Properties

Label 261.2.k.c.82.3
Level $261$
Weight $2$
Character 261.82
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.3
Root \(0.491931 - 2.15529i\) of defining polynomial
Character \(\chi\) \(=\) 261.82
Dual form 261.2.k.c.226.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.754870 + 0.946578i) q^{2} +(0.118862 - 0.520769i) q^{4} +(-1.12131 - 1.40607i) q^{5} +(-0.951706 - 4.16970i) q^{7} +(2.76431 - 1.33122i) q^{8} +(0.484517 - 2.12281i) q^{10} +(0.951656 + 0.458293i) q^{11} +(4.75885 + 2.29174i) q^{13} +(3.22853 - 4.04845i) q^{14} +(2.38428 + 1.14821i) q^{16} -5.61769 q^{17} +(-1.42675 + 6.25099i) q^{19} +(-0.865520 + 0.416812i) q^{20} +(0.284567 + 1.24677i) q^{22} +(-1.27587 + 1.59988i) q^{23} +(0.392890 - 1.72136i) q^{25} +(1.42300 + 6.23459i) q^{26} -2.28457 q^{28} +(4.54927 - 2.88169i) q^{29} +(2.38467 + 2.99028i) q^{31} +(-0.652504 - 2.85881i) q^{32} +(-4.24063 - 5.31758i) q^{34} +(-4.79575 + 6.01368i) q^{35} +(0.315606 - 0.151988i) q^{37} +(-6.99406 + 3.36816i) q^{38} +(-4.97144 - 2.39412i) q^{40} +3.62240 q^{41} +(1.09049 - 1.36743i) q^{43} +(0.351781 - 0.441119i) q^{44} -2.47753 q^{46} +(6.28881 + 3.02853i) q^{47} +(-10.1739 + 4.89947i) q^{49} +(1.92598 - 0.927505i) q^{50} +(1.75911 - 2.20586i) q^{52} +(4.87488 + 6.11290i) q^{53} +(-0.422703 - 1.85198i) q^{55} +(-8.18161 - 10.2594i) q^{56} +(6.16185 + 2.13093i) q^{58} -0.382668 q^{59} +(1.21640 + 5.32939i) q^{61} +(-1.03041 + 4.51454i) q^{62} +(5.51347 - 6.91367i) q^{64} +(-2.11377 - 9.26104i) q^{65} +(-7.03806 + 3.38935i) q^{67} +(-0.667730 + 2.92552i) q^{68} -9.31258 q^{70} +(-14.0654 - 6.77356i) q^{71} +(-1.58547 + 1.98811i) q^{73} +(0.382110 + 0.184015i) q^{74} +(3.08574 + 1.48601i) q^{76} +(1.00525 - 4.40428i) q^{77} +(-9.25113 + 4.45511i) q^{79} +(-1.05904 - 4.63996i) q^{80} +(2.73445 + 3.42889i) q^{82} +(0.338541 - 1.48324i) q^{83} +(6.29915 + 7.89888i) q^{85} +2.11755 q^{86} +3.24076 q^{88} +(11.1881 + 14.0295i) q^{89} +(5.02684 - 22.0240i) q^{91} +(0.681518 + 0.854597i) q^{92} +(1.88050 + 8.23899i) q^{94} +(10.3892 - 5.00316i) q^{95} +(1.51530 - 6.63895i) q^{97} +(-12.3177 - 5.93188i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{2} - 6 q^{4} + q^{5} - 4 q^{7} + 15 q^{8} - 14 q^{10} - 26 q^{11} + 9 q^{13} + 10 q^{14} - 14 q^{16} - 4 q^{17} - 10 q^{19} + q^{20} - 8 q^{22} + 8 q^{23} + 16 q^{25} - 5 q^{26} + 80 q^{28}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.754870 + 0.946578i 0.533774 + 0.669331i 0.973470 0.228815i \(-0.0734852\pi\)
−0.439696 + 0.898147i \(0.644914\pi\)
\(3\) 0 0
\(4\) 0.118862 0.520769i 0.0594310 0.260384i
\(5\) −1.12131 1.40607i −0.501463 0.628815i 0.465095 0.885261i \(-0.346020\pi\)
−0.966559 + 0.256445i \(0.917449\pi\)
\(6\) 0 0
\(7\) −0.951706 4.16970i −0.359711 1.57600i −0.753913 0.656974i \(-0.771836\pi\)
0.394202 0.919024i \(-0.371021\pi\)
\(8\) 2.76431 1.33122i 0.977332 0.470658i
\(9\) 0 0
\(10\) 0.484517 2.12281i 0.153218 0.671290i
\(11\) 0.951656 + 0.458293i 0.286935 + 0.138181i 0.571815 0.820383i \(-0.306239\pi\)
−0.284880 + 0.958563i \(0.591954\pi\)
\(12\) 0 0
\(13\) 4.75885 + 2.29174i 1.31987 + 0.635615i 0.955321 0.295570i \(-0.0955096\pi\)
0.364547 + 0.931185i \(0.381224\pi\)
\(14\) 3.22853 4.04845i 0.862860 1.08199i
\(15\) 0 0
\(16\) 2.38428 + 1.14821i 0.596069 + 0.287052i
\(17\) −5.61769 −1.36249 −0.681245 0.732056i \(-0.738561\pi\)
−0.681245 + 0.732056i \(0.738561\pi\)
\(18\) 0 0
\(19\) −1.42675 + 6.25099i −0.327319 + 1.43408i 0.496902 + 0.867807i \(0.334471\pi\)
−0.824220 + 0.566269i \(0.808386\pi\)
\(20\) −0.865520 + 0.416812i −0.193536 + 0.0932021i
\(21\) 0 0
\(22\) 0.284567 + 1.24677i 0.0606698 + 0.265812i
\(23\) −1.27587 + 1.59988i −0.266036 + 0.333599i −0.896850 0.442336i \(-0.854150\pi\)
