Properties

Label 264.2.q.b.25.1
Level $264$
Weight $2$
Character 264.25
Analytic conductor $2.108$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [264,2,Mod(25,264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(264, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("264.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.q (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.10805061336\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 25.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 264.25
Dual form 264.2.q.b.169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{3} +(-0.309017 - 0.224514i) q^{5} +(-1.30902 + 4.02874i) q^{7} +(-0.809017 + 0.587785i) q^{9} +(3.04508 + 1.31433i) q^{11} +(-1.80902 + 1.31433i) q^{13} +(0.118034 - 0.363271i) q^{15} +(1.50000 + 1.08981i) q^{17} +(0.118034 + 0.363271i) q^{19} -4.23607 q^{21} +6.23607 q^{23} +(-1.50000 - 4.61653i) q^{25} +(-0.809017 - 0.587785i) q^{27} +(0.145898 - 0.449028i) q^{29} +(-6.97214 + 5.06555i) q^{31} +(-0.309017 + 3.30220i) q^{33} +(1.30902 - 0.951057i) q^{35} +(1.16312 - 3.57971i) q^{37} +(-1.80902 - 1.31433i) q^{39} +(-1.54508 - 4.75528i) q^{41} +11.4721 q^{43} +0.381966 q^{45} +(0.0450850 + 0.138757i) q^{47} +(-8.85410 - 6.43288i) q^{49} +(-0.572949 + 1.76336i) q^{51} +(7.73607 - 5.62058i) q^{53} +(-0.645898 - 1.08981i) q^{55} +(-0.309017 + 0.224514i) q^{57} +(4.50000 - 13.8496i) q^{59} +(5.54508 + 4.02874i) q^{61} +(-1.30902 - 4.02874i) q^{63} +0.854102 q^{65} -4.56231 q^{67} +(1.92705 + 5.93085i) q^{69} +(-10.1631 - 7.38394i) q^{71} +(1.14590 - 3.52671i) q^{73} +(3.92705 - 2.85317i) q^{75} +(-9.28115 + 10.5474i) q^{77} +(-11.5172 + 8.36775i) q^{79} +(0.309017 - 0.951057i) q^{81} +(1.57295 + 1.14281i) q^{83} +(-0.218847 - 0.673542i) q^{85} +0.472136 q^{87} +3.47214 q^{89} +(-2.92705 - 9.00854i) q^{91} +(-6.97214 - 5.06555i) q^{93} +(0.0450850 - 0.138757i) q^{95} +(5.54508 - 4.02874i) q^{97} +(-3.23607 + 0.726543i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + q^{5} - 3 q^{7} - q^{9} + q^{11} - 5 q^{13} - 4 q^{15} + 6 q^{17} - 4 q^{19} - 8 q^{21} + 16 q^{23} - 6 q^{25} - q^{27} + 14 q^{29} - 10 q^{31} + q^{33} + 3 q^{35} - 11 q^{37} - 5 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/264\mathbb{Z}\right)^\times\).

\(n\) \(89\) \(133\) \(145\) \(199\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 0 0
\(5\) −0.309017 0.224514i −0.138197 0.100406i 0.516539 0.856264i \(-0.327220\pi\)
−0.654736 + 0.755858i \(0.727220\pi\)
\(6\) 0 0
\(7\) −1.30902 + 4.02874i −0.494762 + 1.52272i 0.322566 + 0.946547i \(0.395455\pi\)
−0.817327 + 0.576173i \(0.804545\pi\)
\(8\) 0 0
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) 3.04508 + 1.31433i 0.918128 + 0.396285i
\(12\) 0 0
\(13\) −1.80902 + 1.31433i −0.501731 + 0.364529i −0.809678 0.586875i \(-0.800358\pi\)
0.307947 + 0.951404i \(0.400358\pi\)
\(14\) 0 0
\(15\) 0.118034 0.363271i 0.0304762 0.0937962i
\(16\) 0 0
\(17\) 1.50000 + 1.08981i 0.363803 + 0.264319i 0.754637 0.656143i \(-0.227813\pi\)
−0.390833 + 0.920461i \(0.627813\pi\)
\(18\) 0 0
\(19\) 0.118034 + 0.363271i 0.0270789 + 0.0833401i 0.963683 0.267050i \(-0.0860489\pi\)
−0.936604 + 0.350390i \(0.886049\pi\)
\(20\) 0 0
\(21\) −4.23607 −0.924386
\(22\) 0 0
\(23\) 6.23607 1.30031 0.650155 0.759802i \(-0.274704\pi\)
0.650155 + 0.759802i \(0.274704\pi\)
\(24\) 0 0
\(25\) −1.50000 4.61653i −0.300000 0.923305i
\(26\) 0 0
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) 0 0
\(29\) 0.145898 0.449028i 0.0270926 0.0833824i −0.936596 0.350411i \(-0.886042\pi\)
0.963689 + 0.267029i \(0.0860419\pi\)
\(30\) 0 0
\(31\) −6.97214 + 5.06555i −1.25223 + 0.909800i −0.998349 0.0574346i \(-0.981708\pi\)
−0.253883 + 0.967235i \(0.581708\pi\)
\(32\) 0 0
\(33\) −0.309017 + 3.30220i −0.0537930 + 0.574839i
\(34\) 0 0
\(35\) 1.30902 0.951057i 0.221264 0.160758i
\(36\) 0 0
\(37\) 1.16312 3.57971i 0.191216 0.588501i −0.808784 0.588105i \(-0.799874\pi\)
1.00000 0.000395703i \(-0.000125956\pi\)
\(38\) 0 0
\(39\) −1.80902 1.31433i −0.289675 0.210461i
\(40\) 0 0
\(41\) −1.54508 4.75528i −0.241302 0.742650i −0.996223 0.0868346i \(-0.972325\pi\)
0.754921 0.655816i \(-0.227675\pi\)
\(42\) 0 0
\(43\) 11.4721 1.74948 0.874742 0.484589i \(-0.161031\pi\)
0.874742 + 0.484589i \(0.161031\pi\)
\(44\) 0 0
\(45\) 0.381966 0.0569401
\(46\) 0 0
\(47\) 0.0450850 + 0.138757i 0.00657632 + 0.0202398i 0.954291 0.298880i \(-0.0966129\pi\)
−0.947715 + 0.319119i \(0.896613\pi\)
\(48\) 0 0
\(49\) −8.85410 6.43288i −1.26487 0.918983i
\(50\) 0 0
\(51\) −0.572949 + 1.76336i −0.0802289 + 0.246919i
\(52\) 0 0
\(53\) 7.73607 5.62058i 1.06263 0.772046i 0.0880574 0.996115i \(-0.471934\pi\)
0.974573 + 0.224069i \(0.0719341\pi\)
\(54\) 0 0
\(55\) −0.645898 1.08981i −0.0870929 0.146950i
\(56\) 0 0
\(57\) −0.309017 + 0.224514i −0.0409303 + 0.0297376i
\(58\) 0 0
\(59\) 4.50000 13.8496i 0.585850 1.80306i −0.00997934 0.999950i \(-0.503177\pi\)
0.595829 0.803111i \(-0.296823\pi\)
\(60\) 0 0
\(61\) 5.54508 + 4.02874i 0.709975 + 0.515827i 0.883166 0.469061i \(-0.155408\pi\)
−0.173190 + 0.984888i \(0.555408\pi\)
\(62\) 0 0
\(63\) −1.30902 4.02874i −0.164921 0.507574i
\(64\) 0 0
\(65\) 0.854102 0.105938
\(66\) 0 0
\(67\) −4.56231 −0.557374 −0.278687 0.960382i \(-0.589899\pi\)
−0.278687 + 0.960382i \(0.589899\pi\)
\(68\) 0 0
\(69\) 1.92705 + 5.93085i 0.231990 + 0.713991i
\(70\) 0 0
\(71\) −10.1631 7.38394i −1.20614 0.876312i −0.211266 0.977429i \(-0.567759\pi\)
