)
0.124968 + 0.992161i \(0.460117\pi\)
\(150\) 0 0
\(151\) 0.326929 0.0266051 0.0133026 0.999912i \(-0.495766\pi\)
0.0133026 + 0.999912i \(0.495766\pi\)
\(152\) 0 0
\(153\) 5.33185i 0.431055i
\(154\) 0 0
\(155\) −0.815792 + 5.80642i −0.0655260 + 0.466383i
\(156\) 0 0
\(157\) 19.9081i 1.58884i 0.607367 + 0.794421i \(0.292226\pi\)
−0.607367 + 0.794421i \(0.707774\pi\)
\(158\) 0 0
\(159\) 7.18421 0.569745
\(160\) 0 0
\(161\) 19.6128 1.54571
\(162\) 0 0
\(163\) 12.1748i 0.953607i −0.879010 0.476804i \(-0.841795\pi\)
0.879010 0.476804i \(-0.158205\pi\)
\(164\) 0 0
\(165\) 2.21432 + 0.311108i 0.172385 + 0.0242197i
\(166\) 0 0
\(167\) 13.0049i 1.00635i 0.864184 + 0.503176i \(0.167835\pi\)
−0.864184 + 0.503176i \(0.832165\pi\)
\(168\) 0 0
\(169\) −4.20294 −0.323303
\(170\) 0 0
\(171\) 5.18421 0.396446
\(172\) 0 0
\(173\) 13.8938i 1.05633i 0.849142 + 0.528165i \(0.177120\pi\)
−0.849142 + 0.528165i \(0.822880\pi\)
\(174\) 0 0
\(175\) 6.75557 23.5669i 0.510673 1.78149i
\(176\) 0 0
\(177\) 1.67307i 0.125756i
\(178\) 0 0
\(179\) 12.8573 0.960998 0.480499 0.876995i \(-0.340456\pi\)
0.480499 + 0.876995i \(0.340456\pi\)
\(180\) 0 0
\(181\) 0.917502 0.0681974 0.0340987 0.999418i \(-0.489144\pi\)
0.0340987 + 0.999418i \(0.489144\pi\)
\(182\) 0 0
\(183\) 0.755569i 0.0558532i
\(184\) 0 0
\(185\) −12.8573 1.80642i −0.945286 0.132811i
\(186\) 0 0
\(187\) 5.33185i 0.389904i
\(188\) 0 0
\(189\) 4.90321 0.356656
\(190\) 0 0
\(191\) −14.3684 −1.03966 −0.519831 0.854269i \(-0.674005\pi\)
−0.519831 + 0.854269i \(0.674005\pi\)
\(192\) 0 0
\(193\) 11.7605i 0.846539i −0.906004 0.423269i \(-0.860882\pi\)
0.906004 0.423269i \(-0.139118\pi\)
\(194\) 0 0
\(195\) −1.29036 + 9.18421i −0.0924049 + 0.657695i
\(196\) 0 0
\(197\) 3.82071i 0.272215i 0.990694 + 0.136107i \(0.0434592\pi\)
−0.990694 + 0.136107i \(0.956541\pi\)
\(198\) 0 0
\(199\) −13.7146 −0.972199 −0.486100 0.873903i \(-0.661581\pi\)
−0.486100 + 0.873903i \(0.661581\pi\)
\(200\) 0 0
\(201\) 4.85728 0.342606
\(202\) 0 0
\(203\) 8.85728i 0.621659i
\(204\) 0 0
\(205\) 0.561993 4.00000i 0.0392513 0.279372i
\(206\) 0 0
\(207\) 4.00000i 0.278019i
\(208\) 0 0
\(209\) −5.18421 −0.358599
\(210\) 0 0
\(211\) −1.95851 −0.134830 −0.0674148 0.997725i \(-0.521475\pi\)
−0.0674148 + 0.997725i \(0.521475\pi\)
\(212\) 0 0
\(213\) 0.428639i 0.0293699i
\(214\) 0 0
\(215\) −10.8573 1.52543i −0.740460 0.104033i
\(216\) 0 0
\(217\) 12.8573i 0.872809i
\(218\) 0 0
\(219\) −12.7096 −0.858838
\(220\) 0 0
\(221\) −22.1146 −1.48759
\(222\) 0 0
\(223\) 26.0098i 1.74175i 0.491506 + 0.870874i \(0.336446\pi\)
−0.491506 + 0.870874i \(0.663554\pi\)
\(224\) 0 0
\(225\) 4.80642 + 1.37778i 0.320428 + 0.0918523i
\(226\) 0 0
