Properties

Label 264.2.k.b.155.5
Level $264$
Weight $2$
Character 264.155
Analytic conductor $2.108$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [264,2,Mod(155,264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(264, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("264.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.10805061336\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 155.5
Character \(\chi\) \(=\) 264.155
Dual form 264.2.k.b.155.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26755 - 0.627142i) q^{2} +(1.64971 + 0.527693i) q^{3} +(1.21339 + 1.58987i) q^{4} +1.66805 q^{5} +(-1.76016 - 1.70348i) q^{6} -0.635429i q^{7} +(-0.540958 - 2.77621i) q^{8} +(2.44308 + 1.74108i) q^{9} +(-2.11434 - 1.04610i) q^{10} -1.00000i q^{11} +(1.16277 + 3.26312i) q^{12} +0.0696073i q^{13} +(-0.398504 + 0.805441i) q^{14} +(2.75179 + 0.880216i) q^{15} +(-1.05539 + 3.85826i) q^{16} +2.97439i q^{17} +(-2.00483 - 3.73907i) q^{18} -2.49500 q^{19} +(2.02398 + 2.65198i) q^{20} +(0.335311 - 1.04827i) q^{21} +(-0.627142 + 1.26755i) q^{22} +3.91504 q^{23} +(0.572565 - 4.86541i) q^{24} -2.21762 q^{25} +(0.0436536 - 0.0882310i) q^{26} +(3.11162 + 4.16147i) q^{27} +(1.01025 - 0.771021i) q^{28} +3.31887 q^{29} +(-2.93602 - 2.84148i) q^{30} -9.67793i q^{31} +(3.75743 - 4.22868i) q^{32} +(0.527693 - 1.64971i) q^{33} +(1.86537 - 3.77020i) q^{34} -1.05992i q^{35} +(0.196308 + 5.99679i) q^{36} +5.28989i q^{37} +(3.16255 + 1.56472i) q^{38} +(-0.0367313 + 0.114832i) q^{39} +(-0.902343 - 4.63085i) q^{40} -5.12939i q^{41} +(-1.08244 + 1.11846i) q^{42} -5.47572 q^{43} +(1.58987 - 1.21339i) q^{44} +(4.07517 + 2.90420i) q^{45} +(-4.96252 - 2.45528i) q^{46} -7.10838 q^{47} +(-3.77706 + 5.80809i) q^{48} +6.59623 q^{49} +(2.81096 + 1.39076i) q^{50} +(-1.56957 + 4.90688i) q^{51} +(-0.110667 + 0.0844605i) q^{52} -6.81429 q^{53} +(-1.33431 - 7.22631i) q^{54} -1.66805i q^{55} +(-1.76409 + 0.343741i) q^{56} +(-4.11603 - 1.31660i) q^{57} +(-4.20685 - 2.08140i) q^{58} -0.0187615i q^{59} +(1.93955 + 5.44304i) q^{60} +14.0256i q^{61} +(-6.06943 + 12.2673i) q^{62} +(1.10633 - 1.55240i) q^{63} +(-7.41473 + 3.00363i) q^{64} +0.116108i q^{65} +(-1.70348 + 1.76016i) q^{66} -9.82150 q^{67} +(-4.72890 + 3.60909i) q^{68} +(6.45867 + 2.06594i) q^{69} +(-0.664723 + 1.34351i) q^{70} -14.1364 q^{71} +(3.51200 - 7.72437i) q^{72} -3.15463 q^{73} +(3.31751 - 6.70522i) q^{74} +(-3.65844 - 1.17022i) q^{75} +(-3.02740 - 3.96674i) q^{76} -0.635429 q^{77} +(0.118575 - 0.122520i) q^{78} -16.2269i q^{79} +(-1.76043 + 6.43575i) q^{80} +(2.93728 + 8.50719i) q^{81} +(-3.21686 + 6.50178i) q^{82} +8.26737i q^{83} +(2.07348 - 0.738858i) q^{84} +4.96142i q^{85} +(6.94077 + 3.43405i) q^{86} +(5.47517 + 1.75134i) q^{87} +(-2.77621 + 0.540958i) q^{88} -9.87741i q^{89} +(-3.34415 - 6.23694i) q^{90} +0.0442305 q^{91} +(4.75045 + 6.22441i) q^{92} +(5.10698 - 15.9658i) q^{93} +(9.01025 + 4.45796i) q^{94} -4.16178 q^{95} +(8.43011 - 4.99331i) q^{96} +9.27138 q^{97} +(-8.36108 - 4.13677i) q^{98} +(1.74108 - 2.44308i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} + 2 q^{6} + 8 q^{9} + 12 q^{10} - 12 q^{12} + 2 q^{18} - 32 q^{19} + 4 q^{22} + 12 q^{24} - 64 q^{27} + 40 q^{28} - 22 q^{30} - 64 q^{34} - 20 q^{36} + 32 q^{40} + 20 q^{42} - 16 q^{43} - 28 q^{46}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/264\mathbb{Z}\right)^\times\).

\(n\) \(89\) \(133\) \(145\) \(199\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26755 0.627142i −0.896296 0.443456i
\(3\) 1.64971 + 0.527693i 0.952460 + 0.304664i
\(4\) 1.21339 + 1.58987i 0.606693 + 0.794936i
\(5\) 1.66805 0.745973 0.372986 0.927837i \(-0.378334\pi\)
0.372986 + 0.927837i \(0.378334\pi\)
\(6\) −1.76016 1.70348i −0.718581 0.695443i
\(7\) 0.635429i 0.240170i −0.992764 0.120085i \(-0.961683\pi\)
0.992764 0.120085i \(-0.0383166\pi\)
\(8\) −0.540958 2.77621i −0.191258 0.981540i
\(9\) 2.44308 + 1.74108i 0.814360 + 0.580360i
\(10\) −2.11434 1.04610i −0.668612 0.330806i
\(11\) 1.00000i 0.301511i
\(12\) 1.16277 + 3.26312i 0.335663 + 0.941982i
\(13\) 0.0696073i 0.0193056i 0.999953 + 0.00965279i \(0.00307263\pi\)
−0.999953 + 0.00965279i \(0.996927\pi\)
\(14\) −0.398504 + 0.805441i −0.106505 + 0.215263i
\(15\) 2.75179 + 0.880216i 0.710509 + 0.227271i
\(16\) −1.05539 + 3.85826i −0.263846 + 0.964565i
\(17\) 2.97439i 0.721396i 0.932683 + 0.360698i \(0.117461\pi\)
−0.932683 + 0.360698i \(0.882539\pi\)
\(18\) −2.00483 3.73907i −0.472544 0.881307i
\(19\) −2.49500 −0.572393 −0.286197 0.958171i \(-0.592391\pi\)
−0.286197 + 0.958171i \(0.592391\pi\)
\(20\) 2.02398 + 2.65198i 0.452577 + 0.593000i
\(21\) 0.335311 1.04827i 0.0731709 0.228752i
\(22\) −0.627142 + 1.26755i −0.133707 + 0.270243i
\(23\) 3.91504 0.816342 0.408171 0.912906i \(-0.366167\pi\)
0.408171 + 0.912906i \(0.366167\pi\)
\(24\) 0.572565 4.86541i 0.116874 0.993147i
\(25\) −2.21762 −0.443525
\(26\) 0.0436536 0.0882310i 0.00856118 0.0173035i
\(27\) 3.11162 + 4.16147i 0.598831 + 0.800875i
\(28\) 1.01025 0.771021i 0.190919 0.145709i
\(29\) 3.31887 0.616299 0.308149 0.951338i \(-0.400290\pi\)
0.308149 + 0.951338i \(0.400290\pi\)
\(30\) −2.93602 2.84148i −0.536042 0.518781i
\(31\) 9.67793i 1.73821i −0.494629 0.869104i \(-0.664696\pi\)
0.494629 0.869104i \(-0.335304\pi\)
\(32\) 3.75743 4.22868i 0.664227 0.747531i
\(33\) 0.527693 1.64971i 0.0918595 0.287177i
\(34\) 1.86537 3.77020i 0.319907 0.646584i
\(35\) 1.05992i 0.179160i
\(36\) 0.196308 + 5.99679i 0.0327179 + 0.999465i
\(37\) 5.28989i 0.869652i 0.900514 + 0.434826i \(0.143190\pi\)
−0.900514 + 0.434826i \(0.856810\pi\)
\(38\) 3.16255 + 1.56472i 0.513034 + 0.253831i
\(39\) −0.0367313 + 0.114832i −0.00588171 + 0.0183878i
\(40\) −0.902343 4.63085i −0.142673 0.732202i
\(41\) 5.12939i 0.801077i −0.916280 0.400538i \(-0.868823\pi\)
0.916280 0.400538i \(-0.131177\pi\)
\(42\) −1.08244 + 1.11846i −0.167024 + 0.172581i
\(43\) −5.47572 −0.835040 −0.417520 0.908668i \(-0.637101\pi\)
−0.417520 + 0.908668i \(0.637101\pi\)
\(44\) 1.58987 1.21339i 0.239682 0.182925i
\(45\) 4.07517 + 2.90420i 0.607490 + 0.432933i
\(46\) −4.96252 2.45528i −0.731684 0.362012i
\(47\) −7.10838 −1.03686 −0.518432 0.855119i \(-0.673484\pi\)
−0.518432 + 0.855119i \(0.673484\pi\)
\(48\) −3.77706 + 5.80809i −0.545171 + 0.838325i
\(49\) 6.59623 0.942319
\(50\) 2.81096 + 1.39076i 0.397530 + 0.196684i
\(51\) −1.56957 + 4.90688i −0.219783 + 0.687101i
\(52\) −0.110667 + 0.0844605i −0.0153467 + 0.0117126i
\(53\) −6.81429 −0.936015 −0.468008 0.883724i \(-0.655028\pi\)
−0.468008 + 0.883724i \(0.655028\pi\)
\(54\) −1.33431 7.22631i −0.181577 0.983377i
\(55\) 1.66805i 0.224919i
\(56\) −1.76409 + 0.343741i −0.235736 + 0.0459343i
\(57\) −4.11603 1.31660i −0.545181 0.174387i
\(58\) −4.20685 2.08140i −0.552386 0.273302i
\(59\) 0.0187615i 0.00244255i −0.999999 0.00122127i \(-0.999611\pi\)
0.999999 0.00122127i \(-0.000388743\pi\)
\(60\) 1.93955 + 5.44304i 0.250395 + 0.702693i
\(61\) 14.0256i 1.79579i 0.440210 + 0.897895i \(0.354904\pi\)
−0.440210 + 0.897895i \(0.645096\pi\)
\(62\) −6.06943 + 12.2673i −0.770819 + 1.55795i
\(63\) 1.10633 1.55240i 0.139385 0.195585i
\(64\) −7.41473 + 3.00363i −0.926841 + 0.375454i
\(65\) 0.116108i 0.0144014i