−0.994875 + 0.101116i \(0.967759\pi\)
\(72\) 0 0
\(73\) 1.14590 3.52671i 0.134117 0.412770i −0.861334 0.508038i \(-0.830371\pi\)
0.995452 + 0.0952680i \(0.0303708\pi\)
\(74\) 0 0
\(75\) 3.92705 2.85317i 0.453457 0.329456i
\(76\) 0 0
\(77\) −9.28115 + 10.5474i −1.05769 + 1.20199i
\(78\) 0 0
\(79\) −11.5172 + 8.36775i −1.29579 + 0.941446i −0.999905 0.0137785i \(-0.995614\pi\)
−0.295884 + 0.955224i \(0.595614\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0 0
\(83\) 1.57295 + 1.14281i 0.172654 + 0.125440i 0.670756 0.741678i \(-0.265970\pi\)
−0.498103 + 0.867118i \(0.665970\pi\)
\(84\) 0 0
\(85\) −0.218847 0.673542i −0.0237373 0.0730559i
\(86\) 0 0
\(87\) 0.472136 0.0506183
\(88\) 0 0
\(89\) 3.47214 0.368046 0.184023 0.982922i \(-0.441088\pi\)
0.184023 + 0.982922i \(0.441088\pi\)
\(90\) 0 0
\(91\) −2.92705 9.00854i −0.306838 0.944351i
\(92\) 0 0
\(93\) −6.97214 5.06555i −0.722977 0.525273i
\(94\) 0 0
\(95\) 0.0450850 0.138757i 0.00462562 0.0142362i
\(96\) 0 0
\(97\) 5.54508 4.02874i 0.563018 0.409057i −0.269544 0.962988i \(-0.586873\pi\)
0.832562 + 0.553931i \(0.186873\pi\)
\(98\) 0 0
\(99\) −3.23607 + 0.726543i −0.325237 + 0.0730203i
\(100\) 0 0
\(101\) −0.427051 + 0.310271i −0.0424932 + 0.0308731i −0.608829 0.793301i \(-0.708360\pi\)
0.566336 + 0.824174i \(0.308360\pi\)
\(102\) 0 0
\(103\) −1.09017 + 3.35520i −0.107418 + 0.330597i −0.990290 0.139015i \(-0.955606\pi\)
0.882873 + 0.469613i \(0.155606\pi\)
\(104\) 0 0
\(105\) 1.30902 + 0.951057i 0.127747 + 0.0928136i
\(106\) 0 0
\(107\) 3.69098 + 11.3597i 0.356821 + 1.09818i 0.954946 + 0.296779i \(0.0959125\pi\)
−0.598125 + 0.801403i \(0.704088\pi\)
\(108\) 0 0
\(109\) 17.8885 1.71341 0.856706 0.515805i \(-0.172507\pi\)
0.856706 + 0.515805i \(0.172507\pi\)
\(110\) 0 0
\(111\) 3.76393 0.357257
\(112\) 0 0
\(113\) 5.63525 + 17.3435i 0.530120 + 1.63154i 0.753963 + 0.656917i \(0.228140\pi\)
−0.223843 + 0.974625i \(0.571860\pi\)
\(114\) 0 0
\(115\) −1.92705 1.40008i −0.179698 0.130559i
\(116\) 0 0
\(117\) 0.690983 2.12663i 0.0638814 0.196607i
\(118\) 0 0
\(119\) −6.35410 + 4.61653i −0.582480 + 0.423196i
\(120\) 0 0
\(121\) 7.54508 + 8.00448i 0.685917 + 0.727680i
\(122\) 0 0
\(123\) 4.04508 2.93893i 0.364733 0.264994i
\(124\) 0 0
\(125\) −1.16312 + 3.57971i −0.104033 + 0.320179i
\(126\) 0 0
\(127\) −0.618034 0.449028i −0.0548416 0.0398448i 0.560027 0.828475i \(-0.310791\pi\)
−0.614868 + 0.788630i \(0.710791\pi\)
\(128\) 0 0
\(129\) 3.54508 + 10.9106i 0.312127 + 0.960629i
\(130\) 0 0
\(131\) 2.32624 0.203244 0.101622 0.994823i \(-0.467597\pi\)
0.101622 + 0.994823i \(0.467597\pi\)
\(132\) 0 0
\(133\) −1.61803 −0.140301
\(134\) 0 0
\(135\) 0.118034 + 0.363271i 0.0101587 + 0.0312654i
\(136\) 0 0
\(137\) −4.42705 3.21644i −0.378228 0.274799i 0.382386 0.924003i \(-0.375102\pi\)
−0.760615 + 0.649203i \(0.775102\pi\)
\(138\) 0 0
\(139\) −5.75329 + 17.7068i −0.487988 + 1.50187i 0.339619 + 0.940563i \(0.389702\pi\)
−0.827607 + 0.561308i \(0.810298\pi\)
\(140\) 0 0
\(141\) −0.118034 + 0.0857567i −0.00994026 + 0.00722202i
\(142\) 0 0
\(143\) −7.23607 + 1.62460i −0.605110 + 0.135856i
\(144\) 0 0
\(145\) −0.145898 + 0.106001i −0.0121162 + 0.00880291i
\(146\) 0 0
\(147\) 3.38197 10.4086i 0.278940 0.858489i
\(148\) 0 0
\(149\) −6.04508 4.39201i −0.495233 0.359808i 0.311960 0.950095i \(-0.399014\pi\)
−0.807193 + 0.590288i \(0.799014\pi\)
\(150\) 0 0
\(151\) −4.14590 12.7598i −0.337388 1.03837i −0.965534 0.260279i \(-0.916186\pi\)
0.628145 0.778096i \(-0.283814\pi\)
\(152\) 0 0
\(153\) −1.85410 −0.149895
\(154\) 0 0
\(155\) 3.29180 0.264403
\(156\) 0 0
\(157\) 5.00000 + 15.3884i 0.399043 + 1.22813i 0.925768 + 0.378093i \(0.123420\pi\)
−0.526724 + 0.850036i \(0.676580\pi\)
\(158\) 0 0
\(159\) 7.73607 + 5.62058i 0.613510 + 0.445741i
\(160\) 0 0
\(161\) −8.16312 + 25.1235i −0.643344 + 1.98001i
\(162\) 0 0
\(163\) 12.4443 9.04129i 0.974711 0.708169i 0.0181903 0.999835i \(-0.494210\pi\)
0.956520 + 0.291666i \(0.0942095\pi\)
\(164\) 0 0
\(165\) 0.836881 0.951057i 0.0651511 0.0740396i
\(166\) 0 0
\(167\) −18.8713 + 13.7108i −1.46031 + 1.06098i −0.477024 + 0.878890i \(0.658285\pi\)
−0.983283 + 0.182085i \(0.941715\pi\)
\(168\) 0 0
\(169\) −2.47214 + 7.60845i −0.190164 + 0.585266i
\(170\) 0 0
\(171\) −0.309017 0.224514i −0.0236311 0.0171690i
\(172\) 0 0
\(173\) −5.26393 16.2007i −0.400209 1.23172i −0.924830 0.380381i \(-0.875793\pi\)
0.524620 0.851336i \(-0.324207\pi\)
\(174\) 0 0
\(175\) 20.5623 1.55436
\(176\) 0 0
\(177\) 14.5623 1.09457
\(178\) 0 0
\(179\) −6.92705 21.3193i −0.517752 1.59348i −0.778218 0.627994i \(-0.783876\pi\)
0.260466 0.965483i \(-0.416124\pi\)
\(180\) 0 0
\(181\) −12.0451 8.75127i −0.895304 0.650477i 0.0419514 0.999120i \(-0.486643\pi\)
−0.937256 + 0.348643i \(0.886643\pi\)
\(182\) 0 0
\(183\) −2.11803 + 6.51864i −0.156570 + 0.481872i
\(184\) 0 0
\(185\) −1.16312 + 0.845055i −0.0855142 + 0.0621297i
\(186\) 0 0
\(187\) 3.13525 + 5.29007i 0.229273 + 0.386848i
\(188\) 0 0
\(189\) 3.42705 2.48990i 0.249281 0.181113i
\(190\) 0 0
\(191\) 1.78115 5.48183i 0.128880 0.396651i −0.865708 0.500549i \(-0.833132\pi\)
0.994588 + 0.103898i \(0.0331315\pi\)
\(192\) 0 0
\(193\) 0.263932 + 0.191758i 0.0189982 + 0.0138030i 0.597244 0.802060i \(-0.296262\pi\)
−0.578246 + 0.815863i \(0.696262\pi\)
\(194\) 0 0
\(195\) 0.263932 + 0.812299i 0.0189006 + 0.0581700i
\(196\) 0 0
\(197\) −8.14590 −0.580371 −0.290186 0.956970i \(-0.593717\pi\)
−0.290186 + 0.956970i \(0.593717\pi\)
