Newspace parameters
Level: | \( N \) | \(=\) | \( 261 = 3^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 261.s (of order \(28\), degree \(12\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.11173489980\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{28})\) |
Twist minimal: | no (minimal twist has level 29) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{28}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 | −2.05804 | + | 1.29315i | 0 | 0.827740 | − | 1.71882i | −5.87720 | − | 1.34143i | 0 | −9.36468 | + | 4.50979i | −0.569384 | − | 5.05343i | 0 | 13.8301 | − | 4.83938i | ||||||
10.2 | −1.44470 | + | 0.907767i | 0 | −0.472410 | + | 0.980970i | 8.15497 | + | 1.86132i | 0 | 7.53715 | − | 3.62970i | −0.972146 | − | 8.62804i | 0 | −13.4711 | + | 4.71376i | ||||||
10.3 | 1.29187 | − | 0.811733i | 0 | −0.725528 | + | 1.50658i | −3.36294 | − | 0.767569i | 0 | −0.255710 | + | 0.123143i | 0.968958 | + | 8.59974i | 0 | −4.96753 | + | 1.73821i | ||||||
10.4 | 3.24379 | − | 2.03821i | 0 | 4.63233 | − | 9.61914i | 5.12808 | + | 1.17045i | 0 | −6.56728 | + | 3.16264i | −2.86375 | − | 25.4165i | 0 | 19.0200 | − | 6.65539i | ||||||
19.1 | −1.42815 | − | 2.27289i | 0 | −1.39088 | + | 2.88819i | 6.69994 | + | 1.52922i | 0 | −4.78081 | + | 2.30231i | −2.11889 | + | 0.238741i | 0 | −6.09279 | − | 17.4122i | ||||||
19.2 | −0.488049 | − | 0.776726i | 0 | 1.37042 | − | 2.84571i | 1.98497 | + | 0.453055i | 0 | 9.56374 | − | 4.60566i | −6.52543 | + | 0.735239i | 0 | −0.616861 | − | 1.76289i | ||||||
19.3 | 0.448531 | + | 0.713833i | 0 | 1.42716 | − | 2.96352i | −4.21883 | − | 0.962920i | 0 | −10.1429 | + | 4.88457i | 6.10659 | − | 0.688048i | 0 | −1.20491 | − | 3.44344i | ||||||
19.4 | 1.63282 | + | 2.59861i | 0 | −2.35117 | + | 4.88225i | 4.43970 | + | 1.01333i | 0 | 10.7635 | − | 5.18344i | −4.32723 | + | 0.487562i | 0 | 4.61596 | + | 13.1917i | ||||||
37.1 | −1.65381 | − | 0.578694i | 0 | −0.727117 | − | 0.579856i | 0.825315 | + | 1.71379i | 0 | −1.24782 | − | 1.56472i | 4.59573 | + | 7.31406i | 0 | −0.373160 | − | 3.31188i | ||||||
37.2 | 0.0310749 | + | 0.0108736i | 0 | −3.12648 | − | 2.49328i | −3.79007 | − | 7.87017i | 0 | 3.62612 | + | 4.54701i | −0.140107 | − | 0.222980i | 0 | −0.0321993 | − | 0.285777i | ||||||
37.3 | 2.20133 | + | 0.770280i | 0 | 1.12521 | + | 0.897324i | −2.64264 | − | 5.48750i | 0 | −3.22936 | − | 4.04949i | −3.17747 | − | 5.05691i | 0 | −1.59042 | − | 14.1154i | ||||||
37.4 | 2.32673 | + | 0.814157i | 0 | 1.62348 | + | 1.29468i | 3.83207 | + | 7.95737i | 0 | 2.23777 | + | 2.80607i | −2.52264 | − | 4.01476i | 0 | 2.43763 | + | 21.6345i | ||||||
55.1 | −1.42815 | + | 2.27289i | 0 | −1.39088 | − | 2.88819i | 6.69994 | − | 1.52922i | 0 | −4.78081 | − | 2.30231i | −2.11889 | − | 0.238741i | 0 | −6.09279 | + | 17.4122i | ||||||