\(66\) −1.70348 + 1.76016i −0.209684 + 0.216660i
\(67\) −9.82150 −1.19989 −0.599944 0.800042i \(-0.704810\pi\)
−0.599944 + 0.800042i \(0.704810\pi\)
\(68\) −4.72890 + 3.60909i −0.573464 + 0.437666i
\(69\) 6.45867 + 2.06594i 0.777533 + 0.248710i
\(70\) −0.664723 + 1.34351i −0.0794496 + 0.160580i
\(71\) −14.1364 −1.67769 −0.838843 0.544373i \(-0.816768\pi\)
−0.838843 + 0.544373i \(0.816768\pi\)
\(72\) 3.51200 7.72437i 0.413894 0.910325i
\(73\) −3.15463 −0.369222 −0.184611 0.982812i \(-0.559102\pi\)
−0.184611 + 0.982812i \(0.559102\pi\)
\(74\) 3.31751 6.70522i 0.385653 0.779466i
\(75\) −3.65844 1.17022i −0.422440 0.135126i
\(76\) −3.02740 3.96674i −0.347267 0.455016i
\(77\) −0.635429 −0.0724139
\(78\) 0.118575 0.122520i 0.0134259 0.0138726i
\(79\) 16.2269i 1.82567i −0.408328 0.912835i \(-0.633888\pi\)
0.408328 0.912835i \(-0.366112\pi\)
\(80\) −1.76043 + 6.43575i −0.196822 + 0.719539i
\(81\) 2.93728 + 8.50719i 0.326365 + 0.945244i
\(82\) −3.21686 + 6.50178i −0.355242 + 0.718002i
\(83\) 8.26737i 0.907462i 0.891139 + 0.453731i \(0.149907\pi\)
−0.891139 + 0.453731i \(0.850093\pi\)
\(84\) 2.07348 0.738858i 0.226235 0.0806161i
\(85\) 4.96142i 0.538142i
\(86\) 6.94077 + 3.43405i 0.748443 + 0.370303i
\(87\) 5.47517 + 1.75134i 0.587000 + 0.187764i
\(88\) −2.77621 + 0.540958i −0.295945 + 0.0576663i
\(89\) 9.87741i 1.04700i −0.852025 0.523502i \(-0.824625\pi\)
0.852025 0.523502i \(-0.175375\pi\)
\(90\) −3.34415 6.23694i −0.352505 0.657431i
\(91\) 0.0442305 0.00463661
\(92\) 4.75045 + 6.22441i 0.495269 + 0.648939i
\(93\) 5.10698 15.9658i 0.529569 1.65557i
\(94\) 9.01025 + 4.45796i 0.929337 + 0.459803i
\(95\) −4.16178 −0.426989
\(96\) 8.43011 4.99331i 0.860395 0.509628i
\(97\) 9.27138 0.941366 0.470683 0.882302i \(-0.344008\pi\)
0.470683 + 0.882302i \(0.344008\pi\)
\(98\) −8.36108 4.13677i −0.844596 0.417877i
\(99\) 1.74108 2.44308i 0.174985 0.245539i
\(100\) −2.69084 3.52574i −0.269084 0.352574i
\(101\) −5.68774 −0.565951 −0.282976 0.959127i \(-0.591322\pi\)
−0.282976 + 0.959127i \(0.591322\pi\)
\(102\) 5.06682 5.23540i 0.501690 0.518382i
\(103\) 5.77992i 0.569512i −0.958600 0.284756i \(-0.908087\pi\)
0.958600 0.284756i \(-0.0919126\pi\)
\(104\) 0.193245 0.0376546i 0.0189492 0.00369234i
\(105\) 0.559315 1.74857i 0.0545835 0.170643i
\(106\) 8.63749 + 4.27353i 0.838947 + 0.415082i
\(107\) 14.8038i 1.43113i −0.698544 0.715567i \(-0.746168\pi\)
0.698544 0.715567i \(-0.253832\pi\)
\(108\) −2.84061 + 9.99655i −0.273338 + 0.961918i
\(109\) 4.61080i 0.441635i 0.975315 + 0.220817i \(0.0708725\pi\)
−0.975315 + 0.220817i \(0.929127\pi\)
\(110\) −1.04610 + 2.11434i −0.0997418 + 0.201594i
\(111\) −2.79144 + 8.72677i −0.264951 + 0.828309i
\(112\) 2.45165 + 0.670623i 0.231659 + 0.0633679i
\(113\) 9.37547i 0.881970i 0.897515 + 0.440985i \(0.145371\pi\)
−0.897515 + 0.440985i \(0.854629\pi\)
\(114\) 4.39160 + 4.25019i 0.411311 + 0.398067i
\(115\) 6.53046 0.608968
\(116\) 4.02707 + 5.27658i 0.373904 + 0.489918i
\(117\) −0.121192 + 0.170056i −0.0112042 + 0.0157217i
\(118\) −0.0117661 + 0.0237813i −0.00108316 + 0.00218924i
\(119\) 1.89002 0.173257
\(120\) 0.955064 8.11572i 0.0871850 0.740860i
\(121\) −1.00000 −0.0909091
\(122\) 8.79602 17.7782i 0.796354 1.60956i
\(123\) 2.70674 8.46201i 0.244059 0.762994i
\(124\) 15.3867 11.7431i 1.38176 1.05456i
\(125\) −12.0393 −1.07683
\(126\) −2.37591 + 1.27393i −0.211663 + 0.113491i
\(127\) 15.1058i 1.34042i 0.742170 + 0.670212i \(0.233797\pi\)
−0.742170 + 0.670212i \(0.766203\pi\)
\(128\) 11.2823 + 0.842820i 0.997221 + 0.0744955i
\(129\) −9.03335 2.88950i −0.795342 0.254406i
\(130\) 0.0728162 0.147173i 0.00638640 0.0129079i
\(131\) 2.64263i 0.230888i −0.993314 0.115444i \(-0.963171\pi\)
0.993314 0.115444i \(-0.0368290\pi\)
\(132\) 3.26312 1.16277i 0.284018 0.101206i
\(133\) 1.58540i 0.137471i
\(134\) 12.4493 + 6.15947i 1.07545 + 0.532097i
\(135\) 5.19032 + 6.94152i 0.446711 + 0.597431i
\(136\) 8.25755 1.60902i 0.708079 0.137972i
\(137\) 19.7144i 1.68431i −0.539233 0.842157i \(-0.681286\pi\)
0.539233 0.842157i \(-0.318714\pi\)
\(138\) −6.89108 6.66919i −0.586608 0.567719i
\(139\) 1.78947 0.151781 0.0758906 0.997116i \(-0.475820\pi\)
0.0758906 + 0.997116i \(0.475820\pi\)
\(140\) 1.68514 1.28610i 0.142421 0.108695i
\(141\) −11.7268 3.75104i −0.987571 0.315895i
\(142\) 17.9187 + 8.86555i 1.50370 + 0.743980i
\(143\) 0.0696073 0.00582085
\(144\) −9.29593 + 7.58853i −0.774661 + 0.632377i
\(145\) 5.53603 0.459742
\(146\) 3.99867 + 1.97840i 0.330932 + 0.163734i
\(147\) 10.8819 + 3.48078i 0.897521 + 0.287090i
\(148\) −8.41024 + 6.41868i −0.691318 + 0.527612i
\(149\) 15.3672 1.25893 0.629466 0.777028i \(-0.283274\pi\)
0.629466 + 0.777028i \(0.283274\pi\)
\(150\) 3.90337 + 3.77768i 0.318709 + 0.308446i
\(151\) 7.47089i 0.607973i 0.952676 + 0.303986i \(0.0983177\pi\)
−0.952676 + 0.303986i \(0.901682\pi\)
\(152\) 1.34969 + 6.92666i 0.109475 + 0.561827i
\(153\) −5.17865 + 7.26668i −0.418669 + 0.587476i
\(154\) 0.805441 + 0.398504i 0.0649043 + 0.0321124i
\(155\) 16.1432i 1.29666i
\(156\) −0.227137 + 0.0809373i −0.0181855 + 0.00648017i
\(157\) 2.02167i 0.161347i 0.996741 + 0.0806736i \(0.0257071\pi\)
−0.996741 + 0.0806736i \(0.974293\pi\)
\(158\) −10.1766 + 20.5685i −0.809605 + 1.63634i
\(159\) −11.2416 3.59585i −0.891517 0.285170i
\(160\) 6.26757 7.05362i 0.495495 0.557638i
\(161\) 2.48773i 0.196060i
\(162\) 1.61205 12.6254i 0.126655 0.991947i
\(163\) 5.59623 0.438331 0.219165 0.975688i \(-0.429667\pi\)
0.219165 + 0.975688i \(0.429667\pi\)
\(164\) 8.15508 6.22394i 0.636805 0.486008i
\(165\) 0.880216 2.75179i 0.0685247 0.214227i
\(166\) 5.18481 10.4793i 0.402420 0.813355i
\(167\) 5.64224 0.436610 0.218305 0.975881i \(-0.429947\pi\)
0.218305 + 0.975881i \(0.429947\pi\)
\(168\) −3.09162 0.363824i −0.238524 0.0280696i
\(169\) 12.9952 0.999627
\(170\) 3.11151 6.28887i 0.238642 0.482334i
\(171\) −6.09549 4.34400i −0.466134 0.332194i
\(172\) −6.64417 8.70570i −0.506613 0.663803i
\(173\) −10.1560 −0.772149 −0.386074 0.922468i \(-0.626169\pi\)
−0.386074 + 0.922468i \(0.626169\pi\)
\(174\) −5.84174 5.65363i −0.442861 0.428601i
\(175\) 1.40914i 0.106521i
\(176\) 3.85826 + 1.05539i 0.290827 + 0.0795527i
\(177\) 0.00990034 0.0309511i 0.000744155 0.00232643i
\(178\) −6.19453 + 12.5201i −0.464300 + 0.938425i
\(179\) 22.4437i 1.67752i 0.544502 + 0.838760i \(0.316719\pi\)
−0.544502 + 0.838760i \(0.683281\pi\)
\(180\) 0.327450 + 10.0029i 0.0244067 + 0.745573i
\(181\) 18.7296i 1.39216i −0.717965 0.696079i \(-0.754926\pi\)
0.717965 0.696079i \(-0.245074\pi\)
\(182\) −0.0560645 0.0277388i −0.00415578 0.00205613i
\(183\) −7.40119 + 23.1381i −0.547112 + 1.71042i
\(184\) −2.11787 10.8690i −0.156132 0.801272i
\(185\) 8.82377i 0.648737i
\(186\) −16.4862 + 17.0347i −1.20882 + 1.24904i
\(187\) 2.97439 0.217509
\(188\) −8.62521 11.3014i −0.629058 0.824240i
\(189\) 2.64432 1.97721i 0.192346 0.143821i
\(190\) 5.27528 + 2.61002i 0.382709 + 0.189351i
\(191\) 13.8554 1.00254 0.501272 0.865290i \(-0.332866\pi\)
0.501272 + 0.865290i \(0.332866\pi\)
\(192\) −13.8171 + 1.04242i −0.997166 + 0.0752301i
\(193\) −22.6500 −1.63038 −0.815190 0.579194i \(-0.803367\pi\)
−0.815190 + 0.579194i \(0.803367\pi\)