\(198\) 0 0
\(199\) 9.47214 0.671462 0.335731 0.941958i \(-0.391017\pi\)
0.335731 + 0.941958i \(0.391017\pi\)
\(200\) 0 0
\(201\) −1.40983 4.33901i −0.0994417 0.306050i
\(202\) 0 0
\(203\) 1.61803 + 1.17557i 0.113564 + 0.0825089i
\(204\) 0 0
\(205\) −0.590170 + 1.81636i −0.0412193 + 0.126860i
\(206\) 0 0
\(207\) −5.04508 + 3.66547i −0.350658 + 0.254768i
\(208\) 0 0
\(209\) −0.118034 + 1.26133i −0.00816458 + 0.0872478i
\(210\) 0 0
\(211\) −2.73607 + 1.98787i −0.188359 + 0.136851i −0.677968 0.735091i \(-0.737139\pi\)
0.489610 + 0.871942i \(0.337139\pi\)
\(212\) 0 0
\(213\) 3.88197 11.9475i 0.265988 0.818627i
\(214\) 0 0
\(215\) −3.54508 2.57565i −0.241773 0.175658i
\(216\) 0 0
\(217\) −11.2812 34.7198i −0.765815 2.35693i
\(218\) 0 0
\(219\) 3.70820 0.250577
\(220\) 0 0
\(221\) −4.14590 −0.278883
\(222\) 0 0
\(223\) −3.87132 11.9147i −0.259243 0.797868i −0.992964 0.118417i \(-0.962218\pi\)
0.733721 0.679451i \(-0.237782\pi\)
\(224\) 0 0
\(225\) 3.92705 + 2.85317i 0.261803 + 0.190211i
\(226\) 0 0
\(227\) −6.36475 + 19.5887i −0.422443 + 1.30015i 0.482979 + 0.875632i \(0.339555\pi\)
−0.905422 + 0.424514i \(0.860445\pi\)
\(228\) 0 0
\(229\) 9.61803 6.98791i 0.635578 0.461774i −0.222750 0.974875i \(-0.571504\pi\)
0.858328 + 0.513101i \(0.171504\pi\)
\(230\) 0 0
\(231\) −12.8992 5.56758i −0.848704 0.366320i
\(232\) 0 0
\(233\) 16.2533 11.8087i 1.06479 0.773614i 0.0898201 0.995958i \(-0.471371\pi\)
0.974968 + 0.222344i \(0.0713708\pi\)
\(234\) 0 0
\(235\) 0.0172209 0.0530006i 0.00112337 0.00345738i
\(236\) 0 0
\(237\) −11.5172 8.36775i −0.748124 0.543544i
\(238\) 0 0
\(239\) 4.33688 + 13.3475i 0.280530 + 0.863381i 0.987703 + 0.156341i \(0.0499699\pi\)
−0.707174 + 0.707040i \(0.750030\pi\)
\(240\) 0 0
\(241\) −30.0689 −1.93691 −0.968454 0.249194i \(-0.919834\pi\)
−0.968454 + 0.249194i \(0.919834\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 1.29180 + 3.97574i 0.0825298 + 0.254001i
\(246\) 0 0
\(247\) −0.690983 0.502029i −0.0439662 0.0319433i
\(248\) 0 0
\(249\) −0.600813 + 1.84911i −0.0380750 + 0.117183i
\(250\) 0 0
\(251\) −1.73607 + 1.26133i −0.109580 + 0.0796143i −0.641226 0.767352i \(-0.721574\pi\)
0.531646 + 0.846967i \(0.321574\pi\)
\(252\) 0 0
\(253\) 18.9894 + 8.19624i 1.19385 + 0.515293i
\(254\) 0 0
\(255\) 0.572949 0.416272i 0.0358795 0.0260680i
\(256\) 0 0
\(257\) 5.50000 16.9273i 0.343081 1.05589i −0.619523 0.784979i \(-0.712674\pi\)
0.962603 0.270915i \(-0.0873261\pi\)
\(258\) 0 0
\(259\) 12.8992 + 9.37181i 0.801516 + 0.582336i
\(260\) 0 0
\(261\) 0.145898 + 0.449028i 0.00903086 + 0.0277941i
\(262\) 0 0
\(263\) 10.8541 0.669293 0.334646 0.942344i \(-0.391383\pi\)
0.334646 + 0.942344i \(0.391383\pi\)
\(264\) 0 0
\(265\) −3.65248 −0.224370
\(266\) 0 0
\(267\) 1.07295 + 3.30220i 0.0656634 + 0.202091i
\(268\) 0 0
\(269\) 1.14590 + 0.832544i 0.0698666 + 0.0507611i 0.622170 0.782882i \(-0.286251\pi\)
−0.552304 + 0.833643i \(0.686251\pi\)
\(270\) 0 0
\(271\) 5.44427 16.7557i 0.330716 1.01784i −0.638078 0.769972i \(-0.720270\pi\)
0.968794 0.247867i \(-0.0797297\pi\)
\(272\) 0 0
\(273\) 7.66312 5.56758i 0.463793 0.336965i
\(274\) 0 0
\(275\) 1.50000 16.0292i 0.0904534 0.966597i
\(276\) 0 0
\(277\) 1.73607 1.26133i 0.104310 0.0757858i −0.534407 0.845227i \(-0.679465\pi\)
0.638718 + 0.769441i \(0.279465\pi\)
\(278\) 0 0
\(279\) 2.66312 8.19624i 0.159437 0.490696i
\(280\) 0 0
\(281\) −14.2361 10.3431i −0.849253 0.617018i 0.0756872 0.997132i \(-0.475885\pi\)
−0.924940 + 0.380113i \(0.875885\pi\)
\(282\) 0 0
\(283\) −4.85410 14.9394i −0.288546 0.888055i −0.985313 0.170757i \(-0.945379\pi\)
0.696767 0.717298i \(-0.254621\pi\)
\(284\) 0 0
\(285\) 0.145898 0.00864225
\(286\) 0 0
\(287\) 21.1803 1.25024
\(288\) 0 0
\(289\) −4.19098 12.8985i −0.246528 0.758736i
\(290\) 0 0
\(291\) 5.54508 + 4.02874i 0.325059 + 0.236169i
\(292\) 0 0
\(293\) 8.45492 26.0216i 0.493941 1.52020i −0.324659 0.945831i \(-0.605249\pi\)
0.818600 0.574364i \(-0.194751\pi\)
\(294\) 0 0
\(295\) −4.50000 + 3.26944i −0.262000 + 0.190354i
\(296\) 0 0
\(297\) −1.69098 2.85317i −0.0981208 0.165558i
\(298\) 0 0
\(299\) −11.2812 + 8.19624i −0.652406 + 0.474001i
\(300\) 0 0
\(301\) −15.0172 + 46.2183i −0.865578 + 2.66398i
\(302\) 0 0
\(303\) −0.427051 0.310271i −0.0245334 0.0178246i
\(304\) 0 0
\(305\) −0.809017 2.48990i −0.0463242 0.142571i
\(306\) 0 0
\(307\) 10.7984 0.616296 0.308148 0.951338i \(-0.400291\pi\)
0.308148 + 0.951338i \(0.400291\pi\)
\(308\) 0 0
\(309\) −3.52786 −0.200693
\(310\) 0 0
\(311\) 4.39919 + 13.5393i 0.249455 + 0.767744i 0.994872 + 0.101145i \(0.0322505\pi\)
−0.745417 + 0.666599i \(0.767749\pi\)
\(312\) 0 0
\(313\) −7.19098 5.22455i −0.406458 0.295309i 0.365708 0.930730i \(-0.380827\pi\)
−0.772166 + 0.635420i \(0.780827\pi\)
\(314\) 0 0
\(315\) −0.500000 + 1.53884i −0.0281718 + 0.0867039i
\(316\) 0 0
\(317\) 1.57295 1.14281i 0.0883456 0.0641868i −0.542736 0.839904i \(-0.682611\pi\)
0.631081 + 0.775717i \(0.282611\pi\)
\(318\) 0 0
\(319\) 1.03444 1.17557i 0.0579176 0.0658193i
\(320\) 0 0
\(321\) −9.66312 + 7.02067i −0.539343 + 0.391855i
\(322\) 0 0
\(323\) −0.218847 + 0.673542i −0.0121770 + 0.0374769i
\(324\) 0 0
\(325\) 8.78115 + 6.37988i 0.487091 + 0.353892i
\(326\) 0 0
\(327\) 5.52786 + 17.0130i 0.305692 + 0.940822i
\(328\) 0 0
\(329\) −0.618034 −0.0340733
\(330\) 0 0
\(331\) −27.0000 −1.48405 −0.742027 0.670370i \(-0.766135\pi\)
−0.742027 + 0.670370i \(0.766135\pi\)
\(332\) 0 0