\(227\) 6.34122i 0.420882i −0.977607 0.210441i \(-0.932510\pi\)
0.977607 0.210441i \(-0.0674899\pi\)
\(228\) 0 0
\(229\) 23.3274 1.54152 0.770759 0.637127i \(-0.219877\pi\)
0.770759 + 0.637127i \(0.219877\pi\)
\(230\) 0 0
\(231\) −4.90321 −0.322608
\(232\) 0 0
\(233\) 1.42372i 0.0932708i −0.998912 0.0466354i \(-0.985150\pi\)
0.998912 0.0466354i \(-0.0148499\pi\)
\(234\) 0 0
\(235\) 15.6128 + 2.19358i 1.01847 + 0.143093i
\(236\) 0 0
\(237\) 6.42864i 0.417585i
\(238\) 0 0
\(239\) −18.9590 −1.22636 −0.613178 0.789945i \(-0.710109\pi\)
−0.613178 + 0.789945i \(0.710109\pi\)
\(240\) 0 0
\(241\) −1.34614 −0.0867126 −0.0433563 0.999060i \(-0.513805\pi\)
−0.0433563 + 0.999060i \(0.513805\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −5.30174 + 37.7353i −0.338716 + 2.41082i
\(246\) 0 0
\(247\) 21.5022i 1.36816i
\(248\) 0 0
\(249\) −2.90321 −0.183984
\(250\) 0 0
\(251\) −1.08250 −0.0683267 −0.0341633 0.999416i \(-0.510877\pi\)
−0.0341633 + 0.999416i \(0.510877\pi\)
\(252\) 0 0
\(253\) 4.00000i 0.251478i
\(254\) 0 0
\(255\) −1.65878 + 11.8064i −0.103877 + 0.739347i
\(256\) 0 0
\(257\) 0.133353i 0.00831834i 0.999991 + 0.00415917i \(0.00132391\pi\)
−0.999991 + 0.00415917i \(0.998676\pi\)
\(258\) 0 0
\(259\) 28.4701 1.76905
\(260\) 0 0
\(261\) 1.80642 0.111815
\(262\) 0 0
\(263\) 0.147643i 0.00910407i 0.999990 + 0.00455203i \(0.00144896\pi\)
−0.999990 + 0.00455203i \(0.998551\pi\)
\(264\) 0 0
\(265\) −15.9081 2.23506i −0.977229 0.137299i
\(266\) 0 0
\(267\) 0.622216i 0.0380790i
\(268\) 0 0
\(269\) 26.8573 1.63752 0.818759 0.574138i \(-0.194663\pi\)
0.818759 + 0.574138i \(0.194663\pi\)
\(270\) 0 0
\(271\) −3.08250 −0.187248 −0.0936242 0.995608i \(-0.529845\pi\)
−0.0936242 + 0.995608i \(0.529845\pi\)
\(272\) 0 0
\(273\) 20.3368i 1.23084i
\(274\) 0 0
\(275\) −4.80642 1.37778i −0.289838 0.0830835i
\(276\) 0 0
\(277\) 8.70964i 0.523311i 0.965161 + 0.261656i \(0.0842685\pi\)
−0.965161 + 0.261656i \(0.915732\pi\)
\(278\) 0 0
\(279\) 2.62222 0.156988
\(280\) 0 0
\(281\) −20.3783 −1.21567 −0.607833 0.794065i \(-0.707961\pi\)
−0.607833 + 0.794065i \(0.707961\pi\)
\(282\) 0 0
\(283\) 6.32248i 0.375833i 0.982185 + 0.187916i \(0.0601734\pi\)
−0.982185 + 0.187916i \(0.939827\pi\)
\(284\) 0 0
\(285\) −11.4795 1.61285i −0.679987 0.0955369i
\(286\) 0 0
\(287\) 8.85728i 0.522829i
\(288\) 0 0
\(289\) −11.4286 −0.672273
\(290\) 0 0
\(291\) −2.75557 −0.161534
\(292\) 0 0
\(293\) 16.6780i 0.974339i 0.873308 + 0.487169i \(0.161971\pi\)
−0.873308 + 0.487169i \(0.838029\pi\)
\(294\) 0 0
\(295\) 0.520505 3.70471i 0.0303050 0.215697i
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) 0 0
\(299\) 16.5906 0.959458
\(300\) 0 0
\(301\) 24.0415 1.38573
\(302\) 0 0
\(303\) 17.8064i 1.02295i
\(304\) 0 0