\(194\) −11.7520 5.81447i −0.843743 0.417455i
\(195\) −0.0612694 + 0.191545i −0.00438759 + 0.0137168i
\(196\) 8.00378 + 10.4872i 0.571698 + 0.749083i
\(197\) −15.4248 −1.09897 −0.549487 0.835502i \(-0.685177\pi\)
−0.549487 + 0.835502i \(0.685177\pi\)
\(198\) −3.73907 + 2.00483i −0.265724 + 0.142477i
\(199\) 5.49102i 0.389248i −0.980878 0.194624i \(-0.937651\pi\)
0.980878 0.194624i \(-0.0623487\pi\)
\(200\) 1.19964 + 6.15660i 0.0848275 + 0.435337i
\(201\) −16.2026 5.18274i −1.14284 0.365562i
\(202\) 7.20951 + 3.56702i 0.507260 + 0.250974i
\(203\) 2.10891i 0.148016i
\(204\) −9.70580 + 3.45854i −0.679542 + 0.242146i
\(205\) 8.55606i 0.597581i
\(206\) −3.62483 + 7.32636i −0.252554 + 0.510452i
\(207\) 9.56475 + 6.81639i 0.664796 + 0.473772i
\(208\) −0.268563 0.0734625i −0.0186215 0.00509371i
\(209\) 2.49500i 0.172583i
\(210\) −1.80556 + 1.86563i −0.124596 + 0.128741i
\(211\) 16.8200 1.15794 0.578968 0.815350i \(-0.303456\pi\)
0.578968 + 0.815350i \(0.303456\pi\)
\(212\) −8.26837 10.8339i −0.567874 0.744072i
\(213\) −23.3210 7.45970i −1.59793 0.511130i
\(214\) −9.28406 + 18.7646i −0.634645 + 1.28272i
\(215\) −9.13375 −0.622917
\(216\) 9.86988 10.8897i 0.671560 0.740950i
\(217\) −6.14964 −0.417465
\(218\) 2.89163 5.84444i 0.195846 0.395836i
\(219\) −5.20423 1.66468i −0.351669 0.112488i
\(220\) 2.65198 2.02398i 0.178796 0.136457i
\(221\) −0.207039 −0.0139270
\(222\) 9.01122 9.31103i 0.604793 0.624916i
\(223\) 7.10997i 0.476119i 0.971251 + 0.238059i \(0.0765113\pi\)
−0.971251 + 0.238059i \(0.923489\pi\)
\(224\) −2.68702 2.38758i −0.179534 0.159527i
\(225\) −5.41784 3.86106i −0.361189 0.257404i
\(226\) 5.87974 11.8839i 0.391115 0.790506i
\(227\) 19.0669i 1.26552i 0.774350 + 0.632758i \(0.218077\pi\)
−0.774350 + 0.632758i \(0.781923\pi\)
\(228\) −2.90112 8.14150i −0.192131 0.539184i
\(229\) 3.57807i 0.236445i 0.992987 + 0.118223i \(0.0377197\pi\)
−0.992987 + 0.118223i \(0.962280\pi\)
\(230\) −8.27771 4.09552i −0.545816 0.270051i
\(231\) −1.04827 0.335311i −0.0689713 0.0220619i
\(232\) −1.79537 9.21390i −0.117872 0.604922i
\(233\) 8.52538i 0.558516i 0.960216 + 0.279258i \(0.0900885\pi\)
−0.960216 + 0.279258i \(0.909912\pi\)
\(234\) 0.260266 0.139551i 0.0170141 0.00912273i
\(235\) −11.8571 −0.773472
\(236\) 0.0298285 0.0227650i 0.00194167 0.00148188i
\(237\) 8.56283 26.7697i 0.556215 1.73888i
\(238\) −2.39570 1.18531i −0.155290 0.0768321i
\(239\) 29.8677 1.93198 0.965991 0.258575i \(-0.0832529\pi\)
0.965991 + 0.258575i \(0.0832529\pi\)
\(240\) −6.30030 + 9.68815i −0.406683 + 0.625367i
\(241\) 14.6085 0.941013 0.470507 0.882396i \(-0.344071\pi\)
0.470507 + 0.882396i \(0.344071\pi\)
\(242\) 1.26755 + 0.627142i 0.0814815 + 0.0403142i
\(243\) 0.356479 + 15.5844i 0.0228681 + 0.999738i
\(244\) −22.2989 + 17.0184i −1.42754 + 1.08949i
\(245\) 11.0028 0.702944
\(246\) −8.73782 + 9.02854i −0.557103 + 0.575639i
\(247\) 0.173670i 0.0110504i
\(248\) −26.8680 + 5.23536i −1.70612 + 0.332445i
\(249\) −4.36263 + 13.6388i −0.276471 + 0.864321i
\(250\) 15.2605 + 7.55036i 0.965158 + 0.477527i
\(251\) 6.87598i 0.434008i −0.976171 0.217004i \(-0.930371\pi\)
0.976171 0.217004i \(-0.0696285\pi\)
\(252\) 3.81053 0.124740i 0.240041 0.00785786i
\(253\) 3.91504i 0.246136i
\(254\) 9.47348 19.1474i 0.594419 1.20142i
\(255\) −2.61811 + 8.18490i −0.163952 + 0.512558i
\(256\) −13.7723 8.14390i −0.860770 0.508994i
\(257\) 24.1578i 1.50692i 0.657492 + 0.753462i \(0.271617\pi\)
−0.657492 + 0.753462i \(0.728383\pi\)
\(258\) 9.63813 + 9.32779i 0.600044 + 0.580723i
\(259\) 3.36135 0.208864
\(260\) −0.184597 + 0.140884i −0.0114482 + 0.00873725i
\(261\) 8.10827 + 5.77842i 0.501889 + 0.357675i
\(262\) −1.65730 + 3.34968i −0.102389 + 0.206944i
\(263\) 26.3147 1.62263 0.811317 0.584607i \(-0.198751\pi\)
0.811317 + 0.584607i \(0.198751\pi\)
\(264\) −4.86541 0.572565i −0.299445 0.0352389i
\(265\) −11.3666 −0.698242
\(266\) 0.994269 2.00958i 0.0609625 0.123215i
\(267\) 5.21224 16.2948i 0.318984 0.997229i
\(268\) −11.9173 15.6149i −0.727964 0.953834i
\(269\) 29.9670 1.82712 0.913560 0.406703i \(-0.133322\pi\)
0.913560 + 0.406703i \(0.133322\pi\)
\(270\) −2.22569 12.0538i −0.135451 0.733572i
\(271\) 6.16891i 0.374735i 0.982290 + 0.187367i \(0.0599955\pi\)
−0.982290 + 0.187367i \(0.940005\pi\)
\(272\) −11.4760 3.13913i −0.695833 0.190338i
\(273\) 0.0729674 + 0.0233401i 0.00441619 + 0.00141261i
\(274\) −12.3637 + 24.9890i −0.746919 + 1.50964i
\(275\) 2.21762i 0.133728i
\(276\) 4.55229 + 12.7752i 0.274016 + 0.768979i
\(277\) 14.2818i 0.858107i −0.903279 0.429054i \(-0.858847\pi\)
0.903279 0.429054i \(-0.141153\pi\)
\(278\) −2.26825 1.12225i −0.136041 0.0673083i
\(279\) 16.8500 23.6440i 1.00879 1.41553i
\(280\) −2.94258 + 0.573375i −0.175853 + 0.0342657i
\(281\) 9.03376i 0.538909i −0.963013 0.269455i \(-0.913157\pi\)
0.963013 0.269455i \(-0.0868434\pi\)
\(282\) 12.5119 + 12.1090i 0.745071 + 0.721079i
\(283\) −25.4937 −1.51544 −0.757721 0.652579i \(-0.773687\pi\)
−0.757721 + 0.652579i \(0.773687\pi\)
\(284\) −17.1530 22.4751i −1.01784 1.33365i
\(285\) −6.86572 2.19614i −0.406690 0.130088i
\(286\) −0.0882310 0.0436536i −0.00521721 0.00258129i
\(287\) −3.25937 −0.192394
\(288\) 16.5422 3.78900i 0.974757 0.223269i
\(289\) 8.15299 0.479588
\(290\) −7.01721 3.47187i −0.412065 0.203875i
\(291\) 15.2951 + 4.89244i 0.896614 + 0.286800i
\(292\) −3.82779 5.01546i −0.224004 0.293508i
\(293\) 21.9276 1.28102 0.640511 0.767949i \(-0.278722\pi\)
0.640511 + 0.767949i \(0.278722\pi\)
\(294\) −11.6104 11.2365i −0.677132 0.655329i
\(295\) 0.0312951i 0.00182207i
\(296\) 14.6859 2.86161i 0.853598 0.166328i
\(297\) 4.16147 3.11162i 0.241473 0.180554i
\(298\) −19.4788 9.63743i −1.12838 0.558281i
\(299\) 0.272515i 0.0157599i
\(300\) −2.57859 7.23638i −0.148875 0.417793i
\(301\) 3.47943i 0.200551i
\(302\) 4.68531 9.46976i 0.269609 0.544924i
\(303\) −9.38311 3.00138i −0.539046 0.172425i
\(304\) 2.63319 9.62637i 0.151024 0.552110i
\(305\) 23.3953i 1.33961i
\(306\) 11.1215 5.96316i 0.635772 0.340891i
\(307\) 18.6318 1.06337 0.531686 0.846942i \(-0.321559\pi\)
0.531686 + 0.846942i \(0.321559\pi\)
\(308\) −0.771021 1.01025i −0.0439330 0.0575644i
\(309\) 3.05002 9.53518i 0.173510 0.542438i
\(310\) −10.1241 + 20.4624i −0.575010 + 1.16219i
\(311\) −13.4100 −0.760411 −0.380205 0.924902i \(-0.624147\pi\)
−0.380205 + 0.924902i \(0.624147\pi\)
\(312\) 0.338668 + 0.0398547i 0.0191733 + 0.00225633i
\(313\) 8.61462 0.486927 0.243464 0.969910i \(-0.421716\pi\)
0.243464 + 0.969910i \(0.421716\pi\)
\(314\) 1.26788 2.56258i 0.0715504 0.144615i
\(315\) 1.84541 2.58948i 0.103977 0.145901i
\(316\) 25.7987 19.6895i 1.45129 1.10762i
\(317\) 14.1325 0.793758 0.396879 0.917871i \(-0.370093\pi\)
0.396879 + 0.917871i \(0.370093\pi\)
\(318\) 11.9942 + 11.6080i 0.672603 + 0.650945i
\(319\) 3.31887i 0.185821i
\(320\) −12.3681 + 5.01019i −0.691398 + 0.280078i
\(321\) 7.81184 24.4219i 0.436015 1.36310i
\(322\) −1.56016 + 3.15333i −0.0869442 + 0.175728i
\(323\) 7.42112i 0.412922i
\(324\) −9.96129 + 14.9924i −0.553405 + 0.832912i
\(325\) 0.154363i 0.00856251i
\(326\) −7.09352 3.50963i −0.392874 0.194380i
\(327\) −2.43309 + 7.60649i −0.134550 + 0.420640i
\(328\) −14.2403 + 2.77479i −0.786289 + 0.153212i