0.630813 + 0.775935i \(0.282721\pi\)
\(24\) 0 0
\(25\) 0.392890 1.72136i 0.0785779 0.344272i
\(26\) 1.42300 + 6.23459i 0.279074 + 1.22270i
\(27\) 0 0
\(28\) −2.28457 −0.431743
\(29\) 4.54927 2.88169i 0.844778 0.535117i
\(30\) 0 0
\(31\) 2.38467 + 2.99028i 0.428299 + 0.537069i 0.948417 0.317025i \(-0.102684\pi\)
−0.520119 + 0.854094i \(0.674112\pi\)
\(32\) −0.652504 2.85881i −0.115348 0.505371i
\(33\) 0 0
\(34\) −4.24063 5.31758i −0.727261 0.911957i
\(35\) −4.79575 + 6.01368i −0.810629 + 1.01650i
\(36\) 0 0
\(37\) 0.315606 0.151988i 0.0518854 0.0249867i −0.407761 0.913089i \(-0.633690\pi\)
0.459647 + 0.888102i \(0.347976\pi\)
\(38\) −6.99406 + 3.36816i −1.13459 + 0.546388i
\(39\) 0 0
\(40\) −4.97144 2.39412i −0.786053 0.378543i
\(41\) 3.62240 0.565725 0.282862 0.959161i \(-0.408716\pi\)
0.282862 + 0.959161i \(0.408716\pi\)
\(42\) 0 0
\(43\) 1.09049 1.36743i 0.166298 0.208530i −0.691699 0.722186i \(-0.743138\pi\)
0.857997 + 0.513655i \(0.171709\pi\)
\(44\) 0.351781 0.441119i 0.0530329 0.0665012i
\(45\) 0 0
\(46\) −2.47753 −0.365292
\(47\) 6.28881 + 3.02853i 0.917317 + 0.441756i 0.832112 0.554607i \(-0.187131\pi\)
0.0852043 + 0.996363i \(0.472846\pi\)
\(48\) 0 0
\(49\) −10.1739 + 4.89947i −1.45341 + 0.699924i
\(50\) 1.92598 0.927505i 0.272375 0.131169i
\(51\) 0 0
\(52\) 1.75911 2.20586i 0.243945 0.305898i
\(53\) 4.87488 + 6.11290i 0.669616 + 0.839672i 0.994352 0.106133i \(-0.0338469\pi\)
−0.324736 + 0.945805i \(0.605276\pi\)
\(54\) 0 0
\(55\) −0.422703 1.85198i −0.0569973 0.249722i
\(56\) −8.18161 10.2594i −1.09331 1.37097i
\(57\) 0 0
\(58\) 6.16185 + 2.13093i 0.809091 + 0.279805i
\(59\) −0.382668 −0.0498191 −0.0249096 0.999690i \(-0.507930\pi\)
−0.0249096 + 0.999690i \(0.507930\pi\)
\(60\) 0 0
\(61\) 1.21640 + 5.32939i 0.155744 + 0.682358i 0.991152 + 0.132729i \(0.0423740\pi\)
−0.835409 + 0.549629i \(0.814769\pi\)
\(62\) −1.03041 + 4.51454i −0.130863 + 0.573347i
\(63\) 0 0
\(64\) 5.51347 6.91367i 0.689184 0.864209i
\(65\) −2.11377 9.26104i −0.262181 1.14869i
\(66\) 0 0
\(67\) −7.03806 + 3.38935i −0.859836 + 0.414075i −0.811219 0.584742i \(-0.801196\pi\)
−0.0486169 + 0.998818i \(0.515481\pi\)
\(68\) −0.667730 + 2.92552i −0.0809742 + 0.354771i
\(69\) 0 0
\(70\) −9.31258 −1.11307
\(71\) −14.0654 6.77356i −1.66926 0.803874i −0.998038 0.0626189i \(-0.980055\pi\)
−0.671224 0.741255i \(-0.734231\pi\)
\(72\) 0 0
\(73\) −1.58547 + 1.98811i −0.185565 + 0.232691i −0.865909 0.500202i \(-0.833259\pi\)
0.680344 + 0.732893i \(0.261830\pi\)
\(74\) 0.382110 + 0.184015i 0.0444194 + 0.0213913i
\(75\) 0 0
\(76\) 3.08574 + 1.48601i 0.353958 + 0.170457i
\(77\) 1.00525 4.40428i 0.114559 0.501914i
\(78\) 0 0
\(79\) −9.25113 + 4.45511i −1.04083 + 0.501239i −0.874599 0.484847i \(-0.838875\pi\)
−0.166235 + 0.986086i \(0.553161\pi\)
\(80\) −1.05904 4.63996i −0.118404 0.518764i
\(81\) 0 0
\(82\) 2.73445 + 3.42889i 0.301969 + 0.378657i
\(83\) 0.338541 1.48324i 0.0371597 0.162807i −0.952944 0.303148i \(-0.901963\pi\)
0.990103 + 0.140340i \(0.0448197\pi\)
\(84\) 0 0
\(85\) 6.29915 + 7.89888i 0.683239 + 0.856754i
\(86\) 2.11755 0.228341
\(87\) 0 0
\(88\) 3.24076 0.345467
\(89\) 11.1881 + 14.0295i 1.18594 + 1.48712i 0.834587 + 0.550876i \(0.185706\pi\)
0.351351 + 0.936244i \(0.385722\pi\)
\(90\) 0 0
\(91\) 5.02684 22.0240i 0.526956 2.30875i
\(92\) 0.681518 + 0.854597i 0.0710532 + 0.0890979i
\(93\) 0 0
\(94\) 1.88050 + 8.23899i 0.193958 + 0.849787i
\(95\) 10.3892 5.00316i 1.06591 0.513314i
\(96\) 0 0
\(97\) 1.51530 6.63895i 0.153855 0.674083i −0.837888 0.545842i \(-0.816210\pi\)
0.991743 0.128241i \(-0.0409331\pi\)
\(98\) −12.3177 5.93188i −1.24427 0.599210i
\(99\) 0 0
\(100\) −0.849732 0.409209i −0.0849732 0.0409209i