\(305\) 0.235063 1.67307i 0.0134597 0.0957998i
\(306\) 0 0
\(307\) 9.58565i 0.547082i −0.961860 0.273541i \(-0.911805\pi\)
0.961860 0.273541i \(-0.0881949\pi\)
\(308\) 0 0
\(309\) 4.94914 0.281547
\(310\) 0 0
\(311\) −14.5303 −0.823941 −0.411970 0.911197i \(-0.635159\pi\)
−0.411970 + 0.911197i \(0.635159\pi\)
\(312\) 0 0
\(313\) 21.0321i 1.18881i −0.804167 0.594403i \(-0.797388\pi\)
0.804167 0.594403i \(-0.202612\pi\)
\(314\) 0 0
\(315\) −10.8573 1.52543i −0.611738 0.0859481i
\(316\) 0 0
\(317\) 0.990632i 0.0556394i 0.999613 + 0.0278197i \(0.00885643\pi\)
−0.999613 + 0.0278197i \(0.991144\pi\)
\(318\) 0 0
\(319\) −1.80642 −0.101140
\(320\) 0 0
\(321\) −11.1985 −0.625039
\(322\) 0 0
\(323\) 27.6414i 1.53801i
\(324\) 0 0
\(325\) 5.71456 19.9353i 0.316987 1.10581i
\(326\) 0 0
\(327\) 15.7146i 0.869017i
\(328\) 0 0
\(329\) −34.5718 −1.90601
\(330\) 0 0
\(331\) 17.5812 0.966350 0.483175 0.875524i \(-0.339483\pi\)
0.483175 + 0.875524i \(0.339483\pi\)
\(332\) 0 0
\(333\) 5.80642i 0.318190i
\(334\) 0 0
\(335\) −10.7556 1.51114i −0.587639 0.0825623i
\(336\) 0 0
\(337\) 3.16992i 0.172676i 0.996266 + 0.0863382i \(0.0275166\pi\)
−0.996266 + 0.0863382i \(0.972483\pi\)
\(338\) 0 0
\(339\) 1.76494 0.0958582
\(340\) 0 0
\(341\) −2.62222 −0.142001
\(342\) 0 0
\(343\) 49.2355i 2.65847i
\(344\) 0 0
\(345\) 1.24443 8.85728i 0.0669979 0.476860i
\(346\) 0 0
\(347\) 4.97634i 0.267144i 0.991039 + 0.133572i \(0.0426447\pi\)
−0.991039 + 0.133572i \(0.957355\pi\)
\(348\) 0 0
\(349\) −18.2034 −0.974407 −0.487203 0.873289i \(-0.661983\pi\)
−0.487203 + 0.873289i \(0.661983\pi\)
\(350\) 0 0
\(351\) 4.14764 0.221385
\(352\) 0 0
\(353\) 22.4099i 1.19276i 0.802703 + 0.596379i \(0.203395\pi\)
−0.802703 + 0.596379i \(0.796605\pi\)
\(354\) 0 0
\(355\) −0.133353 + 0.949145i −0.00707765 + 0.0503754i
\(356\) 0 0
\(357\) 26.1432i 1.38364i
\(358\) 0 0
\(359\) 21.3274 1.12562 0.562809 0.826587i \(-0.309721\pi\)
0.562809 + 0.826587i \(0.309721\pi\)
\(360\) 0 0
\(361\) 7.87601 0.414527
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 28.1432 + 3.95407i 1.47308 + 0.206965i
\(366\) 0 0
\(367\) 35.1338i 1.83397i 0.398921 + 0.916985i \(0.369385\pi\)
−0.398921 + 0.916985i \(0.630615\pi\)
\(368\) 0 0
\(369\) −1.80642 −0.0940387
\(370\) 0 0
\(371\) 35.2257 1.82883
\(372\) 0 0
\(373\) 17.0049i 0.880481i −0.897880 0.440241i \(-0.854893\pi\)
0.897880 0.440241i \(-0.145107\pi\)
\(374\) 0 0
\(375\) −10.2143 4.54617i −0.527465 0.234763i
\(376\) 0 0
\(377\) 7.49240i 0.385878i
\(378\) 0 0
\(379\) 2.36842 0.121657 0.0608287 0.998148i \(-0.480626\pi\)
0.0608287 + 0.998148i \(0.480626\pi\)
\(380\) 0 0
\(381\) −18.7096 −0.958524
\(382\) 0 0
\(383\) 1.21585i 0.0621271i −0.999517 0.0310635i \(-0.990111\pi\)