\(329\) 4.51687i 0.249023i
\(330\) −2.84148 + 2.93602i −0.156418 + 0.161623i
\(331\) 8.67374 0.476752 0.238376 0.971173i \(-0.423385\pi\)
0.238376 + 0.971173i \(0.423385\pi\)
\(332\) −13.1441 + 10.0315i −0.721374 + 0.550551i
\(333\) −9.21011 + 12.9236i −0.504711 + 0.708210i
\(334\) −7.15184 3.53848i −0.391331 0.193617i
\(335\) −16.3827 −0.895083
\(336\) 3.69063 + 2.40005i 0.201340 + 0.130933i
\(337\) −8.73386 −0.475764 −0.237882 0.971294i \(-0.576453\pi\)
−0.237882 + 0.971294i \(0.576453\pi\)
\(338\) −16.4721 8.14980i −0.895962 0.443291i
\(339\) −4.94737 + 15.4668i −0.268704 + 0.840041i
\(340\) −7.88802 + 6.02012i −0.427788 + 0.326487i
\(341\) −9.67793 −0.524089
\(342\) 5.00207 + 9.32899i 0.270481 + 0.504454i
\(343\) 8.63944i 0.466486i
\(344\) 2.96214 + 15.2018i 0.159708 + 0.819625i
\(345\) 10.7734 + 3.44608i 0.580018 + 0.185531i
\(346\) 12.8733 + 6.36927i 0.692074 + 0.342414i
\(347\) 12.5262i 0.672441i 0.941783 + 0.336220i \(0.109149\pi\)
−0.941783 + 0.336220i \(0.890851\pi\)
\(348\) 3.85909 + 10.8299i 0.206869 + 0.580543i
\(349\) 35.4264i 1.89633i 0.317779 + 0.948165i \(0.397063\pi\)
−0.317779 + 0.948165i \(0.602937\pi\)
\(350\) 0.883732 1.78617i 0.0472375 0.0954745i
\(351\) −0.289669 + 0.216591i −0.0154614 + 0.0115608i
\(352\) −4.22868 3.75743i −0.225389 0.200272i
\(353\) 2.28109i 0.121410i −0.998156 0.0607050i \(-0.980665\pi\)
0.998156 0.0607050i \(-0.0193349\pi\)
\(354\) −0.0319599 + 0.0330233i −0.00169865 + 0.00175517i
\(355\) −23.5802 −1.25151
\(356\) 15.7038 11.9851i 0.832300 0.635210i
\(357\) 3.11798 + 0.997347i 0.165021 + 0.0527852i
\(358\) 14.0754 28.4486i 0.743906 1.50355i
\(359\) −3.43694 −0.181395 −0.0906973 0.995879i \(-0.528910\pi\)
−0.0906973 + 0.995879i \(0.528910\pi\)
\(360\) 5.85818 12.8846i 0.308753 0.679078i
\(361\) −12.7750 −0.672366
\(362\) −11.7461 + 23.7408i −0.617361 + 1.24779i
\(363\) −1.64971 0.527693i −0.0865873 0.0276967i
\(364\) 0.0536687 + 0.0703208i 0.00281300 + 0.00368581i
\(365\) −5.26207 −0.275429
\(366\) 23.8923 24.6872i 1.24887 1.29042i
\(367\) 8.27404i 0.431901i −0.976404 0.215951i \(-0.930715\pi\)
0.976404 0.215951i \(-0.0692850\pi\)
\(368\) −4.13187 + 15.1052i −0.215389 + 0.787414i
\(369\) 8.93068 12.5315i 0.464913 0.652365i
\(370\) 5.53375 11.1846i 0.287686 0.581460i
\(371\) 4.33000i 0.224802i
\(372\) 31.5803 11.2532i 1.63736 0.583452i
\(373\) 2.81935i 0.145980i −0.997333 0.0729902i \(-0.976746\pi\)
0.997333 0.0729902i \(-0.0232542\pi\)
\(374\) −3.77020 1.86537i −0.194953 0.0964557i
\(375\) −19.8614 6.35307i −1.02564 0.328071i
\(376\) 3.84533 + 19.7344i 0.198308 + 1.01772i
\(377\) 0.231018i 0.0118980i
\(378\) −4.59181 + 0.847860i −0.236177 + 0.0436092i
\(379\) 5.93196 0.304704 0.152352 0.988326i \(-0.451315\pi\)
0.152352 + 0.988326i \(0.451315\pi\)
\(380\) −5.04985 6.61670i −0.259052 0.339429i
\(381\) −7.97123 + 24.9202i −0.408378 + 1.27670i
\(382\) −17.5625 8.68932i −0.898576 0.444584i
\(383\) 2.60459 0.133088 0.0665442 0.997783i \(-0.478803\pi\)
0.0665442 + 0.997783i \(0.478803\pi\)
\(384\) 18.1677 + 7.34398i 0.927117 + 0.374771i
\(385\) −1.05992 −0.0540188
\(386\) 28.7101 + 14.2047i 1.46130 + 0.723002i
\(387\) −13.3776 9.53367i −0.680023 0.484624i
\(388\) 11.2498 + 14.7403i 0.571121 + 0.748326i
\(389\) −11.1278 −0.564200 −0.282100 0.959385i \(-0.591031\pi\)
−0.282100 + 0.959385i \(0.591031\pi\)
\(390\) 0.197788 0.204368i 0.0100154 0.0103486i
\(391\) 11.6449i 0.588906i
\(392\) −3.56828 18.3125i −0.180226 0.924923i
\(393\) 1.39450 4.35957i 0.0703430 0.219911i
\(394\) 19.5518 + 9.67356i 0.985006 + 0.487347i
\(395\) 27.0672i 1.36190i
\(396\) 5.99679 0.196308i 0.301350 0.00986483i
\(397\) 10.8070i 0.542388i −0.962525 0.271194i \(-0.912581\pi\)
0.962525 0.271194i \(-0.0874185\pi\)
\(398\) −3.44365 + 6.96017i −0.172615 + 0.348882i
\(399\) −0.836603 + 2.61544i −0.0418825 + 0.130936i
\(400\) 2.34045 8.55617i 0.117022 0.427809i
\(401\) 3.69508i 0.184523i −0.995735 0.0922616i \(-0.970590\pi\)
0.995735 0.0922616i \(-0.0294096\pi\)
\(402\) 17.2874 + 16.7307i 0.862216 + 0.834453i
\(403\) 0.673654 0.0335571
\(404\) −6.90142 9.04277i −0.343359 0.449895i
\(405\) 4.89952 + 14.1904i 0.243459 + 0.705126i
\(406\) −1.32258 + 2.67315i −0.0656387 + 0.132666i
\(407\) 5.28989 0.262210
\(408\) 14.4716 + 1.70303i 0.716452 + 0.0843126i
\(409\) 25.7240 1.27197 0.635985 0.771701i \(-0.280594\pi\)
0.635985 + 0.771701i \(0.280594\pi\)
\(410\) −5.36586 + 10.8453i −0.265001 + 0.535610i
\(411\) 10.4031 32.5230i 0.513149 1.60424i
\(412\) 9.18933 7.01327i 0.452726 0.345519i
\(413\) −0.0119216 −0.000586625
\(414\) −7.84900 14.6386i −0.385757 0.719448i
\(415\) 13.7904i 0.676942i
\(416\) 0.294347 + 0.261545i 0.0144315 + 0.0128233i
\(417\) 2.95211 + 0.944292i 0.144565 + 0.0462422i
\(418\) 1.56472 3.16255i 0.0765330 0.154685i
\(419\) 18.4592i 0.901793i 0.892576 + 0.450896i \(0.148896\pi\)
−0.892576 + 0.450896i \(0.851104\pi\)
\(420\) 3.45866 1.23245i 0.168765 0.0601374i
\(421\) 0.178746i 0.00871155i 0.999991 + 0.00435578i \(0.00138649\pi\)
−0.999991 + 0.00435578i \(0.998614\pi\)
\(422\) −21.3203 10.5485i −1.03785 0.513494i
\(423\) −17.3663 12.3763i −0.844380 0.601754i
\(424\) 3.68625 + 18.9179i 0.179020 + 0.918736i
\(425\) 6.59609i 0.319957i
\(426\) 24.8824 + 24.0812i 1.20555 + 1.16674i
\(427\) 8.91225 0.431294
\(428\) 23.5361 17.9627i 1.13766 0.868260i
\(429\) 0.114832 + 0.0367313i 0.00554413 + 0.00177340i
\(430\) 11.5775 + 5.72816i 0.558318 + 0.276236i
\(431\) −12.6286 −0.608298 −0.304149 0.952624i \(-0.598372\pi\)
−0.304149 + 0.952624i \(0.598372\pi\)
\(432\) −19.3400 + 7.61347i −0.930496 + 0.366303i
\(433\) −23.1371 −1.11190 −0.555950 0.831216i \(-0.687645\pi\)
−0.555950 + 0.831216i \(0.687645\pi\)
\(434\) 7.79500 + 3.85670i 0.374172 + 0.185127i
\(435\) 9.13284 + 2.92132i 0.437886 + 0.140067i
\(436\) −7.33059 + 5.59469i −0.351071 + 0.267937i
\(437\) −9.76803 −0.467268
\(438\) 5.55265 + 5.37386i 0.265316 + 0.256773i
\(439\) 31.7464i 1.51517i −0.652736 0.757586i \(-0.726379\pi\)
0.652736 0.757586i \(-0.273621\pi\)
\(440\) −4.63085 + 0.902343i −0.220767 + 0.0430175i
\(441\) 16.1151 + 11.4846i 0.767387 + 0.546884i
\(442\) 0.262433 + 0.129843i 0.0124827 + 0.00617600i
\(443\) 14.6046i 0.693887i 0.937886 + 0.346943i \(0.112780\pi\)
−0.937886 + 0.346943i \(0.887220\pi\)
\(444\) −17.2615 + 6.15093i −0.819197 + 0.291910i
\(445\) 16.4760i 0.781036i
\(446\) 4.45896 9.01227i 0.211138 0.426743i
\(447\) 25.3515 + 8.10917i 1.19908 + 0.383551i
\(448\) 1.90859 + 4.71153i 0.0901726 + 0.222599i
\(449\) 24.3408i 1.14871i −0.818605 0.574356i \(-0.805252\pi\)
0.818605 0.574356i \(-0.194748\pi\)
\(450\) 4.44597 + 8.29185i 0.209585 + 0.390882i
\(451\) −5.12939 −0.241534
\(452\) −14.9058 + 11.3761i −0.701109 + 0.535085i
\(453\) −3.94234 + 12.3248i −0.185227 + 0.579070i
\(454\) 11.9577 24.1683i 0.561201 1.13428i
\(455\) 0.0737784 0.00345879
\(456\) −1.42855 + 12.1392i −0.0668980 + 0.568470i
\(457\) −2.35640 −0.110228 −0.0551140 0.998480i \(-0.517552\pi\)
−0.0551140 + 0.998480i \(0.517552\pi\)
\(458\) 2.24396 4.53540i 0.104853 0.211925i
\(459\) −12.3778 + 9.25517i −0.577748 + 0.431994i
\(460\) 7.92397 + 10.3826i 0.369457 + 0.484091i
\(461\) −34.3334 −1.59906 −0.799532 0.600623i \(-0.794919\pi\)