\(101\) −2.94644 + 3.69472i −0.293182 + 0.367639i −0.906506 0.422193i \(-0.861261\pi\)
0.613324 + 0.789831i \(0.289832\pi\)
\(102\) 0 0
\(103\) −3.14881 1.51639i −0.310261 0.149414i 0.272273 0.962220i \(-0.412225\pi\)
−0.582534 + 0.812806i \(0.697939\pi\)
\(104\) 16.2058 1.58911
\(105\) 0 0
\(106\) −2.10644 + 9.22890i −0.204595 + 0.896390i
\(107\) −4.43449 + 2.13554i −0.428699 + 0.206450i −0.635775 0.771874i \(-0.719319\pi\)
0.207076 + 0.978325i \(0.433605\pi\)
\(108\) 0 0
\(109\) 3.31215 + 14.5115i 0.317246 + 1.38995i 0.842360 + 0.538915i \(0.181166\pi\)
−0.525114 + 0.851032i \(0.675977\pi\)
\(110\) 1.43396 1.79813i 0.136723 0.171445i
\(111\) 0 0
\(112\) 2.51855 11.0345i 0.237980 1.04266i
\(113\) −1.41140 6.18375i −0.132773 0.581718i −0.996916 0.0784718i \(-0.974996\pi\)
0.864143 0.503246i \(-0.167861\pi\)
\(114\) 0 0
\(115\) 3.68019 0.343180
\(116\) −0.959961 2.71164i −0.0891301 0.251770i
\(117\) 0 0
\(118\) −0.288865 0.362225i −0.0265922 0.0333455i
\(119\) 5.34639 + 23.4241i 0.490103 + 2.14728i
\(120\) 0 0
\(121\) −6.16277 7.72787i −0.560252 0.702534i
\(122\) −4.12646 + 5.17441i −0.373592 + 0.468469i
\(123\) 0 0
\(124\) 1.84069 0.886429i 0.165299 0.0796037i
\(125\) −10.9626 + 5.27930i −0.980523 + 0.472195i
\(126\) 0 0
\(127\) 4.02345 + 1.93759i 0.357023 + 0.171933i 0.603794 0.797141i \(-0.293655\pi\)
−0.246770 + 0.969074i \(0.579369\pi\)
\(128\) 4.84163 0.427944
\(129\) 0 0
\(130\) 7.17067 8.99173i 0.628909 0.788627i
\(131\) −0.00620961 + 0.00778660i −0.000542536 + 0.000680318i −0.782103 0.623150i \(-0.785853\pi\)
0.781560 + 0.623830i \(0.214424\pi\)
\(132\) 0 0
\(133\) 27.4226 2.37784
\(134\) −8.52111 4.10355i −0.736112 0.354493i
\(135\) 0 0
\(136\) −15.5290 + 7.47839i −1.33160 + 0.641267i
\(137\) 11.0039 5.29921i 0.940129 0.452742i 0.0999140 0.994996i \(-0.468143\pi\)
0.840215 + 0.542254i \(0.182429\pi\)
\(138\) 0 0
\(139\) 3.08354 3.86663i 0.261542 0.327964i −0.633670 0.773603i \(-0.718452\pi\)
0.895212 + 0.445640i \(0.147024\pi\)
\(140\) 2.56170 + 3.21227i 0.216503 + 0.271487i
\(141\) 0 0
\(142\) −4.20589 18.4272i −0.352950 1.54638i
\(143\) 3.47850 + 4.36190i 0.290887 + 0.364760i
\(144\) 0 0
\(145\) −9.15299 3.16534i −0.760115 0.262868i
\(146\) −3.07873 −0.254797
\(147\) 0 0
\(148\) −0.0416370 0.182424i −0.00342254 0.0149951i
\(149\) 3.11840 13.6626i 0.255470 1.11929i −0.670566 0.741850i \(-0.733949\pi\)
0.926036 0.377436i \(-0.123194\pi\)
\(150\) 0 0
\(151\) 1.82927 2.29383i 0.148864 0.186669i −0.701809 0.712366i \(-0.747624\pi\)
0.850672 + 0.525697i \(0.176195\pi\)
\(152\) 4.37749 + 19.1790i 0.355061 + 1.55562i
\(153\) 0 0
\(154\) 4.92782 2.37311i 0.397095 0.191231i
\(155\) 1.53061 6.70603i 0.122941 0.538641i
\(156\) 0 0
\(157\) 16.1919 1.29226 0.646128 0.763229i \(-0.276387\pi\)
0.646128 + 0.763229i \(0.276387\pi\)
\(158\) −11.2005 5.39388i −0.891065 0.429114i
\(159\) 0 0
\(160\) −3.28804 + 4.12307i −0.259942 + 0.325957i
\(161\) 7.88529 + 3.79735i 0.621448 + 0.299273i
\(162\) 0 0
\(163\) −12.2292 5.88927i −0.957865 0.461284i −0.111428 0.993772i \(-0.535543\pi\)
−0.846437 + 0.532489i \(0.821257\pi\)
\(164\) 0.430567 1.88644i 0.0336216 0.147306i
\(165\) 0 0
\(166\) 1.65956 0.799202i 0.128807 0.0620301i
\(167\) −3.64080 15.9514i −0.281734 1.23436i −0.895569 0.444922i \(-0.853231\pi\)
0.613836 0.789434i \(-0.289626\pi\)
\(168\) 0 0
\(169\) 9.28921 + 11.6483i 0.714555 + 0.896024i
\(170\) −2.72186 + 11.9253i −0.208757 + 0.914626i
\(171\) 0 0
\(172\) −0.582495 0.730426i −0.0444149 0.0556945i
\(173\) 4.46374 0.339372 0.169686 0.985498i \(-0.445725\pi\)
0.169686 + 0.985498i \(0.445725\pi\)
\(174\) 0 0
\(175\) −7.55148 −0.570838
\(176\) 1.74280 + 2.18540i 0.131368 + 0.164730i
\(177\) 0 0
\(178\) −4.83439 + 21.1808i −0.362353 + 1.58757i