\(333\) 1.16312 + 3.57971i 0.0637385 + 0.196167i
\(334\) 0 0
\(335\) 1.40983 + 1.02430i 0.0770272 + 0.0559636i
\(336\) 0 0
\(337\) −3.18034 + 9.78808i −0.173244 + 0.533191i −0.999549 0.0300326i \(-0.990439\pi\)
0.826305 + 0.563223i \(0.190439\pi\)
\(338\) 0 0
\(339\) −14.7533 + 10.7189i −0.801289 + 0.582170i
\(340\) 0 0
\(341\) −27.8885 + 6.26137i −1.51025 + 0.339072i
\(342\) 0 0
\(343\) 13.5172 9.82084i 0.729861 0.530275i
\(344\) 0 0
\(345\) 0.736068 2.26538i 0.0396286 0.121964i
\(346\) 0 0
\(347\) −12.9443 9.40456i −0.694885 0.504863i 0.183377 0.983043i \(-0.441297\pi\)
−0.878262 + 0.478179i \(0.841297\pi\)
\(348\) 0 0
\(349\) 3.78115 + 11.6372i 0.202400 + 0.622925i 0.999810 + 0.0194863i \(0.00620306\pi\)
−0.797410 + 0.603438i \(0.793797\pi\)
\(350\) 0 0
\(351\) 2.23607 0.119352
\(352\) 0 0
\(353\) 14.4721 0.770274 0.385137 0.922859i \(-0.374154\pi\)
0.385137 + 0.922859i \(0.374154\pi\)
\(354\) 0 0
\(355\) 1.48278 + 4.56352i 0.0786977 + 0.242207i
\(356\) 0 0
\(357\) −6.35410 4.61653i −0.336295 0.244332i
\(358\) 0 0
\(359\) 2.38197 7.33094i 0.125715 0.386912i −0.868315 0.496013i \(-0.834797\pi\)
0.994031 + 0.109100i \(0.0347970\pi\)
\(360\) 0 0
\(361\) 15.2533 11.0822i 0.802805 0.583272i
\(362\) 0 0
\(363\) −5.28115 + 9.64932i −0.277189 + 0.506458i
\(364\) 0 0
\(365\) −1.14590 + 0.832544i −0.0599790 + 0.0435773i
\(366\) 0 0
\(367\) −6.59017 + 20.2825i −0.344004 + 1.05874i 0.618111 + 0.786091i \(0.287898\pi\)
−0.962115 + 0.272645i \(0.912102\pi\)
\(368\) 0 0
\(369\) 4.04508 + 2.93893i 0.210579 + 0.152994i
\(370\) 0 0
\(371\) 12.5172 + 38.5240i 0.649862 + 2.00007i
\(372\) 0 0
\(373\) −1.94427 −0.100671 −0.0503353 0.998732i \(-0.516029\pi\)
−0.0503353 + 0.998732i \(0.516029\pi\)
\(374\) 0 0
\(375\) −3.76393 −0.194369
\(376\) 0 0
\(377\) 0.326238 + 1.00406i 0.0168021 + 0.0517116i
\(378\) 0 0
\(379\) −4.19098 3.04493i −0.215276 0.156407i 0.474921 0.880028i \(-0.342476\pi\)
−0.690198 + 0.723621i \(0.742476\pi\)
\(380\) 0 0
\(381\) 0.236068 0.726543i 0.0120941 0.0372219i
\(382\) 0 0
\(383\) 15.6074 11.3394i 0.797500 0.579418i −0.112679 0.993631i \(-0.535943\pi\)
0.910180 + 0.414213i \(0.135943\pi\)
\(384\) 0 0
\(385\) 5.23607 1.17557i 0.266855 0.0599126i
\(386\) 0 0
\(387\) −9.28115 + 6.74315i −0.471788 + 0.342774i
\(388\) 0 0
\(389\) 10.7533 33.0952i 0.545213 1.67799i −0.175269 0.984521i \(-0.556079\pi\)
0.720482 0.693474i \(-0.243921\pi\)
\(390\) 0 0
\(391\) 9.35410 + 6.79615i 0.473057 + 0.343696i
\(392\) 0 0
\(393\) 0.718847 + 2.21238i 0.0362610 + 0.111600i
\(394\) 0 0
\(395\) 5.43769 0.273600
\(396\) 0 0
\(397\) −21.2918 −1.06860 −0.534302 0.845293i \(-0.679426\pi\)
−0.534302 + 0.845293i \(0.679426\pi\)
\(398\) 0 0
\(399\) −0.500000 1.53884i −0.0250313 0.0770384i
\(400\) 0 0
\(401\) 27.0623 + 19.6619i 1.35143 + 0.981869i 0.998939 + 0.0460529i \(0.0146643\pi\)
0.352488 + 0.935816i \(0.385336\pi\)
\(402\) 0 0
\(403\) 5.95492 18.3273i 0.296635 0.912950i
\(404\) 0 0
\(405\) −0.309017 + 0.224514i −0.0153552 + 0.0111562i
\(406\) 0 0
\(407\) 8.24671 9.37181i 0.408774 0.464543i
\(408\) 0 0
\(409\) −27.4164 + 19.9192i −1.35565 + 0.984940i −0.356946 + 0.934125i \(0.616182\pi\)
−0.998708 + 0.0508154i \(0.983818\pi\)
\(410\) 0 0
\(411\) 1.69098 5.20431i 0.0834100 0.256710i
\(412\) 0 0
\(413\) 49.9058 + 36.2587i 2.45570 + 1.78417i
\(414\) 0 0
\(415\) −0.229490 0.706298i −0.0112652 0.0346708i
\(416\) 0 0
\(417\) −18.6180 −0.911729
\(418\) 0 0
\(419\) −20.4508 −0.999089 −0.499545 0.866288i \(-0.666499\pi\)
−0.499545 + 0.866288i \(0.666499\pi\)
\(420\) 0 0
\(421\) 7.02786 + 21.6295i 0.342517 + 1.05416i 0.962900 + 0.269860i \(0.0869774\pi\)
−0.620382 + 0.784299i \(0.713023\pi\)
\(422\) 0 0
\(423\) −0.118034 0.0857567i −0.00573901 0.00416963i
\(424\) 0 0
\(425\) 2.78115 8.55951i 0.134906 0.415197i
\(426\) 0 0
\(427\) −23.4894 + 17.0660i −1.13673 + 0.825882i
\(428\) 0 0
\(429\) −3.78115 6.37988i −0.182556 0.308024i
\(430\) 0 0
\(431\) 28.2984 20.5600i 1.36308 0.990339i 0.364843 0.931069i \(-0.381123\pi\)
0.998242 0.0592698i \(-0.0188772\pi\)
\(432\) 0 0
\(433\) −9.56231 + 29.4298i −0.459535 + 1.41430i 0.406192 + 0.913788i \(0.366856\pi\)
−0.865727 + 0.500516i \(0.833144\pi\)
\(434\) 0 0
\(435\) −0.145898 0.106001i −0.00699528 0.00508236i
\(436\) 0 0
\(437\) 0.736068 + 2.26538i 0.0352109 + 0.108368i
\(438\) 0 0
\(439\) 29.4721 1.40663 0.703314 0.710879i \(-0.251703\pi\)
0.703314 + 0.710879i \(0.251703\pi\)
\(440\) 0 0
\(441\) 10.9443 0.521156
\(442\) 0 0
\(443\) 9.32624 + 28.7032i 0.443103 + 1.36373i 0.884551 + 0.466444i \(0.154465\pi\)
−0.441448 + 0.897287i \(0.645535\pi\)
\(444\) 0 0
\(445\) −1.07295 0.779543i −0.0508627 0.0369539i
\(446\) 0 0
\(447\) 2.30902 7.10642i 0.109213 0.336122i
\(448\) 0 0
\(449\) −28.5623 + 20.7517i −1.34794 + 0.979335i −0.348827 + 0.937187i \(0.613420\pi\)
−0.999111 + 0.0421476i \(0.986580\pi\)
\(450\) 0 0
\(451\) 1.54508 16.5110i 0.0727552 0.777472i
\(452\) 0 0
\(453\) 10.8541 7.88597i 0.509970 0.370515i
\(454\) 0 0
\(455\) −1.11803 + 3.44095i −0.0524142 + 0.161314i
\(456\) 0 0
\(457\) −1.40983 1.02430i −0.0659491 0.0479148i 0.554322 0.832302i \(-0.312978\pi\)
−0.620271 + 0.784387i \(0.712978\pi\)
\(458\) 0 0
\(459\) −0.572949 1.76336i −0.0267430 0.0823064i
\(460\) 0 0
\(461\) −22.0902 −1.02884 −0.514421 0.857538i \(-0.671993\pi\)
−0.514421 + 0.857538i \(0.671993\pi\)
\(462\) 0 0
\(463\) −31.4508 −1.46164 −0.730822 0.682568i \(-0.760863\pi\)
−0.730822 + 0.682568i \(0.760863\pi\)
\(464\) 0 0