−0.799532 + 0.600623i \(0.794919\pi\)
\(462\) 1.11846 + 1.08244i 0.0520352 + 0.0503597i
\(463\) 8.37349i 0.389149i 0.980888 + 0.194575i \(0.0623326\pi\)
−0.980888 + 0.194575i \(0.937667\pi\)
\(464\) −3.50269 + 12.8051i −0.162608 + 0.594460i
\(465\) 8.51867 26.6316i 0.395044 1.23501i
\(466\) 5.34662 10.8064i 0.247677 0.500596i
\(467\) 18.2946i 0.846574i 0.905996 + 0.423287i \(0.139124\pi\)
−0.905996 + 0.423287i \(0.860876\pi\)
\(468\) −0.417420 + 0.0136644i −0.0192952 + 0.000631639i
\(469\) 6.24087i 0.288176i
\(470\) 15.0295 + 7.43608i 0.693260 + 0.343001i
\(471\) −1.06682 + 3.33518i −0.0491566 + 0.153677i
\(472\) −0.0520861 + 0.0101492i −0.00239746 + 0.000467155i
\(473\) 5.47572i 0.251774i
\(474\) −27.6422 + 28.5619i −1.26965 + 1.31189i
\(475\) 5.53298 0.253871
\(476\) 2.29332 + 3.00488i 0.105114 + 0.137729i
\(477\) −16.6479 11.8642i −0.762254 0.543226i
\(478\) −37.8590 18.7313i −1.73163 0.856749i
\(479\) −25.4823 −1.16432 −0.582158 0.813076i \(-0.697791\pi\)
−0.582158 + 0.813076i \(0.697791\pi\)
\(480\) 14.0618 8.32907i 0.641831 0.380168i
\(481\) −0.368215 −0.0167891
\(482\) −18.5170 9.16157i −0.843427 0.417298i
\(483\) 1.31276 4.10403i 0.0597325 0.186740i
\(484\) −1.21339 1.58987i −0.0551539 0.0722669i
\(485\) 15.4651 0.702233
\(486\) 9.32176 19.9776i 0.422844 0.906203i
\(487\) 14.4438i 0.654511i 0.944936 + 0.327256i \(0.106124\pi\)
−0.944936 + 0.327256i \(0.893876\pi\)
\(488\) 38.9380 7.58724i 1.76264 0.343458i
\(489\) 9.23215 + 2.95309i 0.417492 + 0.133543i
\(490\) −13.9467 6.90032i −0.630046 0.311725i
\(491\) 38.9968i 1.75990i −0.475068 0.879949i \(-0.657576\pi\)
0.475068 0.879949i \(-0.342424\pi\)
\(492\) 16.7378 5.96431i 0.754600 0.268892i
\(493\) 9.87162i 0.444596i
\(494\) −0.108916 + 0.220137i −0.00490036 + 0.00990441i
\(495\) 2.90420 4.07517i 0.130534 0.183165i
\(496\) 37.3400 + 10.2140i 1.67661 + 0.458620i
\(497\) 8.98270i 0.402929i
\(498\) 14.0833 14.5519i 0.631088 0.652085i
\(499\) −17.7796 −0.795922 −0.397961 0.917402i \(-0.630282\pi\)
−0.397961 + 0.917402i \(0.630282\pi\)
\(500\) −14.6084 19.1410i −0.653306 0.856011i
\(501\) 9.30805 + 2.97737i 0.415853 + 0.133019i
\(502\) −4.31222 + 8.71568i −0.192464 + 0.389000i
\(503\) 23.6893 1.05625 0.528127 0.849165i \(-0.322894\pi\)
0.528127 + 0.849165i \(0.322894\pi\)
\(504\) −4.90829 2.23163i −0.218632 0.0994047i
\(505\) −9.48740 −0.422184
\(506\) −2.45528 + 4.96252i −0.109151 + 0.220611i
\(507\) 21.4382 + 6.85745i 0.952105 + 0.304550i
\(508\) −24.0163 + 18.3292i −1.06555 + 0.813226i
\(509\) 32.8416 1.45568 0.727839 0.685748i \(-0.240525\pi\)
0.727839 + 0.685748i \(0.240525\pi\)
\(510\) 8.45168 8.73288i 0.374247 0.386698i
\(511\) 2.00455i 0.0886759i
\(512\) 12.3498 + 18.9600i 0.545788 + 0.837923i
\(513\) −7.76349 10.3829i −0.342767 0.458416i
\(514\) 15.1504 30.6213i 0.668254 1.35065i
\(515\) 9.64116i 0.424840i
\(516\) −6.36701 17.8679i −0.280292 0.786592i
\(517\) 7.10838i 0.312626i
\(518\) −4.26069 2.10804i −0.187204 0.0926220i
\(519\) −16.7545 5.35927i −0.735441 0.235246i
\(520\) 0.322341 0.0628096i 0.0141356 0.00275438i
\(521\) 43.0008i 1.88390i −0.335756 0.941949i \(-0.608992\pi\)
0.335756 0.941949i \(-0.391008\pi\)
\(522\) −6.65378 12.4095i −0.291228 0.543149i
\(523\) −23.8463 −1.04273 −0.521363 0.853335i \(-0.674576\pi\)
−0.521363 + 0.853335i \(0.674576\pi\)
\(524\) 4.20144 3.20653i 0.183541 0.140078i
\(525\) −0.743595 + 2.32468i −0.0324531 + 0.101457i
\(526\) −33.3553 16.5030i −1.45436 0.719567i
\(527\) 28.7860 1.25394
\(528\) 5.80809 + 3.77706i 0.252764 + 0.164375i
\(529\) −7.67249 −0.333586
\(530\) 14.4077 + 7.12844i 0.625831 + 0.309640i
\(531\) 0.0326653 0.0458360i 0.00141756 0.00198911i
\(532\) −2.52058 + 1.92370i −0.109281 + 0.0834030i
\(533\) 0.357043 0.0154653
\(534\) −16.8260 + 17.3858i −0.728131 + 0.752357i
\(535\) 24.6934i 1.06759i
\(536\) 5.31302 + 27.2666i 0.229488 + 1.17774i
\(537\) −11.8434 + 37.0255i −0.511079 + 1.59777i
\(538\) −37.9848 18.7936i −1.63764 0.810248i
\(539\) 6.59623i 0.284120i
\(540\) −4.73827 + 16.6747i −0.203903 + 0.717564i
\(541\) 38.6555i 1.66193i −0.556323 0.830966i \(-0.687788\pi\)
0.556323 0.830966i \(-0.312212\pi\)
\(542\) 3.86878 7.81943i 0.166178 0.335873i
\(543\) 9.88347 30.8984i 0.424140 1.32598i
\(544\) 12.5777 + 11.1761i 0.539266 + 0.479170i
\(545\) 7.69103i 0.329448i
\(546\) −0.0778526 0.0753458i −0.00333178 0.00322450i
\(547\) 8.82567 0.377358 0.188679 0.982039i \(-0.439579\pi\)
0.188679 + 0.982039i \(0.439579\pi\)
\(548\) 31.3433 23.9212i 1.33892 1.02186i
\(549\) −24.4196 + 34.2656i −1.04220 + 1.46242i
\(550\) 1.39076 2.81096i 0.0593024 0.119860i
\(551\) −8.28060 −0.352765
\(552\) 2.24161 19.0482i 0.0954093 0.810747i
\(553\) −10.3111 −0.438470
\(554\) −8.95668 + 18.1029i −0.380533 + 0.769118i
\(555\) −4.65624 + 14.5567i −0.197646 + 0.617896i
\(556\) 2.17132 + 2.84503i 0.0920846 + 0.120656i
\(557\) −15.1216 −0.640723 −0.320362 0.947295i \(-0.603804\pi\)
−0.320362 + 0.947295i \(0.603804\pi\)
\(558\) −36.1865 + 19.4026i −1.53190 + 0.821379i
\(559\) 0.381150i 0.0161209i
\(560\) 4.08946 + 1.11863i 0.172811 + 0.0472707i
\(561\) 4.90688 + 1.56957i 0.207169 + 0.0662671i
\(562\) −5.66545 + 11.4508i −0.238983 + 0.483022i
\(563\) 37.9812i 1.60072i 0.599523 + 0.800358i \(0.295357\pi\)
−0.599523 + 0.800358i \(0.704643\pi\)
\(564\) −8.26541 23.1955i −0.348037 0.976707i
\(565\) 15.6387i 0.657925i
\(566\) 32.3146 + 15.9881i 1.35828 + 0.672032i
\(567\) 5.40572 1.86644i 0.227019 0.0783829i
\(568\) 7.64722 + 39.2458i 0.320870 + 1.64672i
\(569\) 35.2488i 1.47771i 0.673865 + 0.738854i \(0.264633\pi\)
−0.673865 + 0.738854i \(0.735367\pi\)
\(570\) 7.32539 + 7.08951i 0.306827 + 0.296947i
\(571\) −14.3624 −0.601047 −0.300523 0.953774i \(-0.597161\pi\)
−0.300523 + 0.953774i \(0.597161\pi\)
\(572\) 0.0844605 + 0.110667i 0.00353147 + 0.00462720i
\(573\) 22.8574 + 7.31141i 0.954883 + 0.305439i
\(574\) 4.13142 + 2.04408i 0.172442 + 0.0853184i
\(575\) −8.68208 −0.362068
\(576\) −23.3443 5.57152i −0.972681 0.232147i
\(577\) −15.6727 −0.652462 −0.326231 0.945290i \(-0.605779\pi\)
−0.326231 + 0.945290i \(0.605779\pi\)
\(578\) −10.3344 5.11308i −0.429853 0.212676i
\(579\) −37.3658 11.9522i −1.55287 0.496717i
\(580\) 6.71734 + 8.80158i 0.278922 + 0.365466i
\(581\) 5.25333 0.217945
\(582\) −16.3191 15.7936i −0.676448 0.654667i
\(583\) 6.81429i 0.282219i
\(584\) 1.70652 + 8.75794i 0.0706165 + 0.362406i
\(585\) −0.202153 + 0.283661i −0.00835801 + 0.0117280i
\(586\) −27.7944 13.7517i −1.14818 0.568077i
\(587\) 14.3808i 0.593558i −0.954946 0.296779i \(-0.904088\pi\)
0.954946 0.296779i \(-0.0959125\pi\)
\(588\) 7.66990 + 21.5243i 0.316302 + 0.887647i
\(589\) 24.1465i 0.994938i
\(590\) −0.0196265 + 0.0396682i −0.000808009 + 0.00163312i
\(591\) −25.4465 8.13958i −1.04673 0.334817i
\(592\) −20.4098 5.58287i −0.838836 0.229455i
\(593\) 4.09363i 0.168105i 0.996461 + 0.0840526i \(0.0267864\pi\)
−0.996461 + 0.0840526i \(0.973214\pi\)
\(594\) −7.22631 + 1.33431i −0.296499 + 0.0547474i
\(595\) 3.15263 0.129245
\(596\) 18.6464 + 24.4319i 0.763786 + 1.00077i
\(597\) 2.89757 9.05859i 0.118590 0.370743i
\(598\) 0.170906 0.345427i 0.00698885 0.0141256i
\(599\) −17.0416 −0.696301 −0.348151 0.937439i \(-0.613190\pi\)