\(179\) −2.12026 2.65872i −0.158476 0.198722i 0.696254 0.717795i \(-0.254849\pi\)
−0.854730 + 0.519073i \(0.826277\pi\)
\(180\) 0 0
\(181\) −1.47339 6.45532i −0.109516 0.479820i −0.999706 0.0242319i \(-0.992286\pi\)
0.890190 0.455589i \(-0.150571\pi\)
\(182\) 24.6421 11.8670i 1.82659 0.879640i
\(183\) 0 0
\(184\) −1.39709 + 6.12104i −0.102995 + 0.451249i
\(185\) −0.567598 0.273341i −0.0417306 0.0200964i
\(186\) 0 0
\(187\) −5.34610 2.57455i −0.390946 0.188270i
\(188\) 2.32466 2.91504i 0.169544 0.212601i
\(189\) 0 0
\(190\) 12.5784 + 6.05742i 0.912531 + 0.439452i
\(191\) −17.6196 −1.27491 −0.637454 0.770489i \(-0.720012\pi\)
−0.637454 + 0.770489i \(0.720012\pi\)
\(192\) 0 0
\(193\) 2.98147 13.0627i 0.214611 0.940273i −0.746776 0.665075i \(-0.768399\pi\)
0.961388 0.275198i \(-0.0887434\pi\)
\(194\) 7.42813 3.57720i 0.533309 0.256828i
\(195\) 0 0
\(196\) 1.34221 + 5.88059i 0.0958719 + 0.420042i
\(197\) 5.11558 6.41474i 0.364470 0.457031i −0.565455 0.824779i \(-0.691300\pi\)
0.929926 + 0.367748i \(0.119871\pi\)
\(198\) 0 0
\(199\) −5.45073 + 23.8812i −0.386392 + 1.69290i 0.290551 + 0.956860i \(0.406162\pi\)
−0.676943 + 0.736036i \(0.736696\pi\)
\(200\) −1.20545 5.28141i −0.0852379 0.373452i
\(201\) 0 0
\(202\) −5.72153 −0.402565
\(203\) −16.3454 16.2266i −1.14722 1.13888i
\(204\) 0 0
\(205\) −4.06182 5.09337i −0.283690 0.355736i
\(206\) −0.941565 4.12527i −0.0656019 0.287421i
\(207\) 0 0
\(208\) 8.71503 + 10.9283i 0.604278 + 0.757741i
\(209\) −4.22256 + 5.29492i −0.292081 + 0.366258i
\(210\) 0 0
\(211\) 1.99243 0.959502i 0.137164 0.0660549i −0.364043 0.931382i \(-0.618604\pi\)
0.501207 + 0.865327i \(0.332890\pi\)
\(212\) 3.76285 1.81209i 0.258433 0.124455i
\(213\) 0 0
\(214\) −5.36892 2.58554i −0.367012 0.176744i
\(215\) −3.14547 −0.214519
\(216\) 0 0
\(217\) 10.1990 12.7892i 0.692356 0.868187i
\(218\) −11.2360 + 14.0895i −0.760997 + 0.954260i
\(219\) 0 0
\(220\) −1.01470 −0.0684110
\(221\) −26.7337 12.8743i −1.79831 0.866018i
\(222\) 0 0
\(223\) −2.43655 + 1.17338i −0.163164 + 0.0785755i −0.513683 0.857980i \(-0.671719\pi\)
0.350519 + 0.936555i \(0.386005\pi\)
\(224\) −11.2994 + 5.44149i −0.754971 + 0.363575i
\(225\) 0 0
\(226\) 4.78798 6.00393i 0.318491 0.399376i
\(227\) −8.99231 11.2760i −0.596840 0.748414i 0.388041 0.921642i \(-0.373152\pi\)
−0.984882 + 0.173228i \(0.944580\pi\)
\(228\) 0 0
\(229\) −5.72917 25.1011i −0.378594 1.65873i −0.701779 0.712394i \(-0.747611\pi\)
0.323185 0.946336i \(-0.395246\pi\)
\(230\) 2.77807 + 3.48359i 0.183180 + 0.229701i
\(231\) 0 0
\(232\) 8.73942 14.0220i 0.573771 0.920589i
\(233\) 22.6039 1.48083 0.740417 0.672148i \(-0.234628\pi\)
0.740417 + 0.672148i \(0.234628\pi\)
\(234\) 0 0
\(235\) −2.79334 12.2384i −0.182218 0.798347i
\(236\) −0.0454847 + 0.199282i −0.00296080 + 0.0129721i
\(237\) 0 0
\(238\) −18.1369 + 22.7429i −1.17564 + 1.47420i
\(239\) 5.21218 + 22.8361i 0.337148 + 1.47714i 0.804968 + 0.593318i \(0.202182\pi\)
−0.467820 + 0.883824i \(0.654960\pi\)
\(240\) 0 0
\(241\) −20.1661 + 9.71147i −1.29901 + 0.625570i −0.950205 0.311625i \(-0.899127\pi\)
−0.348805 + 0.937195i \(0.613413\pi\)
\(242\) 2.66294 11.6671i 0.171180 0.749989i
\(243\) 0 0
\(244\) 2.91996 0.186932
\(245\) 18.2970 + 8.81138i 1.16895 + 0.562939i
\(246\) 0 0
\(247\) −21.1153 + 26.4778i −1.34354 + 1.68474i
\(248\) 10.5727 + 5.09154i 0.671366 + 0.323313i
\(249\) 0 0
\(250\) −13.2726 6.39175i −0.839433 0.404250i
\(251\) −1.32618 + 5.81039i −0.0837079 + 0.366748i −0.999381 0.0351751i \(-0.988801\pi\)
0.915673 + 0.401924i \(0.131658\pi\)
\(252\) 0 0
\(253\) −1.94740 + 0.937819i −0.122432 + 0.0589602i
\(254\) 1.20310 + 5.27114i 0.0754894 + 0.330741i
\(255\) 0 0
\(256\) −7.37214 9.24437i −0.460759 0.577773i