\(465\) 1.01722 + 3.13068i 0.0471725 + 0.145182i
\(466\) 0 0
\(467\) −5.19098 3.77147i −0.240210 0.174523i 0.461167 0.887313i \(-0.347431\pi\)
−0.701377 + 0.712791i \(0.747431\pi\)
\(468\) 0 0
\(469\) 5.97214 18.3803i 0.275768 0.848725i
\(470\) 0 0
\(471\) −13.0902 + 9.51057i −0.603163 + 0.438224i
\(472\) 0 0
\(473\) 34.9336 + 15.0781i 1.60625 + 0.693294i
\(474\) 0 0
\(475\) 1.50000 1.08981i 0.0688247 0.0500041i
\(476\) 0 0
\(477\) −2.95492 + 9.09429i −0.135296 + 0.416399i
\(478\) 0 0
\(479\) −26.5344 19.2784i −1.21239 0.880853i −0.216944 0.976184i \(-0.569609\pi\)
−0.995446 + 0.0953314i \(0.969609\pi\)
\(480\) 0 0
\(481\) 2.60081 + 8.00448i 0.118587 + 0.364973i
\(482\) 0 0
\(483\) −26.4164 −1.20199
\(484\) 0 0
\(485\) −2.61803 −0.118879
\(486\) 0 0
\(487\) −8.01722 24.6745i −0.363295 1.11811i −0.951042 0.309062i \(-0.899985\pi\)
0.587747 0.809045i \(-0.300015\pi\)
\(488\) 0 0
\(489\) 12.4443 + 9.04129i 0.562749 + 0.408861i
\(490\) 0 0
\(491\) 8.31559 25.5928i 0.375278 1.15499i −0.568014 0.823019i \(-0.692288\pi\)
0.943291 0.331966i \(-0.107712\pi\)
\(492\) 0 0
\(493\) 0.708204 0.514540i 0.0318959 0.0231737i
\(494\) 0 0
\(495\) 1.16312 + 0.502029i 0.0522783 + 0.0225645i
\(496\) 0 0
\(497\) 43.0517 31.2789i 1.93113 1.40305i
\(498\) 0 0
\(499\) 0.590170 1.81636i 0.0264196 0.0813113i −0.936977 0.349390i \(-0.886389\pi\)
0.963397 + 0.268079i \(0.0863888\pi\)
\(500\) 0 0
\(501\) −18.8713 13.7108i −0.843109 0.612554i
\(502\) 0 0
\(503\) 1.00000 + 3.07768i 0.0445878 + 0.137227i 0.970872 0.239598i \(-0.0770157\pi\)
−0.926284 + 0.376825i \(0.877016\pi\)
\(504\) 0 0
\(505\) 0.201626 0.00897224
\(506\) 0 0
\(507\) −8.00000 −0.355292
\(508\) 0 0
\(509\) −4.89919 15.0781i −0.217153 0.668327i −0.998994 0.0448494i \(-0.985719\pi\)
0.781841 0.623478i \(-0.214281\pi\)
\(510\) 0 0
\(511\) 12.7082 + 9.23305i 0.562178 + 0.408446i
\(512\) 0 0
\(513\) 0.118034 0.363271i 0.00521133 0.0160388i
\(514\) 0 0
\(515\) 1.09017 0.792055i 0.0480386 0.0349021i
\(516\) 0 0
\(517\) −0.0450850 + 0.481784i −0.00198283 + 0.0211888i
\(518\) 0 0
\(519\) 13.7812 10.0126i 0.604925 0.439504i
\(520\) 0 0
\(521\) −4.94427 + 15.2169i −0.216612 + 0.666665i 0.782423 + 0.622748i \(0.213984\pi\)
−0.999035 + 0.0439170i \(0.986016\pi\)
\(522\) 0 0
\(523\) 5.20820 + 3.78398i 0.227739 + 0.165462i 0.695803 0.718232i \(-0.255049\pi\)
−0.468064 + 0.883694i \(0.655049\pi\)
\(524\) 0 0
\(525\) 6.35410 + 19.5559i 0.277316 + 0.853490i
\(526\) 0 0
\(527\) −15.9787 −0.696044
\(528\) 0 0
\(529\) 15.8885 0.690806
\(530\) 0 0
\(531\) 4.50000 + 13.8496i 0.195283 + 0.601020i
\(532\) 0 0
\(533\) 9.04508 + 6.57164i 0.391786 + 0.284649i
\(534\) 0 0
\(535\) 1.40983 4.33901i 0.0609523 0.187592i
\(536\) 0 0
\(537\) 18.1353 13.1760i 0.782594 0.568588i
\(538\) 0 0
\(539\) −18.5066 31.2259i −0.797135 1.34499i
\(540\) 0 0
\(541\) 5.69098 4.13474i 0.244674 0.177766i −0.458689 0.888597i \(-0.651681\pi\)
0.703363 + 0.710831i \(0.251681\pi\)
\(542\) 0 0
\(543\) 4.60081 14.1598i 0.197440 0.607657i
\(544\) 0 0
\(545\) −5.52786 4.01623i −0.236788 0.172036i
\(546\) 0 0
\(547\) −4.98936 15.3557i −0.213329 0.656561i −0.999268 0.0382560i \(-0.987820\pi\)
0.785938 0.618305i \(-0.212180\pi\)
\(548\) 0 0
\(549\) −6.85410 −0.292526
\(550\) 0 0
\(551\) 0.180340 0.00768274
\(552\) 0 0
\(553\) −18.6353 57.3534i −0.792452 2.43892i
\(554\) 0 0
\(555\) −1.16312 0.845055i −0.0493717 0.0358706i
\(556\) 0 0
\(557\) 5.35410 16.4782i 0.226861 0.698205i −0.771237 0.636548i \(-0.780362\pi\)
0.998097 0.0616568i \(-0.0196384\pi\)
\(558\) 0 0
\(559\) −20.7533 + 15.0781i −0.877771 + 0.637738i
\(560\) 0 0
\(561\) −4.06231 + 4.61653i −0.171511 + 0.194910i
\(562\) 0 0
\(563\) −24.4615 + 17.7723i −1.03093 + 0.749014i −0.968494 0.249035i \(-0.919886\pi\)
−0.0624346 + 0.998049i \(0.519886\pi\)
\(564\) 0 0
\(565\) 2.15248 6.62464i 0.0905553 0.278701i
\(566\) 0 0
\(567\) 3.42705 + 2.48990i 0.143923 + 0.104566i
\(568\) 0 0
\(569\) −10.4164 32.0584i −0.436679 1.34396i −0.891357 0.453303i \(-0.850246\pi\)
0.454678 0.890656i \(-0.349754\pi\)
\(570\) 0 0
\(571\) −23.1459 −0.968626 −0.484313 0.874895i \(-0.660930\pi\)
−0.484313 + 0.874895i \(0.660930\pi\)
\(572\) 0 0
\(573\) 5.76393 0.240792
\(574\) 0 0
\(575\) −9.35410 28.7890i −0.390093 1.20058i
\(576\) 0 0
\(577\) 22.7984 + 16.5640i 0.949109 + 0.689568i 0.950596 0.310431i \(-0.100473\pi\)
−0.00148718 + 0.999999i \(0.500473\pi\)
\(578\) 0 0
\(579\) −0.100813 + 0.310271i −0.00418965 + 0.0128944i
\(580\) 0 0
\(581\) −6.66312 + 4.84104i −0.276433 + 0.200840i
\(582\) 0 0
\(583\) 30.9443 6.94742i 1.28158 0.287733i
\(584\) 0 0
\(585\) −0.690983 + 0.502029i −0.0285686 + 0.0207563i
\(586\) 0 0
\(587\) −3.92705 + 12.0862i −0.162087 + 0.498852i −0.998810 0.0487745i \(-0.984468\pi\)
0.836723 + 0.547626i \(0.184468\pi\)
\(588\) 0 0
\(589\) −2.66312 1.93487i −0.109732 0.0797249i
\(590\) 0 0
\(591\) −2.51722 7.74721i −0.103545 0.318678i
\(592\) 0 0
\(593\) −38.5623 −1.58356 −0.791782 0.610804i \(-0.790846\pi\)
−0.791782 + 0.610804i \(0.790846\pi\)
\(594\) 0 0
\(595\) 3.00000 0.122988
\(596\) 0 0
\(597\) 2.92705 + 9.00854i 0.119796 + 0.368695i
\(598\) 0 0
\(599\) 11.5623 + 8.40051i 0.472423 + 0.343235i 0.798385 0.602148i \(-0.205688\pi\)
−0.325962 + 0.945383i \(0.605688\pi\)
\(600\) 0 0
\(601\) −4.30902 + 13.2618i −0.175768 + 0.540960i −0.999668 0.0257766i \(-0.991794\pi\)
0.823899 + 0.566736i \(0.191794\pi\)
\(602\) 0 0
\(603\) 3.69098 2.68166i 0.150308 0.109205i
\(604\) 0 0
