Properties

Label 261.2.q
Level $261$
Weight $2$
Character orbit 261.q
Rep. character $\chi_{261}(7,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $336$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.q (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 261 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(261, [\chi])\).

Total New Old
Modular forms 384 384 0
Cusp forms 336 336 0
Eisenstein series 48 48 0

Trace form

\( 336 q - 5 q^{2} - 10 q^{3} + 21 q^{4} - 9 q^{5} - 40 q^{6} - 5 q^{7} + 2 q^{8} - 6 q^{9} - 28 q^{10} - q^{11} - 22 q^{12} - 5 q^{13} - 9 q^{14} - 26 q^{15} + 21 q^{16} - 60 q^{17} - 90 q^{18} - 20 q^{19}+ \cdots + 196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(261, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
261.2.q.a 261.q 261.q $336$ $2.084$ None 261.2.q.a \(-5\) \(-10\) \(-9\) \(-5\) $\mathrm{SU}(2)[C_{21}]$