0.999517 0.0310635i \(-0.00988942\pi\)
\(384\) 0 0
\(385\) 10.8573 + 1.52543i 0.553338 + 0.0777430i
\(386\) 0 0
\(387\) 4.90321i 0.249244i
\(388\) 0 0
\(389\) −2.26671 −0.114927 −0.0574633 0.998348i \(-0.518301\pi\)
−0.0574633 + 0.998348i \(0.518301\pi\)
\(390\) 0 0
\(391\) 21.3274 1.07857
\(392\) 0 0
\(393\) 1.24443i 0.0627733i
\(394\) 0 0
\(395\) −2.00000 + 14.2351i −0.100631 + 0.716244i
\(396\) 0 0
\(397\) 18.4889i 0.927929i 0.885854 + 0.463965i \(0.153574\pi\)
−0.885854 + 0.463965i \(0.846426\pi\)
\(398\) 0 0
\(399\) 25.4193 1.27256
\(400\) 0 0
\(401\) 17.5625 0.877028 0.438514 0.898724i \(-0.355505\pi\)
0.438514 + 0.898724i \(0.355505\pi\)
\(402\) 0 0
\(403\) 10.8760i 0.541773i
\(404\) 0 0
\(405\) 0.311108 2.21432i 0.0154591 0.110030i
\(406\) 0 0
\(407\) 5.80642i 0.287814i
\(408\) 0 0
\(409\) 21.3461 1.05550 0.527749 0.849400i \(-0.323036\pi\)
0.527749 + 0.849400i \(0.323036\pi\)
\(410\) 0 0
\(411\) 18.7971 0.927190
\(412\) 0 0
\(413\) 8.20342i 0.403664i
\(414\) 0 0
\(415\) 6.42864 + 0.903212i 0.315570 + 0.0443369i
\(416\) 0 0
\(417\) 14.0415i 0.687615i
\(418\) 0 0
\(419\) 28.8573 1.40977 0.704885 0.709321i \(-0.250999\pi\)
0.704885 + 0.709321i \(0.250999\pi\)
\(420\) 0 0
\(421\) −35.4893 −1.72964 −0.864822 0.502078i \(-0.832569\pi\)
−0.864822 + 0.502078i \(0.832569\pi\)
\(422\) 0 0
\(423\) 7.05086i 0.342824i
\(424\) 0 0
\(425\) 7.34614 25.6271i 0.356340 1.24310i
\(426\) 0 0
\(427\) 3.70471i 0.179284i
\(428\) 0 0
\(429\) −4.14764 −0.200250
\(430\) 0 0
\(431\) −9.24443 −0.445289 −0.222644 0.974900i \(-0.571469\pi\)
−0.222644 + 0.974900i \(0.571469\pi\)
\(432\) 0 0
\(433\) 6.28544i 0.302059i −0.988529 0.151030i \(-0.951741\pi\)
0.988529 0.151030i \(-0.0482589\pi\)
\(434\) 0 0
\(435\) −4.00000 0.561993i −0.191785 0.0269455i
\(436\) 0 0
\(437\) 20.7368i 0.991977i
\(438\) 0 0
\(439\) −36.5303 −1.74350 −0.871749 0.489952i \(-0.837014\pi\)
−0.871749 + 0.489952i \(0.837014\pi\)
\(440\) 0 0
\(441\) 17.0415 0.811499
\(442\) 0 0
\(443\) 38.2766i 1.81857i 0.416170 + 0.909287i \(0.363372\pi\)
−0.416170 + 0.909287i \(0.636628\pi\)
\(444\) 0 0
\(445\) −0.193576 + 1.37778i −0.00917639 + 0.0653132i
\(446\) 0 0
\(447\) 3.05086i 0.144300i
\(448\) 0 0
\(449\) 31.8479 1.50300 0.751498 0.659735i \(-0.229332\pi\)
0.751498 + 0.659735i \(0.229332\pi\)
\(450\) 0 0
\(451\) 1.80642 0.0850612
\(452\) 0 0
\(453\) 0.326929i 0.0153605i
\(454\) 0 0
\(455\) −6.32693 + 45.0321i −0.296611 + 2.11114i
\(456\) 0 0
\(457\) 1.39207i 0.0651185i −0.999470 0.0325592i \(-0.989634\pi\)
0.999470 0.0325592i \(-0.0103658\pi\)
\(458\) 0 0
\(459\) 5.33185 0.248870
\(460\) 0 0
\(461\) −7.70471 −0.358844 −0.179422 0.983772i \(-0.557423\pi\)
−0.179422 + 0.983772i \(0.557423\pi\)