−0.348151 + 0.937439i \(0.613190\pi\)
\(600\) −1.26973 + 10.7896i −0.0518367 + 0.440485i
\(601\) 25.0332 1.02113 0.510563 0.859841i \(-0.329437\pi\)
0.510563 + 0.859841i \(0.329437\pi\)
\(602\) 2.18210 4.41037i 0.0889356 0.179753i
\(603\) −23.9947 17.1000i −0.977140 0.696366i
\(604\) −11.8778 + 9.06508i −0.483299 + 0.368853i
\(605\) −1.66805 −0.0678157
\(606\) 10.0113 + 9.68895i 0.406682 + 0.393587i
\(607\) 2.23540i 0.0907323i −0.998970 0.0453661i \(-0.985555\pi\)
0.998970 0.0453661i \(-0.0144455\pi\)
\(608\) −9.37481 + 10.5506i −0.380199 + 0.427882i
\(609\) 1.11286 3.47908i 0.0450952 0.140980i
\(610\) 14.6722 29.6548i 0.594058 1.20069i
\(611\) 0.494795i 0.0200173i
\(612\) −17.8368 + 0.583896i −0.721010 + 0.0236026i
\(613\) 20.4350i 0.825361i −0.910876 0.412681i \(-0.864593\pi\)
0.910876 0.412681i \(-0.135407\pi\)
\(614\) −23.6168 11.6848i −0.953095 0.471558i
\(615\) 4.51497 14.1150i 0.182061 0.569172i
\(616\) 0.343741 + 1.76409i 0.0138497 + 0.0710771i
\(617\) 11.3875i 0.458442i −0.973374 0.229221i \(-0.926382\pi\)
0.973374 0.229221i \(-0.0736179\pi\)
\(618\) −9.84598 + 10.1736i −0.396063 + 0.409241i
\(619\) 3.01307 0.121106 0.0605528 0.998165i \(-0.480714\pi\)
0.0605528 + 0.998165i \(0.480714\pi\)
\(620\) 25.6657 19.5880i 1.03076 0.786672i
\(621\) 12.1821 + 16.2923i 0.488851 + 0.653788i
\(622\) 16.9979 + 8.40996i 0.681553 + 0.337209i
\(623\) −6.27639 −0.251458
\(624\) −0.404285 0.262910i −0.0161843 0.0105248i
\(625\) −8.99402 −0.359761
\(626\) −10.9195 5.40259i −0.436431 0.215931i
\(627\) −1.31660 + 4.11603i −0.0525798 + 0.164378i
\(628\) −3.21420 + 2.45307i −0.128261 + 0.0978883i
\(629\) −15.7342 −0.627363
\(630\) −3.96313 + 2.12497i −0.157895 + 0.0846609i
\(631\) 45.8357i 1.82469i 0.409424 + 0.912344i \(0.365730\pi\)
−0.409424 + 0.912344i \(0.634270\pi\)
\(632\) −45.0494 + 8.77808i −1.79197 + 0.349173i
\(633\) 27.7481 + 8.87579i 1.10289 + 0.352781i
\(634\) −17.9136 8.86305i −0.711442 0.351997i
\(635\) 25.1972i 0.999919i
\(636\) −7.92346 22.2359i −0.314186 0.881710i
\(637\) 0.459146i 0.0181920i
\(638\) −2.08140 + 4.20685i −0.0824035 + 0.166551i
\(639\) −34.5365 24.6127i −1.36624 0.973662i
\(640\) 18.8193 + 1.40586i 0.743900 + 0.0555716i
\(641\) 23.3467i 0.922139i −0.887364 0.461070i \(-0.847466\pi\)
0.887364 0.461070i \(-0.152534\pi\)
\(642\) −25.2179 + 26.0570i −0.995272 + 1.02839i
\(643\) 15.5799 0.614413 0.307207 0.951643i \(-0.400606\pi\)
0.307207 + 0.951643i \(0.400606\pi\)
\(644\) 3.95517 3.01858i 0.155856 0.118949i
\(645\) −15.0680 4.81982i −0.593303 0.189780i
\(646\) −4.65409 + 9.40667i −0.183113 + 0.370100i
\(647\) −15.4112 −0.605876 −0.302938 0.953010i \(-0.597968\pi\)
−0.302938 + 0.953010i \(0.597968\pi\)
\(648\) 22.0288 12.7566i 0.865375 0.501125i
\(649\) −0.0187615 −0.000736455
\(650\) −0.0968073 + 0.195663i −0.00379710 + 0.00767454i
\(651\) −10.1451 3.24512i −0.397618 0.127186i
\(652\) 6.79039 + 8.89729i 0.265932 + 0.348445i
\(653\) 24.4686 0.957532 0.478766 0.877943i \(-0.341084\pi\)
0.478766 + 0.877943i \(0.341084\pi\)
\(654\) 7.85442 8.11574i 0.307132 0.317351i
\(655\) 4.40803i 0.172236i
\(656\) 19.7905 + 5.41349i 0.772690 + 0.211361i
\(657\) −7.70702 5.49247i −0.300680 0.214282i
\(658\) 2.83272 5.72538i 0.110431 0.223198i
\(659\) 20.8400i 0.811811i −0.913915 0.405906i \(-0.866956\pi\)
0.913915 0.405906i \(-0.133044\pi\)
\(660\) 5.44304 1.93955i 0.211870 0.0754971i
\(661\) 26.6750i 1.03754i 0.854915 + 0.518769i \(0.173609\pi\)
−0.854915 + 0.518769i \(0.826391\pi\)
\(662\) −10.9944 5.43966i −0.427311 0.211418i
\(663\) −0.341555 0.109253i −0.0132649 0.00424304i
\(664\) 22.9520 4.47230i 0.890710 0.173559i
\(665\) 2.64452i 0.102550i
\(666\) 19.7793 10.6053i 0.766431 0.410949i
\(667\) 12.9935 0.503110
\(668\) 6.84622 + 8.97044i 0.264888 + 0.347077i
\(669\) −3.75188 + 11.7294i −0.145056 + 0.453484i
\(670\) 20.7660 + 10.2743i 0.802259 + 0.396930i
\(671\) 14.0256 0.541451
\(672\) −3.17290 5.35674i −0.122397 0.206641i
\(673\) 12.3082 0.474445 0.237223 0.971455i \(-0.423763\pi\)
0.237223 + 0.971455i \(0.423763\pi\)
\(674\) 11.0706 + 5.47737i 0.426425 + 0.210980i
\(675\) −6.90040 9.22858i −0.265596 0.355208i
\(676\) 15.7681 + 20.6606i 0.606467 + 0.794640i
\(677\) 13.5649 0.521341 0.260670 0.965428i \(-0.416056\pi\)
0.260670 + 0.965428i \(0.416056\pi\)
\(678\) 15.9709 16.5023i 0.613360 0.633767i
\(679\) 5.89131i 0.226088i
\(680\) 13.7740 2.68392i 0.528207 0.102924i
\(681\) −10.0615 + 31.4549i −0.385557 + 1.20535i
\(682\) 12.2673 + 6.06943i 0.469739 + 0.232411i
\(683\) 18.6981i 0.715464i −0.933824 0.357732i \(-0.883550\pi\)
0.933824 0.357732i \(-0.116450\pi\)
\(684\) −0.489788 14.9620i −0.0187275 0.572087i
\(685\) 32.8845i 1.25645i
\(686\) −5.41815 + 10.9510i −0.206866 + 0.418109i
\(687\) −1.88812 + 5.90277i −0.0720363 + 0.225205i
\(688\) 5.77900 21.1268i 0.220322 0.805450i
\(689\) 0.474324i 0.0180703i
\(690\) −11.4946 11.1245i −0.437593 0.423503i
\(691\) 8.29275 0.315471 0.157736 0.987481i \(-0.449581\pi\)
0.157736 + 0.987481i \(0.449581\pi\)
\(692\) −12.3232 16.1468i −0.468458 0.613809i
\(693\) −1.55240 1.10633i −0.0589710 0.0420261i
\(694\) 7.85569 15.8776i 0.298198 0.602706i
\(695\) 2.98492 0.113225
\(696\) 1.90027 16.1477i 0.0720295 0.612075i
\(697\) 15.2568 0.577894
\(698\) 22.2173 44.9048i 0.840939 1.69967i
\(699\) −4.49878 + 14.0644i −0.170159 + 0.531964i
\(700\) −2.24036 + 1.70984i −0.0846775 + 0.0646257i
\(701\) −44.9157 −1.69644 −0.848222 0.529641i \(-0.822327\pi\)
−0.848222 + 0.529641i \(0.822327\pi\)
\(702\) 0.503004 0.0928777i 0.0189847 0.00350544i
\(703\) 13.1983i 0.497783i
\(704\) 3.00363 + 7.41473i 0.113204 + 0.279453i
\(705\) −19.5608 6.25690i −0.736701 0.235649i
\(706\) −1.43056 + 2.89140i −0.0538400 + 0.108819i
\(707\) 3.61415i 0.135924i
\(708\) 0.0612212 0.0218154i 0.00230083 0.000819872i
\(709\) 18.6639i 0.700938i 0.936574 + 0.350469i \(0.113978\pi\)
−0.936574 + 0.350469i \(0.886022\pi\)
\(710\) 29.8892 + 14.7881i 1.12172 + 0.554989i
\(711\) 28.2523 39.6437i 1.05955 1.48675i
\(712\) −27.4218 + 5.34326i −1.02768 + 0.200247i
\(713\) 37.8895i 1.41897i
\(714\) −3.32672 3.21960i −0.124500 0.120491i
\(715\) 0.116108 0.00434220
\(716\) −35.6826 + 27.2329i −1.33352 + 1.01774i
\(717\) 49.2731 + 15.7610i 1.84014 + 0.588605i
\(718\) 4.35650 + 2.15545i 0.162583 + 0.0804406i
\(719\) −4.48410 −0.167229 −0.0836143 0.996498i \(-0.526646\pi\)
−0.0836143 + 0.996498i \(0.526646\pi\)
\(720\) −15.5060 + 12.6580i −0.577876 + 0.471736i
\(721\) −3.67273 −0.136780
\(722\) 16.1929 + 8.01171i 0.602639 + 0.298165i
\(723\) 24.0997 + 7.70878i 0.896278 + 0.286693i
\(724\) 29.7776 22.7262i 1.10668 0.844613i
\(725\) −7.36001 −0.273344
\(726\) 1.76016 + 1.70348i 0.0653256 + 0.0632221i
\(727\) 31.1454i 1.15512i 0.816348 + 0.577560i \(0.195995\pi\)
−0.816348 + 0.577560i \(0.804005\pi\)
\(728\) −0.0239268 0.122793i −0.000886788 0.00455102i
\(729\) −7.63568 + 25.8978i −0.282803 + 0.959178i
\(730\) 6.66996 + 3.30006i 0.246866 + 0.122141i
\(731\) 16.2869i 0.602394i
\(732\) −45.7671 + 16.3085i −1.69160 + 0.602780i
\(733\) 4.13928i 0.152888i 0.997074 + 0.0764439i \(0.0243566\pi\)
−0.997074 + 0.0764439i \(0.975643\pi\)
\(734\) −5.18899 + 10.4878i −0.191529 + 0.387111i