\(257\) −3.35390 + 14.6944i −0.209211 + 0.916612i 0.755883 + 0.654707i \(0.227208\pi\)
−0.965094 + 0.261905i \(0.915649\pi\)
\(258\) 0 0
\(259\) −0.934109 1.17134i −0.0580427 0.0727832i
\(260\) −5.07411 −0.314683
\(261\) 0 0
\(262\) −0.0120581 −0.000744950
\(263\) 11.6750 + 14.6400i 0.719911 + 0.902740i 0.998333 0.0577193i \(-0.0183828\pi\)
−0.278422 + 0.960459i \(0.589811\pi\)
\(264\) 0 0
\(265\) 3.12896 13.7089i 0.192210 0.842129i
\(266\) 20.7005 + 25.9576i 1.26923 + 1.59156i
\(267\) 0 0
\(268\) 0.928510 + 4.06807i 0.0567178 + 0.248497i
\(269\) −20.8357 + 10.0340i −1.27038 + 0.611781i −0.942899 0.333078i \(-0.891913\pi\)
−0.327477 + 0.944859i \(0.606198\pi\)
\(270\) 0 0
\(271\) −4.75012 + 20.8116i −0.288549 + 1.26422i 0.597967 + 0.801521i \(0.295975\pi\)
−0.886517 + 0.462697i \(0.846882\pi\)
\(272\) −13.3941 6.45027i −0.812138 0.391105i
\(273\) 0 0
\(274\) 13.3227 + 6.41585i 0.804851 + 0.387596i
\(275\) 1.16278 1.45809i 0.0701185 0.0879258i
\(276\) 0 0
\(277\) 7.49769 + 3.61070i 0.450493 + 0.216946i 0.645352 0.763885i \(-0.276711\pi\)
−0.194859 + 0.980831i \(0.562425\pi\)
\(278\) 5.98774 0.359121
\(279\) 0 0
\(280\) −5.25140 + 23.0079i −0.313831 + 1.37498i
\(281\) −26.0562 + 12.5480i −1.55438 + 0.748552i −0.996675 0.0814850i \(-0.974034\pi\)
−0.557709 + 0.830037i \(0.688319\pi\)
\(282\) 0 0
\(283\) −6.67116 29.2282i −0.396559 1.73744i −0.640785 0.767721i \(-0.721391\pi\)
0.244226 0.969718i \(-0.421466\pi\)
\(284\) −5.19931 + 6.51973i −0.308522 + 0.386875i
\(285\) 0 0
\(286\) −1.50306 + 6.58534i −0.0888778 + 0.389399i
\(287\) −3.44747 15.1043i −0.203497 0.891581i
\(288\) 0 0
\(289\) 14.5584 0.856378
\(290\) −3.91308 11.0534i −0.229784 0.649081i
\(291\) 0 0
\(292\) 0.846895 + 1.06197i 0.0495608 + 0.0621473i
\(293\) 1.94796 + 8.53458i 0.113801 + 0.498595i 0.999416 + 0.0341747i \(0.0108803\pi\)
−0.885615 + 0.464421i \(0.846263\pi\)
\(294\) 0 0
\(295\) 0.429088 + 0.538059i 0.0249825 + 0.0313270i
\(296\) 0.670105 0.840285i 0.0389490 0.0488405i
\(297\) 0 0
\(298\) 15.2867 7.36170i 0.885536 0.426452i
\(299\) −9.73818 + 4.68966i −0.563173 + 0.271210i
\(300\) 0 0
\(301\) −6.73958 3.24561i −0.388463 0.187074i
\(302\) 3.55215 0.204403
\(303\) 0 0
\(304\) −10.5792 + 13.2659i −0.606759 + 0.760852i
\(305\) 6.12956 7.68622i 0.350977 0.440112i
\(306\) 0 0
\(307\) −33.9161 −1.93570 −0.967848 0.251536i \(-0.919064\pi\)
−0.967848 + 0.251536i \(0.919064\pi\)
\(308\) −2.17412 1.04700i −0.123882 0.0596585i
\(309\) 0 0
\(310\) 7.50319 3.61334i 0.426152 0.205224i
\(311\) 7.32104 3.52563i 0.415138 0.199920i −0.214643 0.976693i \(-0.568859\pi\)
0.629781 + 0.776773i \(0.283145\pi\)
\(312\) 0 0
\(313\) 1.57580 1.97599i 0.0890693 0.111689i −0.735300 0.677742i \(-0.762959\pi\)
0.824369 + 0.566053i \(0.191530\pi\)
\(314\) 12.2228 + 15.3269i 0.689773 + 0.864948i
\(315\) 0 0
\(316\) 1.22047 + 5.34724i 0.0686570 + 0.300806i
\(317\) −10.3738 13.0083i −0.582651 0.730621i 0.399912 0.916554i \(-0.369041\pi\)
−0.982562 + 0.185933i \(0.940469\pi\)
\(318\) 0 0
\(319\) 5.65000 0.657481i 0.316339 0.0368119i
\(320\) −15.9034 −0.889028
\(321\) 0 0
\(322\) 2.35788 + 10.3305i 0.131399 + 0.575699i
\(323\) 8.01503 35.1161i 0.445968 1.95391i
\(324\) 0 0
\(325\) 5.81462 7.29130i 0.322537 0.404449i
\(326\) −3.65681 16.0215i −0.202532 0.887350i
\(327\) 0 0
\(328\) 10.0135 4.82223i 0.552901 0.266263i
\(329\) 6.64296 29.1047i 0.366238 1.60459i
\(330\) 0 0
\(331\) 12.9286 0.710619 0.355309 0.934749i \(-0.384375\pi\)
0.355309 + 0.934749i \(0.384375\pi\)
\(332\) −0.732188 0.352603i −0.0401840 0.0193516i
\(333\) 0 0
\(334\) 12.3509 15.4875i 0.675811 0.847440i
\(335\) 12.6575 + 6.09553i 0.691553 + 0.333034i
\(336\) 0 0
\(337\) 5.01185 + 2.41358i 0.273013 + 0.131476i 0.565381 0.824830i \(-0.308729\pi\)