\(462\) 0 0
\(463\) 4.68244i 0.217611i −0.994063 0.108806i \(-0.965297\pi\)
0.994063 0.108806i \(-0.0347026\pi\)
\(464\) 0 0
\(465\) −5.80642 0.815792i −0.269266 0.0378314i
\(466\) 0 0
\(467\) 12.8573i 0.594964i 0.954727 + 0.297482i \(0.0961468\pi\)
−0.954727 + 0.297482i \(0.903853\pi\)
\(468\) 0 0
\(469\) 23.8163 1.09973
\(470\) 0 0
\(471\) −19.9081 −0.917318
\(472\) 0 0
\(473\) 4.90321i 0.225450i
\(474\) 0 0
\(475\) 24.9175 + 7.14272i 1.14329 + 0.327731i
\(476\) 0 0
\(477\) 7.18421i 0.328942i
\(478\) 0 0
\(479\) 8.38715 0.383219 0.191609 0.981471i \(-0.438629\pi\)
0.191609 + 0.981471i \(0.438629\pi\)
\(480\) 0 0
\(481\) 24.0830 1.09809
\(482\) 0 0
\(483\) 19.6128i 0.892415i
\(484\) 0 0
\(485\) 6.10171 + 0.857279i 0.277064 + 0.0389270i
\(486\) 0 0
\(487\) 9.83500i 0.445667i 0.974857 + 0.222833i \(0.0715306\pi\)
−0.974857 + 0.222833i \(0.928469\pi\)
\(488\) 0 0
\(489\) 12.1748 0.550565
\(490\) 0 0
\(491\) 32.9403 1.48657 0.743286 0.668973i \(-0.233266\pi\)
0.743286 + 0.668973i \(0.233266\pi\)
\(492\) 0 0
\(493\) 9.63158i 0.433785i
\(494\) 0 0
\(495\) −0.311108 + 2.21432i −0.0139833 + 0.0995263i
\(496\) 0 0
\(497\) 2.10171i 0.0942746i
\(498\) 0 0
\(499\) −1.63158 −0.0730397 −0.0365199 0.999333i \(-0.511627\pi\)
−0.0365199 + 0.999333i \(0.511627\pi\)
\(500\) 0 0
\(501\) −13.0049 −0.581017
\(502\) 0 0
\(503\) 41.8622i 1.86654i −0.359171 0.933272i \(-0.616941\pi\)
0.359171 0.933272i \(-0.383059\pi\)
\(504\) 0 0
\(505\) −5.53972 + 39.4291i −0.246514 + 1.75457i
\(506\) 0 0
\(507\) 4.20294i 0.186659i
\(508\) 0 0
\(509\) 38.8573 1.72232 0.861159 0.508335i \(-0.169739\pi\)
0.861159 + 0.508335i \(0.169739\pi\)
\(510\) 0 0
\(511\) −62.3180 −2.75679
\(512\) 0 0
\(513\) 5.18421i 0.228888i
\(514\) 0 0
\(515\) −10.9590 1.53972i −0.482911 0.0678481i
\(516\) 0 0
\(517\) 7.05086i 0.310096i
\(518\) 0 0
\(519\) −13.8938 −0.609872
\(520\) 0 0
\(521\) 11.1111 0.486785 0.243393 0.969928i \(-0.421740\pi\)
0.243393 + 0.969928i \(0.421740\pi\)
\(522\) 0 0
\(523\) 27.3002i 1.19375i −0.802332 0.596877i \(-0.796408\pi\)
0.802332 0.596877i \(-0.203592\pi\)
\(524\) 0 0
\(525\) 23.5669 + 6.75557i 1.02854 + 0.294837i
\(526\) 0 0
\(527\) 13.9813i 0.609033i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) −1.67307 −0.0726051
\(532\) 0 0
\(533\) 7.49240i 0.324532i
\(534\) 0 0
\(535\) 24.7971 + 3.48394i 1.07207 + 0.150624i
\(536\) 0 0
\(537\) 12.8573i 0.554833i
\(538\) 0 0
\(539\) −17.0415 −0.734029
\(540\) 0 0
\(541\) −16.1017 −0.692267 −0.346133 0.938185i \(-0.612506\pi\)
−0.346133 + 0.938185i \(0.612506\pi\)
\(542\) 0 0
\(543\) 0.917502i 0.0393738i
\(544\) 0 0
\(545\) −4.88892 + 34.7971i −0.209418 + 1.49054i
\(546\) 0 0
\(547\) 40.0370i 1.71186i 0.517091 + 0.855930i \(0.327015\pi\)