\(735\) 18.1514 + 5.80610i 0.669526 + 0.214161i
\(736\) 14.7105 16.5554i 0.542236 0.610241i
\(737\) 9.82150i 0.361780i
\(738\) −19.1792 + 10.2836i −0.705995 + 0.378544i
\(739\) 8.86355 0.326051 0.163025 0.986622i \(-0.447875\pi\)
0.163025 + 0.986622i \(0.447875\pi\)
\(740\) −14.0287 + 10.7066i −0.515704 + 0.393584i
\(741\) 0.0916446 0.286506i 0.00336665 0.0105250i
\(742\) 2.71552 5.48851i 0.0996900 0.201490i
\(743\) −1.05947 −0.0388680 −0.0194340 0.999811i \(-0.506186\pi\)
−0.0194340 + 0.999811i \(0.506186\pi\)
\(744\) −47.0871 5.54124i −1.72630 0.203152i
\(745\) 25.6332 0.939129
\(746\) −1.76813 + 3.57368i −0.0647359 + 0.130842i
\(747\) −14.3942 + 20.1979i −0.526655 + 0.739001i
\(748\) 3.60909 + 4.72890i 0.131961 + 0.172906i
\(749\) −9.40675 −0.343715
\(750\) 21.1911 + 20.5088i 0.773790 + 0.748874i
\(751\) 0.342250i 0.0124889i −0.999981 0.00624444i \(-0.998012\pi\)
0.999981 0.00624444i \(-0.00198768\pi\)
\(752\) 7.50208 27.4260i 0.273573 1.00012i
\(753\) 3.62841 11.3434i 0.132227 0.413376i
\(754\) 0.144881 0.292827i 0.00527625 0.0106641i
\(755\) 12.4618i 0.453531i
\(756\) 6.35210 + 1.80501i 0.231023 + 0.0656475i
\(757\) 49.5286i 1.80015i −0.435736 0.900074i \(-0.643512\pi\)
0.435736 0.900074i \(-0.356488\pi\)
\(758\) −7.51908 3.72018i −0.273105 0.135123i
\(759\) 2.06594 6.45867i 0.0749888 0.234435i
\(760\) 2.25135 + 11.5540i 0.0816650 + 0.419107i
\(761\) 15.5394i 0.563302i 0.959517 + 0.281651i \(0.0908820\pi\)
−0.959517 + 0.281651i \(0.909118\pi\)
\(762\) 25.7325 26.5886i 0.932188 0.963203i
\(763\) 2.92984 0.106067
\(764\) 16.8120 + 22.0284i 0.608237 + 0.796958i
\(765\) −8.63823 + 12.1211i −0.312316 + 0.438241i
\(766\) −3.30146 1.63345i −0.119287 0.0590189i
\(767\) 0.00130594 4.71548e−5
\(768\) −18.4228 20.7026i −0.664777 0.747042i
\(769\) 38.3405 1.38259 0.691296 0.722571i \(-0.257040\pi\)
0.691296 + 0.722571i \(0.257040\pi\)
\(770\) 1.34351 + 0.664723i 0.0484168 + 0.0239549i
\(771\) −12.7479 + 39.8534i −0.459105 + 1.43528i
\(772\) −27.4832 36.0105i −0.989141 1.29605i
\(773\) 31.6334 1.13777 0.568887 0.822416i \(-0.307374\pi\)
0.568887 + 0.822416i \(0.307374\pi\)
\(774\) 10.9779 + 20.4741i 0.394593 + 0.735927i
\(775\) 21.4620i 0.770939i
\(776\) −5.01543 25.7393i −0.180043 0.923989i
\(777\) 5.54525 + 1.77376i 0.198935 + 0.0636333i
\(778\) 14.1051 + 6.97869i 0.505691 + 0.250198i
\(779\) 12.7979i 0.458531i
\(780\) −0.378875 + 0.135007i −0.0135659 + 0.00483403i
\(781\) 14.1364i 0.505842i
\(782\) 7.30297 14.7605i 0.261154 0.527834i
\(783\) 10.3271 + 13.8114i 0.369059 + 0.493579i
\(784\) −6.96157 + 25.4500i −0.248627 + 0.908927i
\(785\) 3.37224i 0.120361i
\(786\) −4.50167 + 4.65144i −0.160569 + 0.165911i
\(787\) 29.3603 1.04658 0.523291 0.852154i \(-0.324704\pi\)
0.523291 + 0.852154i \(0.324704\pi\)
\(788\) −18.7163 24.5235i −0.666740 0.873614i
\(789\) 43.4116 + 13.8861i 1.54549 + 0.494357i
\(790\) −16.9750 + 34.3092i −0.603943 + 1.22067i
\(791\) 5.95744 0.211822
\(792\) −7.72437 3.51200i −0.274473 0.124794i
\(793\) −0.976281 −0.0346688
\(794\) −6.77752 + 13.6985i −0.240525 + 0.486140i
\(795\) −18.7515 5.99805i −0.665047 0.212729i
\(796\) 8.73002 6.66273i 0.309428 0.236154i
\(797\) 17.6347 0.624652 0.312326 0.949975i \(-0.398892\pi\)
0.312326 + 0.949975i \(0.398892\pi\)
\(798\) 2.70069 2.79055i 0.0956035 0.0987844i
\(799\) 21.1431i 0.747989i
\(800\) −8.33258 + 9.37762i −0.294601 + 0.331549i
\(801\) 17.1974 24.1313i 0.607639 0.852638i
\(802\) −2.31734 + 4.68371i −0.0818280 + 0.165387i
\(803\) 3.15463i 0.111325i
\(804\) −11.4202 32.0488i −0.402758 1.13027i
\(805\) 4.14964i 0.146256i
\(806\) −0.853893 0.422477i −0.0300771 0.0148811i
\(807\) 49.4368 + 15.8134i 1.74026 + 0.556657i
\(808\) 3.07683 + 15.7904i 0.108242 + 0.555503i
\(809\) 27.8266i 0.978331i −0.872191 0.489165i \(-0.837301\pi\)
0.872191 0.489165i \(-0.162699\pi\)
\(810\) 2.68897 21.0598i 0.0944808 0.739965i
\(811\) 25.6977 0.902367 0.451184 0.892431i \(-0.351002\pi\)
0.451184 + 0.892431i \(0.351002\pi\)
\(812\) 3.35289 2.55892i 0.117663 0.0898005i
\(813\) −3.25529 + 10.1769i −0.114168 + 0.356920i
\(814\) −6.70522 3.31751i −0.235018 0.116279i
\(815\) 9.33477 0.326983
\(816\) −17.2755 11.2344i −0.604764 0.393284i
\(817\) 13.6619 0.477971
\(818\) −32.6066 16.1326i −1.14006 0.564063i
\(819\) 0.108059 + 0.0770088i 0.00377587 + 0.00269090i
\(820\) 13.6030 10.3818i 0.475039 0.362549i
\(821\) −21.0808 −0.735726 −0.367863 0.929880i \(-0.619910\pi\)
−0.367863 + 0.929880i \(0.619910\pi\)
\(822\) −33.5831 + 34.7004i −1.17134 + 1.21032i
\(823\) 29.6426i 1.03328i −0.856204 0.516638i \(-0.827183\pi\)
0.856204 0.516638i \(-0.172817\pi\)
\(824\) −16.0463 + 3.12669i −0.558999 + 0.108924i
\(825\) −1.17022 + 3.65844i −0.0407420 + 0.127370i
\(826\) 0.0151113 + 0.00747655i 0.000525790 + 0.000260143i
\(827\) 1.85013i 0.0643353i 0.999482 + 0.0321676i \(0.0102410\pi\)
−0.999482 + 0.0321676i \(0.989759\pi\)
\(828\) 0.768552 + 23.4776i 0.0267090 + 0.815905i
\(829\) 24.2891i 0.843594i 0.906690 + 0.421797i \(0.138600\pi\)
−0.906690 + 0.421797i \(0.861400\pi\)
\(830\) 8.64850 17.4800i 0.300194 0.606740i
\(831\) 7.53638 23.5607i 0.261434 0.817313i
\(832\) −0.209075 0.516119i −0.00724836 0.0178932i
\(833\) 19.6198i 0.679785i
\(834\) −3.14975 3.04833i −0.109067 0.105555i
\(835\) 9.41151 0.325699
\(836\) −3.96674 + 3.02740i −0.137192 + 0.104705i
\(837\) 40.2744 30.1140i 1.39209 1.04089i
\(838\) 11.5766 23.3981i 0.399906 0.808273i
\(839\) −26.6793 −0.921073 −0.460537 0.887641i \(-0.652343\pi\)
−0.460537 + 0.887641i \(0.652343\pi\)
\(840\) −5.15696 0.606875i −0.177932 0.0209392i
\(841\) −17.9851 −0.620176
\(842\) 0.112099 0.226570i 0.00386319 0.00780813i
\(843\) 4.76705 14.9031i 0.164186 0.513289i
\(844\) 20.4092 + 26.7416i 0.702512 + 0.920485i
\(845\) 21.6765 0.745695
\(846\) 14.2511 + 26.5787i 0.489963 + 0.913795i
\(847\) 0.635429i 0.0218336i
\(848\) 7.19171 26.2913i 0.246964 0.902847i
\(849\) −42.0572 13.4528i −1.44340 0.461700i
\(850\) −4.13668 + 8.36089i −0.141887 + 0.286776i
\(851\) 20.7101i 0.709933i
\(852\) −16.4374 46.1289i −0.563137 1.58035i
\(853\) 17.3896i 0.595408i −0.954658 0.297704i \(-0.903779\pi\)
0.954658 0.297704i \(-0.0962209\pi\)
\(854\) −11.2968 5.58924i −0.386567 0.191260i
\(855\) −10.1676 7.24599i −0.347723 0.247808i
\(856\) −41.0984 + 8.00822i −1.40472 + 0.273715i
\(857\) 28.3201i 0.967396i 0.875235 + 0.483698i \(0.160707\pi\)
−0.875235 + 0.483698i \(0.839293\pi\)
\(858\) −0.122520 0.118575i −0.00418275 0.00404807i
\(859\) 22.0179 0.751243 0.375621 0.926773i \(-0.377429\pi\)
0.375621 + 0.926773i \(0.377429\pi\)
\(860\) −11.0828 14.5215i −0.377919 0.495179i
\(861\) −5.37701 1.71994i −0.183248 0.0586155i
\(862\) 16.0074 + 7.91992i 0.545215 + 0.269753i
\(863\) 7.39300 0.251660 0.125830 0.992052i \(-0.459841\pi\)
0.125830 + 0.992052i \(0.459841\pi\)
\(864\) 29.2892 + 2.47843i 0.996439 + 0.0843180i
\(865\) −16.9407 −0.576002
\(866\) 29.3276 + 14.5103i 0.996591 + 0.493079i
\(867\) 13.4501 + 4.30228i 0.456788 + 0.146113i
\(868\) −7.46189 9.77714i −0.253273 0.331858i
\(869\) −16.2269 −0.550460
\(870\) −9.74428 9.43052i −0.330362 0.319724i
\(871\) 0.683648i 0.0231645i
\(872\) 12.8006 2.49425i 0.433482 0.0844660i
\(873\) 22.6507 + 16.1422i 0.766611 + 0.546331i