−0.292368 + 0.956306i \(0.594443\pi\)
\(338\) −4.01387 + 17.5859i −0.218326 + 0.956548i
\(339\) 0 0
\(340\) 4.86222 2.34152i 0.263691 0.126987i
\(341\) 0.898957 + 3.93859i 0.0486813 + 0.213286i
\(342\) 0 0
\(343\) 11.4455 + 14.3522i 0.617998 + 0.774945i
\(344\) 1.19409 5.23167i 0.0643813 0.282073i
\(345\) 0 0
\(346\) 3.36955 + 4.22528i 0.181148 + 0.227152i
\(347\) 8.78686 0.471703 0.235852 0.971789i \(-0.424212\pi\)
0.235852 + 0.971789i \(0.424212\pi\)
\(348\) 0 0
\(349\) 15.1943 0.813332 0.406666 0.913577i \(-0.366691\pi\)
0.406666 + 0.913577i \(0.366691\pi\)
\(350\) −5.70039 7.14806i −0.304698 0.382080i
\(351\) 0 0
\(352\) 0.689213 3.01964i 0.0367352 0.160947i
\(353\) 7.71052 + 9.66868i 0.410389 + 0.514612i 0.943473 0.331451i \(-0.107538\pi\)
−0.533083 + 0.846063i \(0.678967\pi\)
\(354\) 0 0
\(355\) 6.24754 + 27.3723i 0.331585 + 1.45277i
\(356\) 8.63595 4.15885i 0.457704 0.220419i
\(357\) 0 0
\(358\) 0.916165 4.01398i 0.0484208 0.212146i
\(359\) −14.4303 6.94924i −0.761600 0.366767i 0.0124248 0.999923i \(-0.496045\pi\)
−0.774024 + 0.633156i \(0.781759\pi\)
\(360\) 0 0
\(361\) −19.9209 9.59340i −1.04847 0.504916i
\(362\) 4.99825 6.26761i 0.262702 0.329418i
\(363\) 0 0
\(364\) −10.8719 5.23565i −0.569844 0.274422i
\(365\) 4.57323 0.239374
\(366\) 0 0
\(367\) 4.94990 21.6869i 0.258383 1.13205i −0.664597 0.747202i \(-0.731397\pi\)
0.922980 0.384847i \(-0.125746\pi\)
\(368\) −4.87902 + 2.34961i −0.254336 + 0.122482i
\(369\) 0 0
\(370\) −0.169725 0.743612i −0.00882356 0.0386585i
\(371\) 20.8495 26.1445i 1.08245 1.35735i
\(372\) 0 0
\(373\) −1.54213 + 6.75653i −0.0798487 + 0.349840i −0.999032 0.0439901i \(-0.985993\pi\)
0.919183 + 0.393830i \(0.128850\pi\)
\(374\) −1.59861 7.00395i −0.0826620 0.362166i
\(375\) 0 0
\(376\) 21.4159 1.10444
\(377\) 28.2534 3.28780i 1.45512 0.169330i
\(378\) 0 0
\(379\) −4.85604 6.08928i −0.249438 0.312785i 0.641311 0.767281i \(-0.278391\pi\)
−0.890749 + 0.454496i \(0.849819\pi\)
\(380\) −1.37061 6.00505i −0.0703110 0.308052i
\(381\) 0 0
\(382\) −13.3005 16.6783i −0.680512 0.853335i
\(383\) −15.8756 + 19.9074i −0.811206 + 1.01722i 0.188178 + 0.982135i \(0.439742\pi\)
−0.999384 + 0.0350856i \(0.988830\pi\)
\(384\) 0 0
\(385\) −7.31993 + 3.52509i −0.373058 + 0.179655i
\(386\) 14.6155 7.03844i 0.743908 0.358247i
\(387\) 0 0
\(388\) −3.27725 1.57824i −0.166377 0.0801229i
\(389\) −10.9838 −0.556902 −0.278451 0.960450i \(-0.589821\pi\)
−0.278451 + 0.960450i \(0.589821\pi\)
\(390\) 0 0
\(391\) 7.16741 8.98765i 0.362472 0.454525i
\(392\) −21.6014 + 27.0873i −1.09104 + 1.36812i
\(393\) 0 0
\(394\) 9.93365 0.500450
\(395\) 16.6376 + 8.01223i 0.837127 + 0.403139i
\(396\) 0 0
\(397\) −4.59536 + 2.21301i −0.230635 + 0.111068i −0.545632 0.838025i \(-0.683711\pi\)
0.314998 + 0.949092i \(0.397996\pi\)
\(398\) −26.7200 + 12.8677i −1.33935 + 0.644999i
\(399\) 0 0
\(400\) 2.91324 3.65309i 0.145662 0.182654i
\(401\) 12.1843 + 15.2786i 0.608455 + 0.762979i 0.986669 0.162740i \(-0.0520330\pi\)
−0.378214 + 0.925718i \(0.623462\pi\)
\(402\) 0 0
\(403\) 4.49533 + 19.6953i 0.223928 + 0.981093i
\(404\) 1.57388 + 1.97358i 0.0783033 + 0.0981892i
\(405\) 0 0
\(406\) 3.02106 27.7211i 0.149933 1.37577i
\(407\) 0.370004 0.0183404
\(408\) 0 0
\(409\) 3.98856 + 17.4750i 0.197221 + 0.864083i 0.972581 + 0.232564i \(0.0747114\pi\)
−0.775360 + 0.631520i \(0.782431\pi\)
\(410\) 1.75512 7.68966i 0.0866790 0.379765i
\(411\) 0 0
\(412\) −1.16396 + 1.45956i −0.0573442 + 0.0719074i
\(413\) 0.364188 + 1.59561i 0.0179205 + 0.0785148i
\(414\) 0 0
\(415\) −2.46516 + 1.18716i −0.121010 + 0.0582753i
\(416\) 3.44648 15.1000i 0.168978 0.740339i
\(417\) 0 0
\(418\) −8.19954 −0.401053
\(419\) 3.36801 + 1.62195i 0.164538 + 0.0792373i 0.514340 0.857586i \(-0.328037\pi\)