−0.517091 + 0.855930i \(0.672985\pi\)
\(548\) 0 0
\(549\) −0.755569 −0.0322469
\(550\) 0 0
\(551\) 9.36488 0.398957
\(552\) 0 0
\(553\) 31.5210i 1.34041i
\(554\) 0 0
\(555\) 1.80642 12.8573i 0.0766784 0.545761i
\(556\) 0 0
\(557\) 28.2908i 1.19872i 0.800479 + 0.599361i \(0.204578\pi\)
−0.800479 + 0.599361i \(0.795422\pi\)
\(558\) 0 0
\(559\) 20.3368 0.860154
\(560\) 0 0
\(561\) −5.33185 −0.225111
\(562\) 0 0
\(563\) 32.7926i 1.38204i 0.722834 + 0.691022i \(0.242839\pi\)
−0.722834 + 0.691022i \(0.757161\pi\)
\(564\) 0 0
\(565\) −3.90813 0.549086i −0.164416 0.0231002i
\(566\) 0 0
\(567\) 4.90321i 0.205916i
\(568\) 0 0
\(569\) 8.88586 0.372515 0.186257 0.982501i \(-0.440364\pi\)
0.186257 + 0.982501i \(0.440364\pi\)
\(570\) 0 0
\(571\) 10.6953 0.447586 0.223793 0.974637i \(-0.428156\pi\)
0.223793 + 0.974637i \(0.428156\pi\)
\(572\) 0 0
\(573\) 14.3684i 0.600249i
\(574\) 0 0
\(575\) −5.51114 + 19.2257i −0.229830 + 0.801767i
\(576\) 0 0
\(577\) 27.1338i 1.12960i 0.825229 + 0.564798i \(0.191046\pi\)
−0.825229 + 0.564798i \(0.808954\pi\)
\(578\) 0 0
\(579\) 11.7605 0.488749
\(580\) 0 0
\(581\) −14.2351 −0.590570
\(582\) 0 0
\(583\) 7.18421i 0.297540i
\(584\) 0 0
\(585\) −9.18421 1.29036i −0.379720 0.0533500i
\(586\) 0 0
\(587\) 10.9590i 0.452326i −0.974089 0.226163i \(-0.927382\pi\)
0.974089 0.226163i \(-0.0726182\pi\)
\(588\) 0 0
\(589\) 13.5941 0.560136
\(590\) 0 0
\(591\) −3.82071 −0.157163
\(592\) 0 0
\(593\) 23.7003i 0.973253i −0.873610 0.486627i \(-0.838227\pi\)
0.873610 0.486627i \(-0.161773\pi\)
\(594\) 0 0
\(595\) −8.13335 + 57.8894i −0.333435 + 2.37323i
\(596\) 0 0
\(597\) 13.7146i 0.561299i
\(598\) 0 0
\(599\) 41.7146 1.70441 0.852205 0.523208i \(-0.175265\pi\)
0.852205 + 0.523208i \(0.175265\pi\)
\(600\) 0 0
\(601\) 14.5906 0.595162 0.297581 0.954697i \(-0.403820\pi\)
0.297581 + 0.954697i \(0.403820\pi\)
\(602\) 0 0
\(603\) 4.85728i 0.197804i
\(604\) 0 0
\(605\) 0.311108 2.21432i 0.0126483 0.0900249i
\(606\) 0 0
\(607\) 19.9826i 0.811071i −0.914079 0.405535i \(-0.867085\pi\)
0.914079 0.405535i \(-0.132915\pi\)
\(608\) 0 0
\(609\) 8.85728 0.358915
\(610\) 0 0
\(611\) −29.2444 −1.18310
\(612\) 0 0
\(613\) 19.0781i 0.770555i 0.922801 + 0.385278i \(0.125894\pi\)
−0.922801 + 0.385278i \(0.874106\pi\)
\(614\) 0 0
\(615\) 4.00000 + 0.561993i 0.161296 + 0.0226617i
\(616\) 0 0
\(617\) 39.3590i 1.58454i 0.610174 + 0.792268i \(0.291100\pi\)
−0.610174 + 0.792268i \(0.708900\pi\)
\(618\) 0 0
\(619\) −23.0923 −0.928160 −0.464080 0.885793i \(-0.653615\pi\)
−0.464080 + 0.885793i \(0.653615\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) 3.05086i 0.122230i
\(624\) 0 0
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) 0 0