\(605\) −0.534442 4.16750i −0.0217282 0.169433i
\(606\) 0 0
\(607\) −10.2082 + 7.41669i −0.414338 + 0.301034i −0.775356 0.631525i \(-0.782429\pi\)
0.361018 + 0.932559i \(0.382429\pi\)
\(608\) 0 0
\(609\) −0.618034 + 1.90211i −0.0250440 + 0.0770775i
\(610\) 0 0
\(611\) −0.263932 0.191758i −0.0106775 0.00775769i
\(612\) 0 0
\(613\) 1.79837 + 5.53483i 0.0726356 + 0.223550i 0.980783 0.195101i \(-0.0625034\pi\)
−0.908148 + 0.418650i \(0.862503\pi\)
\(614\) 0 0
\(615\) −1.90983 −0.0770118
\(616\) 0 0
\(617\) −12.5279 −0.504353 −0.252176 0.967681i \(-0.581146\pi\)
−0.252176 + 0.967681i \(0.581146\pi\)
\(618\) 0 0
\(619\) −5.10739 15.7189i −0.205283 0.631797i −0.999702 0.0244262i \(-0.992224\pi\)
0.794418 0.607371i \(-0.207776\pi\)
\(620\) 0 0
\(621\) −5.04508 3.66547i −0.202452 0.147090i
\(622\) 0 0
\(623\) −4.54508 + 13.9883i −0.182095 + 0.560431i
\(624\) 0 0
\(625\) −18.4721 + 13.4208i −0.738885 + 0.536832i
\(626\) 0 0
\(627\) −1.23607 + 0.277515i −0.0493638 + 0.0110829i
\(628\) 0 0
\(629\) 5.64590 4.10199i 0.225117 0.163557i
\(630\) 0 0
\(631\) 8.19098 25.2093i 0.326078 1.00356i −0.644874 0.764289i \(-0.723090\pi\)
0.970952 0.239275i \(-0.0769099\pi\)
\(632\) 0 0
\(633\) −2.73607 1.98787i −0.108749 0.0790107i
\(634\) 0 0
\(635\) 0.0901699 + 0.277515i 0.00357829 + 0.0110128i
\(636\) 0 0
\(637\) 24.4721 0.969621
\(638\) 0 0
\(639\) 12.5623 0.496957
\(640\) 0 0
\(641\) 5.50000 + 16.9273i 0.217237 + 0.668587i 0.998987 + 0.0449949i \(0.0143272\pi\)
−0.781750 + 0.623592i \(0.785673\pi\)
\(642\) 0 0
\(643\) 12.0623 + 8.76378i 0.475691 + 0.345610i 0.799655 0.600460i \(-0.205016\pi\)
−0.323964 + 0.946069i \(0.605016\pi\)
\(644\) 0 0
\(645\) 1.35410 4.16750i 0.0533177 0.164095i
\(646\) 0 0
\(647\) 32.6803 23.7437i 1.28480 0.933459i 0.285110 0.958495i \(-0.407970\pi\)
0.999687 + 0.0250353i \(0.00796981\pi\)
\(648\) 0 0
\(649\) 31.9058 36.2587i 1.25241 1.42328i
\(650\) 0 0
\(651\) 29.5344 21.4580i 1.15755 0.841006i
\(652\) 0 0
\(653\) −5.48278 + 16.8743i −0.214558 + 0.660341i 0.784627 + 0.619968i \(0.212854\pi\)
−0.999185 + 0.0403726i \(0.987146\pi\)
\(654\) 0 0
\(655\) −0.718847 0.522273i −0.0280877 0.0204069i
\(656\) 0 0
\(657\) 1.14590 + 3.52671i 0.0447057 + 0.137590i
\(658\) 0 0
\(659\) −19.1246 −0.744989 −0.372495 0.928034i \(-0.621497\pi\)
−0.372495 + 0.928034i \(0.621497\pi\)
\(660\) 0 0
\(661\) −8.14590 −0.316839 −0.158419 0.987372i \(-0.550640\pi\)
−0.158419 + 0.987372i \(0.550640\pi\)
\(662\) 0 0
\(663\) −1.28115 3.94298i −0.0497559 0.153133i
\(664\) 0 0
\(665\) 0.500000 + 0.363271i 0.0193892 + 0.0140871i
\(666\) 0 0
\(667\) 0.909830 2.80017i 0.0352288 0.108423i
\(668\) 0 0
\(669\) 10.1353 7.36369i 0.391852 0.284697i
\(670\) 0 0
\(671\) 11.5902 + 19.5559i 0.447434 + 0.754948i
\(672\) 0 0
\(673\) 6.89919 5.01255i 0.265944 0.193220i −0.446819 0.894624i \(-0.647443\pi\)
0.712763 + 0.701405i \(0.247443\pi\)
\(674\) 0 0
\(675\) −1.50000 + 4.61653i −0.0577350 + 0.177690i
\(676\) 0 0
\(677\) −9.23607 6.71040i −0.354971 0.257901i 0.395980 0.918259i \(-0.370405\pi\)
−0.750951 + 0.660357i \(0.770405\pi\)
\(678\) 0 0
\(679\) 8.97214 + 27.6134i 0.344319 + 1.05970i
\(680\) 0 0
\(681\) −20.5967 −0.789269
\(682\) 0 0
\(683\) 34.4853 1.31954 0.659772 0.751466i \(-0.270653\pi\)
0.659772 + 0.751466i \(0.270653\pi\)
\(684\) 0 0
\(685\) 0.645898 + 1.98787i 0.0246785 + 0.0759526i
\(686\) 0 0
\(687\) 9.61803 + 6.98791i 0.366951 + 0.266605i
\(688\) 0 0
\(689\) −6.60739 + 20.3355i −0.251722 + 0.774719i
\(690\) 0 0
\(691\) −11.0000 + 7.99197i −0.418460 + 0.304029i −0.777018 0.629479i \(-0.783269\pi\)
0.358558 + 0.933507i \(0.383269\pi\)
\(692\) 0 0
\(693\) 1.30902 13.9883i 0.0497254 0.531373i
\(694\) 0 0
\(695\) 5.75329 4.18001i 0.218235 0.158557i
\(696\) 0 0
\(697\) 2.86475 8.81678i 0.108510 0.333959i
\(698\) 0 0
\(699\) 16.2533 + 11.8087i 0.614756 + 0.446646i
\(700\) 0 0
\(701\) 10.1738 + 31.3116i 0.384258 + 1.18262i 0.937017 + 0.349283i \(0.113575\pi\)
−0.552760 + 0.833341i \(0.686425\pi\)
\(702\) 0 0
\(703\) 1.43769 0.0542237
\(704\) 0 0
\(705\) 0.0557281 0.00209884
\(706\) 0 0
\(707\) −0.690983 2.12663i −0.0259871 0.0799800i
\(708\) 0 0
\(709\) 8.35410 + 6.06961i 0.313745 + 0.227949i 0.733502 0.679688i \(-0.237885\pi\)
−0.419757 + 0.907637i \(0.637885\pi\)
\(710\) 0 0
\(711\) 4.39919 13.5393i 0.164982 0.507764i
\(712\) 0 0
\(713\) −43.4787 + 31.5891i −1.62829 + 1.18302i
\(714\) 0 0
\(715\) 2.60081 + 1.12257i 0.0972649 + 0.0419817i
\(716\) 0 0
\(717\) −11.3541 + 8.24924i −0.424027 + 0.308073i
\(718\) 0 0
\(719\) −9.63525 + 29.6543i −0.359334 + 1.10592i 0.594119 + 0.804377i \(0.297501\pi\)
−0.953453 + 0.301540i \(0.902499\pi\)
\(720\) 0 0
\(721\) −12.0902 8.78402i −0.450261 0.327134i
\(722\) 0 0
\(723\) −9.29180 28.5972i −0.345566 1.06354i
\(724\) 0 0
\(725\) −2.29180 −0.0851152
\(726\) 0 0
\(727\) −31.7426 −1.17727 −0.588635 0.808399i \(-0.700334\pi\)
−0.588635 + 0.808399i \(0.700334\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) 17.2082 + 12.5025i 0.636468 + 0.462421i
\(732\) 0 0
\(733\) 11.1459 34.3035i 0.411683 1.26703i −0.503501 0.863995i \(-0.667955\pi\)
0.915184 0.403036i \(-0.132045\pi\)
\(734\) 0 0
\(735\) −3.38197 + 2.45714i −0.124746 + 0.0906331i
\(736\) 0 0
\(737\) −13.8926 5.99637i −0.511741 0.220879i
\(738\) 0 0
\(739\) −7.33688 + 5.33056i −0.269892 + 0.196088i −0.714496 0.699639i \(-0.753344\pi\)
0.444605 + 0.895727i \(0.353344\pi\)
\(740\) 0 0
\(741\) 0.263932 0.812299i 0.00969579 0.0298406i