\(874\) 12.3815 + 6.12594i 0.418811 + 0.207213i
\(875\) 7.65014i 0.258622i
\(876\) −3.66812 10.2940i −0.123934 0.347800i
\(877\) 50.8000i 1.71539i −0.514155 0.857697i \(-0.671894\pi\)
0.514155 0.857697i \(-0.328106\pi\)
\(878\) −19.9095 + 40.2402i −0.671912 + 1.35804i
\(879\) 36.1741 + 11.5710i 1.22012 + 0.390281i
\(880\) 6.43575 + 1.76043i 0.216949 + 0.0593441i
\(881\) 25.7026i 0.865944i 0.901407 + 0.432972i \(0.142535\pi\)
−0.901407 + 0.432972i \(0.857465\pi\)
\(882\) −13.2243 24.6638i −0.445287 0.830472i
\(883\) 28.9835 0.975374 0.487687 0.873019i \(-0.337841\pi\)
0.487687 + 0.873019i \(0.337841\pi\)
\(884\) −0.251219 0.329166i −0.00844940 0.0110710i
\(885\) 0.0165142 0.0516278i 0.000555119 0.00173545i
\(886\) 9.15917 18.5122i 0.307708 0.621928i
\(887\) 28.2276 0.947789 0.473895 0.880582i \(-0.342848\pi\)
0.473895 + 0.880582i \(0.342848\pi\)
\(888\) 25.7374 + 3.02880i 0.863692 + 0.101640i
\(889\) 9.59867 0.321929
\(890\) −10.3328 + 20.8842i −0.346355 + 0.700039i
\(891\) 8.50719 2.93728i 0.285002 0.0984027i
\(892\) −11.3039 + 8.62714i −0.378484 + 0.288858i
\(893\) 17.7354 0.593493
\(894\) −27.0487 26.1778i −0.904645 0.875516i
\(895\) 37.4371i 1.25138i
\(896\) 0.535552 7.16908i 0.0178915 0.239502i
\(897\) −0.143804 + 0.449570i −0.00480148 + 0.0150107i
\(898\) −15.2651 + 30.8533i −0.509404 + 1.02959i
\(899\) 32.1198i 1.07126i
\(900\) −0.435337 13.2986i −0.0145112 0.443288i
\(901\) 20.2684i 0.675238i
\(902\) 6.50178 + 3.21686i 0.216486 + 0.107110i
\(903\) −1.83607 + 5.74005i −0.0611006 + 0.191017i
\(904\) 26.0283 5.07173i 0.865688 0.168683i
\(905\) 31.2418i 1.03851i
\(906\) 12.7265 13.1499i 0.422810 0.436878i
\(907\) −43.8772 −1.45692 −0.728459 0.685089i \(-0.759763\pi\)
−0.728459 + 0.685089i \(0.759763\pi\)
\(908\) −30.3140 + 23.1355i −1.00600 + 0.767780i
\(909\) −13.8956 9.90280i −0.460888 0.328455i
\(910\) −0.0935182 0.0462695i −0.00310010 0.00153382i
\(911\) −50.2102 −1.66354 −0.831768 0.555123i \(-0.812671\pi\)
−0.831768 + 0.555123i \(0.812671\pi\)
\(912\) 9.42377 14.4912i 0.312052 0.479851i
\(913\) 8.26737 0.273610
\(914\) 2.98687 + 1.47780i 0.0987969 + 0.0488813i
\(915\) −12.3455 + 38.5954i −0.408130 + 1.27592i
\(916\) −5.68867 + 4.34158i −0.187959 + 0.143450i
\(917\) −1.67920 −0.0554522
\(918\) 21.4939 3.96876i 0.709404 0.130989i
\(919\) 36.7376i 1.21186i 0.795517 + 0.605931i \(0.207199\pi\)
−0.795517 + 0.605931i \(0.792801\pi\)
\(920\) −3.53271 18.1300i −0.116470 0.597727i
\(921\) 30.7370 + 9.83185i 1.01282 + 0.323970i
\(922\) 43.5194 + 21.5319i 1.43324 + 0.709115i
\(923\) 0.983999i 0.0323887i
\(924\) −0.738858 2.07348i −0.0243067 0.0682126i
\(925\) 11.7310i 0.385712i
\(926\) 5.25136 10.6139i 0.172571 0.348793i
\(927\) 10.0633 14.1208i 0.330522 0.463788i
\(928\) 12.4704 14.0344i 0.409362 0.460703i
\(929\) 8.81754i 0.289294i −0.989483 0.144647i \(-0.953795\pi\)
0.989483 0.144647i \(-0.0462047\pi\)
\(930\) −27.4997 + 28.4146i −0.901750 + 0.931752i
\(931\) −16.4576 −0.539377
\(932\) −13.5543 + 10.3446i −0.443984 + 0.338848i
\(933\) −22.1226 7.07636i −0.724261 0.231670i
\(934\) 11.4733 23.1894i 0.375419 0.758781i
\(935\) 4.96142 0.162256
\(936\) 0.537672 + 0.244461i 0.0175744 + 0.00799046i
\(937\) −38.1300 −1.24565 −0.622827 0.782360i \(-0.714016\pi\)
−0.622827 + 0.782360i \(0.714016\pi\)
\(938\) 3.91391 7.91064i 0.127794 0.258291i
\(939\) 14.2116 + 4.54587i 0.463779 + 0.148349i
\(940\) −14.3872 18.8513i −0.469260 0.614860i
\(941\) 5.47079 0.178343 0.0891714 0.996016i \(-0.471578\pi\)
0.0891714 + 0.996016i \(0.471578\pi\)
\(942\) 3.44388 3.55847i 0.112208 0.115941i
\(943\) 20.0818i 0.653952i
\(944\) 0.0723869 + 0.0198007i 0.00235599 + 0.000644457i
\(945\) 4.41084 3.29808i 0.143485 0.107287i
\(946\) 3.43405 6.94077i 0.111651 0.225664i
\(947\) 0.612227i 0.0198947i 0.999951 + 0.00994736i \(0.00316639\pi\)
−0.999951 + 0.00994736i \(0.996834\pi\)
\(948\) 52.9504 18.8682i 1.71975 0.612810i
\(949\) 0.219585i 0.00712804i
\(950\) −7.01335 3.46996i −0.227543 0.112580i
\(951\) 23.3144 + 7.45759i 0.756022 + 0.241829i
\(952\) −1.02242 5.24709i −0.0331368 0.170059i
\(953\) 2.38824i 0.0773626i −0.999252 0.0386813i \(-0.987684\pi\)
0.999252 0.0386813i \(-0.0123157\pi\)
\(954\) 13.6615 + 25.4791i 0.442308 + 0.824917i
\(955\) 23.1115 0.747870
\(956\) 36.2411 + 47.4859i 1.17212 + 1.53580i
\(957\) 1.75134 5.47517i 0.0566129 0.176987i
\(958\) 32.3002 + 15.9810i 1.04357 + 0.516323i
\(959\) −12.5271 −0.404521
\(960\) −23.0476 + 1.73880i −0.743859 + 0.0561196i
\(961\) −62.6624 −2.02137
\(962\) 0.466732 + 0.230923i 0.0150480 + 0.00744525i
\(963\) 25.7745 36.1668i 0.830573 1.16546i
\(964\) 17.7257 + 23.2256i 0.570906 + 0.748045i
\(965\) −37.7812 −1.21622
\(966\) −4.23780 + 4.37879i −0.136349 + 0.140885i
\(967\) 21.4389i 0.689428i 0.938708 + 0.344714i \(0.112024\pi\)
−0.938708 + 0.344714i \(0.887976\pi\)
\(968\) 0.540958 + 2.77621i 0.0173871 + 0.0892309i
\(969\) 3.91607 12.2427i 0.125802 0.393292i
\(970\) −19.6028 9.69880i −0.629409 0.311410i
\(971\) 33.9504i 1.08952i −0.838592 0.544760i \(-0.816621\pi\)
0.838592 0.544760i \(-0.183379\pi\)
\(972\) −24.3446 + 19.4766i −0.780854 + 0.624713i
\(973\) 1.13708i 0.0364532i
\(974\) 9.05831 18.3083i 0.290247 0.586636i
\(975\) 0.0814561 0.254654i 0.00260868 0.00815545i
\(976\) −54.1143 14.8024i −1.73216 0.473813i
\(977\) 24.8966i 0.796511i 0.917274 + 0.398256i \(0.130384\pi\)
−0.917274 + 0.398256i \(0.869616\pi\)
\(978\) −9.85025 9.53307i −0.314976 0.304834i
\(979\) −9.87741 −0.315683
\(980\) 13.3507 + 17.4931i 0.426471 + 0.558795i
\(981\) −8.02778 + 11.2646i −0.256307 + 0.359650i
\(982\) −24.4565 + 49.4305i −0.780438 + 1.57739i
\(983\) −26.1512 −0.834095 −0.417048 0.908885i \(-0.636935\pi\)
−0.417048 + 0.908885i \(0.636935\pi\)
\(984\) −24.9566 2.93691i −0.795587 0.0936253i
\(985\) −25.7293 −0.819804
\(986\) 6.19091 12.5128i 0.197159 0.398489i
\(987\) −2.38352 + 7.45152i −0.0758683 + 0.237185i
\(988\) 0.276114 0.210729i 0.00878434 0.00670419i
\(989\) −21.4377 −0.681678
\(990\) −6.23694 + 3.34415i −0.198223 + 0.106284i
\(991\) 54.3769i 1.72734i 0.504057 + 0.863670i \(0.331840\pi\)
−0.504057 + 0.863670i \(0.668160\pi\)
\(992\) −40.9248 36.3642i −1.29936 1.15456i
\(993\) 14.3091 + 4.57707i 0.454087 + 0.145249i
\(994\) 5.63343 11.3861i 0.178681 0.361144i
\(995\) 9.15928i 0.290369i
\(996\) −26.9774 + 9.61306i −0.854813 + 0.304601i
\(997\) 12.6342i 0.400128i −0.979783 0.200064i \(-0.935885\pi\)
0.979783 0.200064i \(-0.0641150\pi\)
\(998\) 22.5365 + 11.1503i 0.713382 + 0.352957i
\(999\) −22.0137 + 16.4601i −0.696483 + 0.520775i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 264.2.k.b.155.5 32
3.2 odd 2 inner 264.2.k.b.155.28 yes 32
4.3 odd 2 1056.2.k.b.815.2 32
8.3 odd 2 inner 264.2.k.b.155.27 yes 32
8.5 even 2 1056.2.k.b.815.1 32
12.11 even 2 1056.2.k.b.815.3 32
24.5 odd 2 1056.2.k.b.815.4 32
24.11 even 2 inner 264.2.k.b.155.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.k.b.155.5 32 1.1 even 1 trivial
264.2.k.b.155.6 yes 32 24.11 even 2 inner
264.2.k.b.155.27 yes 32 8.3 odd 2 inner
264.2.k.b.155.28 yes 32 3.2 odd 2 inner
1056.2.k.b.815.1 32 8.5 even 2
1056.2.k.b.815.2 32 4.3 odd 2
1056.2.k.b.815.3 32 12.11 even 2
1056.2.k.b.815.4 32 24.5 odd 2