\(627\) 5.18421i 0.207037i
\(628\) 0 0
\(629\) 30.9590 1.23442
\(630\) 0 0
\(631\) 25.5111 1.01558 0.507791 0.861480i \(-0.330462\pi\)
0.507791 + 0.861480i \(0.330462\pi\)
\(632\) 0 0
\(633\) 1.95851i 0.0778439i
\(634\) 0 0
\(635\) 41.4291 + 5.82071i 1.64406 + 0.230988i
\(636\) 0 0
\(637\) 70.6820i 2.80052i
\(638\) 0 0
\(639\) 0.428639 0.0169567
\(640\) 0 0
\(641\) −6.25380 −0.247010 −0.123505 0.992344i \(-0.539414\pi\)
−0.123505 + 0.992344i \(0.539414\pi\)
\(642\) 0 0
\(643\) 6.84743i 0.270036i −0.990843 0.135018i \(-0.956891\pi\)
0.990843 0.135018i \(-0.0431093\pi\)
\(644\) 0 0
\(645\) 1.52543 10.8573i 0.0600637 0.427505i
\(646\) 0 0
\(647\) 20.2953i 0.797890i 0.916975 + 0.398945i \(0.130624\pi\)
−0.916975 + 0.398945i \(0.869376\pi\)
\(648\) 0 0
\(649\) 1.67307 0.0656738
\(650\) 0 0
\(651\) 12.8573 0.503916
\(652\) 0 0
\(653\) 10.6222i 0.415679i −0.978163 0.207840i \(-0.933357\pi\)
0.978163 0.207840i \(-0.0666432\pi\)
\(654\) 0 0
\(655\) 0.387152 2.75557i 0.0151273 0.107669i
\(656\) 0 0
\(657\) 12.7096i 0.495850i
\(658\) 0 0
\(659\) 10.1017 0.393507 0.196753 0.980453i \(-0.436960\pi\)
0.196753 + 0.980453i \(0.436960\pi\)
\(660\) 0 0
\(661\) 21.6128 0.840642 0.420321 0.907375i \(-0.361917\pi\)
0.420321 + 0.907375i \(0.361917\pi\)
\(662\) 0 0
\(663\) 22.1146i 0.858861i
\(664\) 0 0
\(665\) −56.2864 7.90813i −2.18269 0.306664i
\(666\) 0 0
\(667\) 7.22570i 0.279780i
\(668\) 0 0
\(669\) −26.0098 −1.00560
\(670\) 0 0
\(671\) 0.755569 0.0291684
\(672\) 0 0
\(673\) 10.2208i 0.393982i 0.980405 + 0.196991i \(0.0631170\pi\)
−0.980405 + 0.196991i \(0.936883\pi\)
\(674\) 0 0
\(675\) −1.37778 + 4.80642i −0.0530309 + 0.184999i
\(676\) 0 0
\(677\) 13.9224i 0.535082i −0.963546 0.267541i \(-0.913789\pi\)
0.963546 0.267541i \(-0.0862111\pi\)
\(678\) 0 0
\(679\) −13.5111 −0.518510
\(680\) 0 0
\(681\) 6.34122 0.242996
\(682\) 0 0
\(683\) 10.3970i 0.397830i 0.980017 + 0.198915i \(0.0637418\pi\)
−0.980017 + 0.198915i \(0.936258\pi\)
\(684\) 0 0
\(685\) −41.6227 5.84791i −1.59032 0.223437i
\(686\) 0 0
\(687\) 23.3274i 0.889996i
\(688\) 0 0
\(689\) 29.7975 1.13520
\(690\) 0 0
\(691\) 0.977725 0.0371944 0.0185972 0.999827i \(-0.494080\pi\)
0.0185972 + 0.999827i \(0.494080\pi\)
\(692\) 0 0
\(693\) 4.90321i 0.186258i
\(694\) 0 0
\(695\) 4.36842 31.0923i 0.165703 1.17940i
\(696\) 0 0
\(697\) 9.63158i 0.364822i
\(698\) 0 0
\(699\) 1.42372 0.0538499
\(700\) 0 0
\(701\) 48.9688 1.84953 0.924764 0.380542i \(-0.124263\pi\)
0.924764 + 0.380542i \(0.124263\pi\)
\(702\) 0 0
\(703\) 30.1017i 1.13531i
\(704\) 0 0
\(705\) −2.19358 + 15.6128i −0.0826149 + 0.588014i
\(706\) 0 0
\(707\) 87.3087i 3.28358i
\(708\) 0 0
\(709\) 37.2672 1.39960 0.699799 0.714340i \(-0.253273\pi\)