\(742\) 0 0
\(743\) −6.42705 4.66953i −0.235786 0.171308i 0.463618 0.886035i \(-0.346551\pi\)
−0.699404 + 0.714727i \(0.746551\pi\)
\(744\) 0 0
\(745\) 0.881966 + 2.71441i 0.0323127 + 0.0994484i
\(746\) 0 0
\(747\) −1.94427 −0.0711372
\(748\) 0 0
\(749\) −50.5967 −1.84876
\(750\) 0 0
\(751\) 1.26393 + 3.88998i 0.0461215 + 0.141947i 0.971465 0.237182i \(-0.0762236\pi\)
−0.925344 + 0.379129i \(0.876224\pi\)
\(752\) 0 0
\(753\) −1.73607 1.26133i −0.0632658 0.0459653i
\(754\) 0 0
\(755\) −1.58359 + 4.87380i −0.0576328 + 0.177376i
\(756\) 0 0
\(757\) 6.89919 5.01255i 0.250755 0.182184i −0.455306 0.890335i \(-0.650470\pi\)
0.706061 + 0.708151i \(0.250470\pi\)
\(758\) 0 0
\(759\) −1.92705 + 20.5927i −0.0699475 + 0.747469i
\(760\) 0 0
\(761\) −8.04508 + 5.84510i −0.291634 + 0.211885i −0.723976 0.689825i \(-0.757687\pi\)
0.432342 + 0.901710i \(0.357687\pi\)
\(762\) 0 0
\(763\) −23.4164 + 72.0683i −0.847731 + 2.60905i
\(764\) 0 0
\(765\) 0.572949 + 0.416272i 0.0207150 + 0.0150503i
\(766\) 0 0
\(767\) 10.0623 + 30.9686i 0.363329 + 1.11821i
\(768\) 0 0
\(769\) 26.5623 0.957861 0.478931 0.877853i \(-0.341025\pi\)
0.478931 + 0.877853i \(0.341025\pi\)
\(770\) 0 0
\(771\) 17.7984 0.640993
\(772\) 0 0
\(773\) 2.42047 + 7.44945i 0.0870584 + 0.267938i 0.985103 0.171967i \(-0.0550122\pi\)
−0.898044 + 0.439905i \(0.855012\pi\)
\(774\) 0 0
\(775\) 33.8435 + 24.5887i 1.21569 + 0.883253i
\(776\) 0 0
\(777\) −4.92705 + 15.1639i −0.176757 + 0.544002i
\(778\) 0 0
\(779\) 1.54508 1.12257i 0.0553584 0.0402202i
\(780\) 0 0
\(781\) −21.2426 35.8424i −0.760122 1.28254i
\(782\) 0 0
\(783\) −0.381966 + 0.277515i −0.0136504 + 0.00991756i
\(784\) 0 0
\(785\) 1.90983 5.87785i 0.0681648 0.209790i
\(786\) 0 0
\(787\) 36.4164 + 26.4581i 1.29810 + 0.943128i 0.999935 0.0113846i \(-0.00362391\pi\)
0.298170 + 0.954513i \(0.403624\pi\)
\(788\) 0 0
\(789\) 3.35410 + 10.3229i 0.119409 + 0.367504i
\(790\) 0 0
\(791\) −77.2492 −2.74667
\(792\) 0 0
\(793\) −15.3262 −0.544251
\(794\) 0 0
\(795\) −1.12868 3.47371i −0.0400301 0.123200i
\(796\) 0 0
\(797\) 4.61803 + 3.35520i 0.163579 + 0.118847i 0.666563 0.745448i \(-0.267765\pi\)
−0.502984 + 0.864296i \(0.667765\pi\)
\(798\) 0 0
\(799\) −0.0835921 + 0.257270i −0.00295728 + 0.00910156i
\(800\) 0 0
\(801\) −2.80902 + 2.04087i −0.0992517 + 0.0721106i
\(802\) 0 0
\(803\) 8.12461 9.23305i 0.286711 0.325827i
\(804\) 0 0
\(805\) 8.16312 5.93085i 0.287712 0.209035i
\(806\) 0 0
\(807\) −0.437694 + 1.34708i −0.0154076 + 0.0474196i
\(808\) 0 0
\(809\) 8.30902 + 6.03685i 0.292129 + 0.212244i 0.724191 0.689600i \(-0.242214\pi\)
−0.432061 + 0.901844i \(0.642214\pi\)
\(810\) 0 0
\(811\) 0.100813 + 0.310271i 0.00354003 + 0.0108951i 0.952811 0.303564i \(-0.0981767\pi\)
−0.949271 + 0.314459i \(0.898177\pi\)
\(812\) 0 0
\(813\) 17.6180 0.617891
\(814\) 0 0
\(815\) −5.87539 −0.205806
\(816\) 0 0
\(817\) 1.35410 + 4.16750i 0.0473740 + 0.145802i
\(818\) 0 0
\(819\) 7.66312 + 5.56758i 0.267771 + 0.194547i
\(820\) 0 0
\(821\) 9.57953 29.4828i 0.334328 1.02896i −0.632724 0.774377i \(-0.718063\pi\)
0.967052 0.254578i \(-0.0819366\pi\)
\(822\) 0 0
\(823\) 33.6074 24.4172i 1.17148 0.851130i 0.180295 0.983613i \(-0.442295\pi\)
0.991185 + 0.132483i \(0.0422949\pi\)
\(824\) 0 0
\(825\) 15.7082 3.52671i 0.546889 0.122784i
\(826\) 0 0
\(827\) −19.1803 + 13.9353i −0.666966 + 0.484579i −0.869008 0.494798i \(-0.835242\pi\)
0.202042 + 0.979377i \(0.435242\pi\)
\(828\) 0 0
\(829\) −7.48278 + 23.0296i −0.259888 + 0.799852i 0.732940 + 0.680294i \(0.238148\pi\)
−0.992827 + 0.119558i \(0.961852\pi\)
\(830\) 0 0
\(831\) 1.73607 + 1.26133i 0.0602235 + 0.0437550i
\(832\) 0 0
\(833\) −6.27051 19.2986i −0.217260 0.668658i
\(834\) 0 0
\(835\) 8.90983 0.308337
\(836\) 0 0
\(837\) 8.61803 0.297883
\(838\) 0 0
\(839\) 13.4336 + 41.3445i 0.463780 + 1.42737i 0.860510 + 0.509434i \(0.170145\pi\)
−0.396730 + 0.917936i \(0.629855\pi\)
\(840\) 0 0
\(841\) 23.2812 + 16.9147i 0.802798 + 0.583267i
\(842\) 0 0
\(843\) 5.43769 16.7355i 0.187284 0.576401i
\(844\) 0 0
\(845\) 2.47214 1.79611i 0.0850441 0.0617881i
\(846\) 0 0
\(847\) −42.1246 + 19.9192i −1.44742 + 0.684431i
\(848\) 0 0
\(849\) 12.7082 9.23305i 0.436144 0.316877i
\(850\) 0 0
\(851\) 7.25329 22.3233i 0.248640 0.765234i
\(852\) 0 0
\(853\) −23.0795 16.7683i −0.790228 0.574134i 0.117803 0.993037i \(-0.462415\pi\)
−0.908031 + 0.418903i \(0.862415\pi\)
\(854\) 0 0
\(855\) 0.0450850 + 0.138757i 0.00154187 + 0.00474540i
\(856\) 0 0
\(857\) 22.8885 0.781858 0.390929 0.920421i \(-0.372154\pi\)
0.390929 + 0.920421i \(0.372154\pi\)
\(858\) 0 0
\(859\) 19.6525 0.670534 0.335267 0.942123i \(-0.391174\pi\)
0.335267 + 0.942123i \(0.391174\pi\)
\(860\) 0 0
\(861\) 6.54508 + 20.1437i 0.223056 + 0.686495i
\(862\) 0 0
\(863\) −12.3820 8.99602i −0.421487 0.306228i 0.356749 0.934200i \(-0.383885\pi\)
−0.778236 + 0.627972i \(0.783885\pi\)
\(864\) 0 0
\(865\) −2.01064 + 6.18812i −0.0683639 + 0.210403i
\(866\) 0 0
\(867\) 10.9721 7.97172i 0.372633 0.270734i
\(868\) 0 0
\(869\) −46.0689 + 10.3431i −1.56278 + 0.350866i
\(870\) 0 0
\(871\) 8.25329 5.99637i 0.279652 0.203179i
\(872\) 0 0
\(873\) −2.11803 + 6.51864i −0.0716846 + 0.220622i
\(874\) 0 0
\(875\) −12.8992 9.37181i −0.436072 0.316825i
\(876\) 0 0
\(877\) −3.65654 11.2537i −0.123473 0.380010i 0.870147 0.492792i \(-0.164024\pi\)
−0.993620 + 0.112782i \(0.964024\pi\)
\(878\) 0 0
\(879\) 27.3607 0.922853
\(880\) 0 0
\(881\) 7.85410 0.264611 0.132306 0.991209i \(-0.457762\pi\)