−0.349802 + 0.936824i \(0.613751\pi\)
\(420\) 0 0
\(421\) 5.16735 6.47965i 0.251841 0.315799i −0.639800 0.768541i \(-0.720983\pi\)
0.891641 + 0.452742i \(0.149554\pi\)
\(422\) 2.41227 + 1.16169i 0.117427 + 0.0565500i
\(423\) 0 0
\(424\) 21.6133 + 10.4084i 1.04964 + 0.505478i
\(425\) −2.20713 + 9.67008i −0.107062 + 0.469068i
\(426\) 0 0
\(427\) 21.0643 10.1440i 1.01937 0.490904i
\(428\) 0.585029 + 2.56318i 0.0282785 + 0.123896i
\(429\) 0 0
\(430\) −2.37442 2.97743i −0.114505 0.143584i
\(431\) 4.25670 18.6498i 0.205038 0.898330i −0.762776 0.646663i \(-0.776164\pi\)
0.967814 0.251667i \(-0.0809787\pi\)
\(432\) 0 0
\(433\) −10.0699 12.6273i −0.483929 0.606828i 0.478591 0.878038i \(-0.341148\pi\)
−0.962520 + 0.271210i \(0.912576\pi\)
\(434\) 19.8049 0.950667
\(435\) 0 0
\(436\) 7.95081 0.380775
\(437\) −8.18053 10.2581i −0.391328 0.490710i
\(438\) 0 0
\(439\) −0.660522 + 2.89393i −0.0315250 + 0.138120i −0.988241 0.152902i \(-0.951138\pi\)
0.956716 + 0.291022i \(0.0939953\pi\)
\(440\) −3.63389 4.55675i −0.173239 0.217235i
\(441\) 0 0
\(442\) −7.99400 35.0240i −0.380236 1.66592i
\(443\) 9.45260 4.55213i 0.449107 0.216278i −0.195638 0.980676i \(-0.562678\pi\)
0.644745 + 0.764398i \(0.276964\pi\)
\(444\) 0 0
\(445\) 7.18114 31.4626i 0.340419 1.49147i
\(446\) −2.94998 1.42064i −0.139686 0.0672691i
\(447\) 0 0
\(448\) −34.0751 16.4097i −1.60990 0.775287i
\(449\) 2.74538 3.44260i 0.129563 0.162466i −0.712819 0.701348i \(-0.752582\pi\)
0.842381 + 0.538882i \(0.181153\pi\)
\(450\) 0 0
\(451\) 3.44728 + 1.66012i 0.162326 + 0.0781721i
\(452\) −3.38807 −0.159361
\(453\) 0 0
\(454\) 3.88558 17.0238i 0.182359 0.798968i
\(455\) −36.6040 + 17.6276i −1.71602 + 0.826394i
\(456\) 0 0
\(457\) −2.52528 11.0640i −0.118127 0.517550i −0.999021 0.0442360i \(-0.985915\pi\)
0.880894 0.473314i \(-0.156943\pi\)
\(458\) 19.4354 24.3712i 0.908156 1.13879i
\(459\) 0 0
\(460\) 0.437435 1.91653i 0.0203955 0.0893586i
\(461\) 4.38570 + 19.2150i 0.204262 + 0.894932i 0.968306 + 0.249767i \(0.0803541\pi\)
−0.764044 + 0.645165i \(0.776789\pi\)
\(462\) 0 0
\(463\) 0.753315 0.0350095 0.0175048 0.999847i \(-0.494428\pi\)
0.0175048 + 0.999847i \(0.494428\pi\)
\(464\) 14.1555 1.64725i 0.657153 0.0764718i
\(465\) 0 0
\(466\) 17.0631 + 21.3964i 0.790431 + 0.991169i
\(467\) 2.32424 + 10.1832i 0.107553 + 0.471221i 0.999806 + 0.0196852i \(0.00626641\pi\)
−0.892253 + 0.451535i \(0.850876\pi\)
\(468\) 0 0
\(469\) 20.8307 + 26.1209i 0.961874 + 1.20615i
\(470\) 9.47601 11.8825i 0.437096 0.548101i
\(471\) 0 0
\(472\) −1.05781 + 0.509416i −0.0486898 + 0.0234478i
\(473\) 1.66445 0.801556i 0.0765314 0.0368556i
\(474\) 0 0
\(475\) 10.1997 + 4.91190i 0.467993 + 0.225374i
\(476\) 12.8340 0.588246
\(477\) 0 0
\(478\) −17.6816 + 22.1720i −0.808737 + 1.01412i
\(479\) 8.71517 10.9285i 0.398206 0.499335i −0.541793 0.840512i \(-0.682254\pi\)
0.939999 + 0.341177i \(0.110826\pi\)
\(480\) 0 0
\(481\) 1.85024 0.0843637
\(482\) −24.4154 11.7578i −1.11209 0.535555i
\(483\) 0 0
\(484\) −4.75695 + 2.29083i −0.216225 + 0.104129i
\(485\) −11.0340 + 5.31367i −0.501026 + 0.241282i
\(486\) 0 0
\(487\) −0.910473 + 1.14170i −0.0412575 + 0.0517352i −0.802032 0.597281i \(-0.796248\pi\)
0.760775 + 0.649016i \(0.224819\pi\)
\(488\) 10.4571 + 13.1128i 0.473371 + 0.593589i
\(489\) 0 0
\(490\) 5.47123 + 23.9710i 0.247165 + 1.08290i
\(491\) 7.57677 + 9.50097i 0.341935 + 0.428773i 0.922831 0.385205i \(-0.125869\pi\)
−0.580896 + 0.813978i \(0.697298\pi\)
\(492\) 0 0
\(493\) −25.5564 + 16.1885i −1.15100 + 0.729091i
\(494\) −41.0027 −1.84480
\(495\) 0 0
\(496\) 2.25225 + 9.86774i 0.101129 + 0.443075i
\(497\) −14.8575 + 65.0951i −0.666451 + 2.91991i
\(498\) 0 0
\(499\) −22.4256 + 28.1208i −1.00391 + 1.25886i −0.0381883 + 0.999271i \(0.512159\pi\)