0.699799 + 0.714340i \(0.253273\pi\)
\(710\) 0 0
\(711\) 6.42864 0.241093
\(712\) 0 0
\(713\) 10.4889i 0.392811i
\(714\) 0 0
\(715\) 9.18421 + 1.29036i 0.343470 + 0.0482569i
\(716\) 0 0
\(717\) 18.9590i 0.708036i
\(718\) 0 0
\(719\) 5.83500 0.217609 0.108804 0.994063i \(-0.465298\pi\)
0.108804 + 0.994063i \(0.465298\pi\)
\(720\) 0 0
\(721\) 24.2667 0.903739
\(722\) 0 0
\(723\) 1.34614i 0.0500635i
\(724\) 0 0
\(725\) 8.68244 + 2.48886i 0.322458 + 0.0924340i
\(726\) 0 0
\(727\) 46.8385i 1.73715i −0.495562 0.868573i \(-0.665038\pi\)
0.495562 0.868573i \(-0.334962\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 26.1432 0.966941
\(732\) 0 0
\(733\) 45.2083i 1.66981i −0.550395 0.834904i \(-0.685523\pi\)
0.550395 0.834904i \(-0.314477\pi\)
\(734\) 0 0
\(735\) −37.7353 5.30174i −1.39189 0.195558i
\(736\) 0 0
\(737\) 4.85728i 0.178920i
\(738\) 0 0
\(739\) 5.65433 0.207998 0.103999 0.994577i \(-0.466836\pi\)
0.103999 + 0.994577i \(0.466836\pi\)
\(740\) 0 0
\(741\) 21.5022 0.789905
\(742\) 0 0
\(743\) 4.50622i 0.165317i −0.996578 0.0826585i \(-0.973659\pi\)
0.996578 0.0826585i \(-0.0263411\pi\)
\(744\) 0 0
\(745\) 0.949145 6.75557i 0.0347740 0.247505i
\(746\) 0 0
\(747\) 2.90321i 0.106223i
\(748\) 0 0
\(749\) −54.9086 −2.00632
\(750\) 0 0
\(751\) −47.5121 −1.73374 −0.866870 0.498534i \(-0.833872\pi\)
−0.866870 + 0.498534i \(0.833872\pi\)
\(752\) 0 0
\(753\) 1.08250i 0.0394484i
\(754\) 0 0
\(755\) 0.101710 0.723926i 0.00370161 0.0263464i
\(756\) 0 0
\(757\) 46.6637i 1.69602i 0.529979 + 0.848011i \(0.322200\pi\)
−0.529979 + 0.848011i \(0.677800\pi\)
\(758\) 0 0
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) 14.9304 0.541227 0.270613 0.962688i \(-0.412773\pi\)
0.270613 + 0.962688i \(0.412773\pi\)
\(762\) 0 0
\(763\) 77.0518i 2.78946i
\(764\) 0 0
\(765\) −11.8064 1.65878i −0.426862 0.0599733i
\(766\) 0 0
\(767\) 6.93930i 0.250564i
\(768\) 0 0
\(769\) −38.8573 −1.40123 −0.700615 0.713540i \(-0.747091\pi\)
−0.700615 + 0.713540i \(0.747091\pi\)
\(770\) 0 0
\(771\) −0.133353 −0.00480259
\(772\) 0 0
\(773\) 36.3368i 1.30694i −0.756951 0.653471i \(-0.773312\pi\)
0.756951 0.653471i \(-0.226688\pi\)
\(774\) 0 0
\(775\) 12.6035 + 3.61285i 0.452730 + 0.129777i
\(776\) 0 0
\(777\) 28.4701i 1.02136i
\(778\) 0 0
\(779\) −9.36488 −0.335532
\(780\) 0 0
\(781\) −0.428639 −0.0153379
\(782\) 0 0
\(783\) 1.80642i 0.0645563i
\(784\) 0 0
\(785\) 44.0830 + 6.19358i 1.57339 + 0.221058i
\(786\) 0 0
\(787\) 33.5482i 1.19586i −0.801547 0.597932i \(-0.795989\pi\)
0.801547 0.597932i \(-0.204011\pi\)
\(788\) 0 0
\(789\) −0.147643 −0.00525624
\(790\) 0 0
\(791\) 8.65386 0.307696
\(792\) 0 0
\(793\) 3.13383i 0.111286i
\(794\) 0 0
\(795\) 2.23506 15.9081i 0.0792695 0.564203i
\(796\) 0 0