0.132306 + 0.991209i \(0.457762\pi\)
\(882\) 0 0
\(883\) 10.4377 + 32.1239i 0.351256 + 1.08106i 0.958148 + 0.286272i \(0.0924160\pi\)
−0.606892 + 0.794784i \(0.707584\pi\)
\(884\) 0 0
\(885\) −4.50000 3.26944i −0.151266 0.109901i
\(886\) 0 0
\(887\) 5.30902 16.3395i 0.178259 0.548626i −0.821508 0.570197i \(-0.806867\pi\)
0.999767 + 0.0215712i \(0.00686685\pi\)
\(888\) 0 0
\(889\) 2.61803 1.90211i 0.0878060 0.0637948i
\(890\) 0 0
\(891\) 2.19098 2.48990i 0.0734007 0.0834147i
\(892\) 0 0
\(893\) −0.0450850 + 0.0327561i −0.00150871 + 0.00109614i
\(894\) 0 0
\(895\) −2.64590 + 8.14324i −0.0884426 + 0.272198i
\(896\) 0 0
\(897\) −11.2812 8.19624i −0.376667 0.273664i
\(898\) 0 0
\(899\) 1.25735 + 3.86974i 0.0419351 + 0.129063i
\(900\) 0 0
\(901\) 17.7295 0.590655
\(902\) 0 0
\(903\) −48.5967 −1.61720
\(904\) 0 0
\(905\) 1.75735 + 5.40858i 0.0584164 + 0.179787i
\(906\) 0 0
\(907\) −4.39919 3.19620i −0.146073 0.106128i 0.512349 0.858777i \(-0.328776\pi\)
−0.658421 + 0.752649i \(0.728776\pi\)
\(908\) 0 0
\(909\) 0.163119 0.502029i 0.00541031 0.0166512i
\(910\) 0 0
\(911\) 10.2812 7.46969i 0.340630 0.247482i −0.404298 0.914627i \(-0.632484\pi\)
0.744928 + 0.667145i \(0.232484\pi\)
\(912\) 0 0
\(913\) 3.28773 + 5.54734i 0.108808 + 0.183590i
\(914\) 0 0
\(915\) 2.11803 1.53884i 0.0700200 0.0508725i
\(916\) 0 0
\(917\) −3.04508 + 9.37181i −0.100558 + 0.309484i
\(918\) 0 0
\(919\) −2.33688 1.69784i −0.0770866 0.0560067i 0.548575 0.836102i \(-0.315171\pi\)
−0.625661 + 0.780095i \(0.715171\pi\)
\(920\) 0 0
\(921\) 3.33688 + 10.2699i 0.109954 + 0.338404i
\(922\) 0 0
\(923\) 28.0902 0.924599
\(924\) 0 0
\(925\) −18.2705 −0.600731
\(926\) 0 0
\(927\) −1.09017 3.35520i −0.0358059 0.110199i
\(928\) 0 0
\(929\) −1.66312 1.20833i −0.0545652 0.0396439i 0.560168 0.828379i \(-0.310736\pi\)
−0.614734 + 0.788735i \(0.710736\pi\)
\(930\) 0 0
\(931\) 1.29180 3.97574i 0.0423369 0.130300i
\(932\) 0 0
\(933\) −11.5172 + 8.36775i −0.377057 + 0.273948i
\(934\) 0 0
\(935\) 0.218847 2.33863i 0.00715706 0.0764814i
\(936\) 0 0
\(937\) 3.80902 2.76741i 0.124435 0.0904074i −0.523827 0.851825i \(-0.675496\pi\)
0.648262 + 0.761417i \(0.275496\pi\)
\(938\) 0 0
\(939\) 2.74671 8.45351i 0.0896355 0.275870i
\(940\) 0 0
\(941\) 5.02786 + 3.65296i 0.163904 + 0.119083i 0.666714 0.745314i \(-0.267700\pi\)
−0.502810 + 0.864397i \(0.667700\pi\)
\(942\) 0 0
\(943\) −9.63525 29.6543i −0.313767 0.965676i
\(944\) 0 0
\(945\) −1.61803 −0.0526346
\(946\) 0 0
\(947\) 7.72949 0.251175 0.125587 0.992083i \(-0.459918\pi\)
0.125587 + 0.992083i \(0.459918\pi\)
\(948\) 0 0
\(949\) 2.56231 + 7.88597i 0.0831760 + 0.255989i
\(950\) 0 0
\(951\) 1.57295 + 1.14281i 0.0510064 + 0.0370583i
\(952\) 0 0
\(953\) −5.76393 + 17.7396i −0.186712 + 0.574641i −0.999974 0.00725759i \(-0.997690\pi\)
0.813262 + 0.581898i \(0.197690\pi\)
\(954\) 0 0
\(955\) −1.78115 + 1.29408i −0.0576368 + 0.0418756i
\(956\) 0 0
\(957\) 1.43769 + 0.620541i 0.0464741 + 0.0200593i
\(958\) 0 0
\(959\) 18.7533 13.6251i 0.605575 0.439976i
\(960\) 0 0
\(961\) 13.3713 41.1527i 0.431333 1.32751i
\(962\) 0 0
\(963\) −9.66312 7.02067i −0.311390 0.226238i
\(964\) 0 0
\(965\) −0.0385072 0.118513i −0.00123959 0.00381506i
\(966\) 0 0
\(967\) −22.3820 −0.719756 −0.359878 0.932999i \(-0.617182\pi\)
−0.359878 + 0.932999i \(0.617182\pi\)
\(968\) 0 0
\(969\) −0.708204 −0.0227508
\(970\) 0 0
\(971\) −10.9098 33.5770i −0.350113 1.07754i −0.958789 0.284119i \(-0.908299\pi\)
0.608676 0.793419i \(-0.291701\pi\)
\(972\) 0 0
\(973\) −63.8050 46.3570i −2.04549 1.48614i
\(974\) 0 0
\(975\) −3.35410 + 10.3229i −0.107417 + 0.330596i
\(976\) 0 0
\(977\) 5.19098 3.77147i 0.166074 0.120660i −0.501644 0.865074i \(-0.667271\pi\)
0.667718 + 0.744414i \(0.267271\pi\)
\(978\) 0 0
\(979\) 10.5729 + 4.56352i 0.337913 + 0.145851i
\(980\) 0 0
\(981\) −14.4721 + 10.5146i −0.462060 + 0.335706i
\(982\) 0 0
\(983\) −11.6738 + 35.9281i −0.372335 + 1.14593i 0.572924 + 0.819609i \(0.305809\pi\)
−0.945259 + 0.326321i \(0.894191\pi\)
\(984\) 0 0
\(985\) 2.51722 + 1.82887i 0.0802053 + 0.0582726i
\(986\) 0 0
\(987\) −0.190983 0.587785i −0.00607906 0.0187094i
\(988\) 0 0
\(989\) 71.5410 2.27487
\(990\) 0 0
\(991\) 1.32624 0.0421293 0.0210647 0.999778i \(-0.493294\pi\)
0.0210647 + 0.999778i \(0.493294\pi\)
\(992\) 0 0
\(993\) −8.34346 25.6785i −0.264772 0.814883i
\(994\) 0 0
\(995\) −2.92705 2.12663i −0.0927938 0.0674186i
\(996\) 0 0
\(997\) 8.09675 24.9192i 0.256427 0.789200i −0.737119 0.675763i \(-0.763814\pi\)
0.993545 0.113437i \(-0.0361859\pi\)
\(998\) 0 0
\(999\) −3.04508 + 2.21238i −0.0963422 + 0.0699967i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 264.2.q.b.25.1 4
3.2 odd 2 792.2.r.d.289.1 4
4.3 odd 2 528.2.y.h.289.1 4
11.2 odd 10 2904.2.a.ba.1.1 2
11.4 even 5 inner 264.2.q.b.169.1 yes 4
11.9 even 5 2904.2.a.z.1.1 2
33.2 even 10 8712.2.a.bc.1.2 2
33.20 odd 10 8712.2.a.ba.1.2 2
33.26 odd 10 792.2.r.d.433.1 4
44.15 odd 10 528.2.y.h.433.1 4
44.31 odd 10 5808.2.a.bw.1.1 2
44.35 even 10 5808.2.a.bv.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.q.b.25.1 4 1.1 even 1 trivial
264.2.q.b.169.1 yes 4 11.4 even 5 inner
528.2.y.h.289.1 4 4.3 odd 2
528.2.y.h.433.1 4 44.15 odd 10
792.2.r.d.289.1 4 3.2 odd 2
792.2.r.d.433.1 4 33.26 odd 10
2904.2.a.z.1.1 2 11.9 even 5
2904.2.a.ba.1.1 2 11.2 odd 10
5808.2.a.bv.1.1 2 44.35 even 10
5808.2.a.bw.1.1 2 44.31 odd 10
8712.2.a.ba.1.2 2 33.20 odd 10
8712.2.a.bc.1.2 2 33.2 even 10