55.2 | −0.488049 | + | 0.776726i | 0 | 1.37042 | + | 2.84571i | 1.98497 | − | 0.453055i | 0 | 9.56374 | + | 4.60566i | −6.52543 | − | 0.735239i | 0 | −0.616861 | + | 1.76289i | ||||||
55.3 | 0.448531 | − | 0.713833i | 0 | 1.42716 | + | 2.96352i | −4.21883 | + | 0.962920i | 0 | −10.1429 | − | 4.88457i | 6.10659 | + | 0.688048i | 0 | −1.20491 | + | 3.44344i | ||||||
55.4 | 1.63282 | − | 2.59861i | 0 | −2.35117 | − | 4.88225i | 4.43970 | − | 1.01333i | 0 | 10.7635 | + | 5.18344i | −4.32723 | − | 0.487562i | 0 | 4.61596 | − | 13.1917i | ||||||
73.1 | −2.58169 | + | 0.290886i | 0 | 2.68078 | − | 0.611870i | 2.49104 | + | 1.98654i | 0 | 1.30161 | − | 5.70272i | 3.06598 | − | 1.07283i | 0 | −7.00893 | − | 4.40400i | ||||||
73.2 | −0.415096 | + | 0.0467701i | 0 | −3.72959 | + | 0.851255i | −0.738700 | − | 0.589093i | 0 | −0.577468 | + | 2.53005i | 3.08546 | − | 1.07965i | 0 | 0.334184 | + | 0.209981i | ||||||
73.3 | 1.68783 | − | 0.190173i | 0 | −1.08711 | + | 0.248126i | −0.141728 | − | 0.113024i | 0 | −1.55116 | + | 6.79606i | −8.20045 | + | 2.86946i | 0 | −0.260707 | − | 0.163813i | ||||||
73.4 | 3.56136 | − | 0.401269i | 0 | 8.62256 | − | 1.96804i | −5.24106 | − | 4.17960i | 0 | 2.11977 | − | 9.28734i | 16.3872 | − | 5.73413i | 0 | −20.3424 | − | 12.7820i | ||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.f | odd | 28 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 261.3.s.a | 48 | |
3.b | odd | 2 | 1 | 29.3.f.a | ✓ | 48 | |
29.f | odd | 28 | 1 | inner | 261.3.s.a | 48 | |
87.k | even | 28 | 1 | 29.3.f.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
29.3.f.a | ✓ | 48 | 3.b | odd | 2 | 1 | |
29.3.f.a | ✓ | 48 | 87.k | even | 28 | 1 | |
261.3.s.a | 48 | 1.a | even | 1 | 1 | trivial | |
261.3.s.a | 48 | 29.f | odd | 28 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(11\!\cdots\!18\)\( T_{2}^{22} + \)\(12\!\cdots\!40\)\( T_{2}^{21} + \)\(56\!\cdots\!63\)\( T_{2}^{20} - \)\(14\!\cdots\!16\)\( T_{2}^{19} + \)\(82\!\cdots\!53\)\( T_{2}^{18} + \)\(94\!\cdots\!60\)\( T_{2}^{17} - \)\(25\!\cdots\!94\)\( T_{2}^{16} + \)\(54\!\cdots\!88\)\( T_{2}^{15} + \)\(97\!\cdots\!09\)\( T_{2}^{14} - \)\(17\!\cdots\!36\)\( T_{2}^{13} + \)\(11\!\cdots\!70\)\( T_{2}^{12} - \)\(95\!\cdots\!52\)\( T_{2}^{11} + \)\(13\!\cdots\!48\)\( T_{2}^{10} - \)\(83\!\cdots\!12\)\( T_{2}^{9} + \)\(42\!\cdots\!26\)\( T_{2}^{8} + \)\(36\!\cdots\!72\)\( T_{2}^{7} - \)\(23\!\cdots\!75\)\( T_{2}^{6} + \)\(96\!\cdots\!48\)\( T_{2}^{5} + \)\(22\!\cdots\!69\)\( T_{2}^{4} + 114085022712 T_{2}^{3} + 311190034388 T_{2}^{2} - 19931804632 T_{2} + 352951369 \)">\(T_{2}^{48} - \cdots\) acting on \(S_{3}^{\mathrm{new}}(261, [\chi])\).