Defining parameters
Level: | \( N \) | \(=\) | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 264.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(264))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 4 | 52 |
Cusp forms | 41 | 4 | 37 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(1\) |
Plus space | \(+\) | \(0\) | ||
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(264))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 11 | |||||||
264.2.a.a | $1$ | $2.108$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(0\) | $+$ | $+$ | $-$ | \(q-q^{3}+2q^{5}+q^{9}+q^{11}+2q^{13}+\cdots\) | |
264.2.a.b | $1$ | $2.108$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(4\) | $+$ | $-$ | $+$ | \(q+q^{3}-2q^{5}+4q^{7}+q^{9}-q^{11}+6q^{13}+\cdots\) | |
264.2.a.c | $1$ | $2.108$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{3}+2q^{7}+q^{9}+q^{11}-2q^{17}+\cdots\) | |
264.2.a.d | $1$ | $2.108$ | \(\Q\) | None | \(0\) | \(1\) | \(4\) | \(-2\) | $+$ | $-$ | $+$ | \(q+q^{3}+4q^{5}-2q^{7}+q^{9}-q^{11}+4q^{15}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(264))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(264)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 2}\)