−0.965719 + 0.259589i \(0.916413\pi\)
\(500\) 1.44626 + 6.33648i 0.0646787 + 0.283376i
\(501\) 0 0
\(502\) −6.50108 + 3.13075i −0.290157 + 0.139732i
\(503\) −3.19420 + 13.9947i −0.142422 + 0.623993i 0.852446 + 0.522815i \(0.175118\pi\)
−0.994868 + 0.101178i \(0.967739\pi\)
\(504\) 0 0
\(505\) 8.49892 0.378197
\(506\) −2.35775 1.13543i −0.104815 0.0504762i
\(507\) 0 0
\(508\) 1.48727 1.86498i 0.0659871 0.0827452i
\(509\) −27.9345 13.4525i −1.23817 0.596273i −0.303857 0.952718i \(-0.598275\pi\)
−0.934316 + 0.356445i \(0.883989\pi\)
\(510\) 0 0
\(511\) 9.79873 + 4.71882i 0.433470 + 0.208748i
\(512\) 5.34023 23.3971i 0.236007 1.03401i
\(513\) 0 0
\(514\) −16.4412 + 7.91765i −0.725189 + 0.349232i
\(515\) 1.39863 + 6.12779i 0.0616309 + 0.270023i
\(516\) 0 0
\(517\) 4.59682 + 5.76423i 0.202168 + 0.253511i
\(518\) 0.403629 1.76841i 0.0177344 0.0776996i
\(519\) 0 0
\(520\) −18.1716 22.7865i −0.796879 0.999254i
\(521\) 14.9084 0.653150 0.326575 0.945171i \(-0.394105\pi\)
0.326575 + 0.945171i \(0.394105\pi\)
\(522\) 0 0
\(523\) −12.9505 −0.566284 −0.283142 0.959078i \(-0.591377\pi\)
−0.283142 + 0.959078i \(0.591377\pi\)
\(524\) 0.00331693 + 0.00415930i 0.000144901 + 0.000181700i
\(525\) 0 0
\(526\) −5.04477 + 22.1026i −0.219962 + 0.963718i
\(527\) −13.3963 16.7984i −0.583552 0.731751i
\(528\) 0 0
\(529\) 4.18618 + 18.3409i 0.182008 + 0.797429i
\(530\) 15.3385 7.38662i 0.666260 0.320854i
\(531\) 0 0
\(532\) 3.25951 14.2808i 0.141318 0.619153i
\(533\) 17.2385 + 8.30162i 0.746682 + 0.359583i
\(534\) 0 0
\(535\) 7.97515 + 3.84063i 0.344796 + 0.166045i
\(536\) −14.9434 + 18.7385i −0.645457 + 0.809378i
\(537\) 0 0
\(538\) −25.2262 12.1483i −1.08758 0.523750i
\(539\) −11.9274 −0.513750
\(540\) 0 0
\(541\) −2.41951 + 10.6006i −0.104023 + 0.455754i 0.895911 + 0.444234i \(0.146524\pi\)
−0.999934 + 0.0115201i \(0.996333\pi\)
\(542\) −23.2856 + 11.2137i −1.00020 + 0.481671i
\(543\) 0 0
\(544\) 3.66557 + 16.0599i 0.157160 + 0.688562i
\(545\) 16.6903 20.9289i 0.714932 0.896497i
\(546\) 0 0
\(547\) 5.14692 22.5501i 0.220066 0.964174i −0.737361 0.675499i \(-0.763928\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(548\) −1.45171 6.36038i −0.0620142 0.271702i
\(549\) 0 0
\(550\) 2.25794 0.0962790
\(551\) 11.5228 + 32.5489i 0.490887 + 1.38663i
\(552\) 0 0
\(553\) 27.3808 + 34.3345i 1.16435 + 1.46005i
\(554\) 2.24198 + 9.82275i 0.0952526 + 0.417329i
\(555\) 0 0
\(556\) −1.64711 2.06541i −0.0698529 0.0875928i
\(557\) 26.8909 33.7201i 1.13940 1.42877i 0.252029 0.967720i \(-0.418902\pi\)
0.887375 0.461048i \(-0.152526\pi\)
\(558\) 0 0
\(559\) 8.32325 4.00826i 0.352036 0.169532i
\(560\) −18.3393 + 8.83176i −0.774979 + 0.373210i
\(561\) 0 0
\(562\) −31.5467 15.1921i −1.33072 0.640840i
\(563\) −34.1036 −1.43729 −0.718647 0.695375i \(-0.755238\pi\)
−0.718647 + 0.695375i \(0.755238\pi\)
\(564\) 0 0
\(565\) −7.11219 + 8.91841i −0.299212 + 0.375200i
\(566\) 22.6309 28.3783i 0.951250 1.19283i
\(567\) 0 0
\(568\) −47.8984 −2.00977
\(569\) −17.1914 8.27893i −0.720700 0.347071i 0.0373190 0.999303i \(-0.488118\pi\)
−0.758019 + 0.652233i \(0.773833\pi\)
\(570\) 0 0
\(571\) 5.91613 2.84906i 0.247582 0.119229i −0.305978 0.952039i \(-0.598983\pi\)
0.553560 + 0.832809i \(0.313269\pi\)
\(572\) 2.68500 1.29303i 0.112266 0.0540642i
\(573\) 0 0
\(574\) 11.6950 14.6651i 0.488141 0.612110i
\(575\) 2.25271 + 2.82480i 0.0939444 + 0.117803i
\(576\) 0 0
\(577\) 4.57508 + 20.0447i 0.190463 + 0.834474i 0.976366 + 0.216124i \(0.0693415\pi\)
−0.785903 + 0.618350i \(0.787801\pi\)
\(578\) 10.9897 + 13.7807i 0.457112 + 0.573200i
\(579\) 0 0
\(580\) −2.73636 + 4.39036i −0.113621 + 0.182300i
\(581\) −6.50687 −0.269951
\(582\) 0 0
\(583\) 1.83770 + 8.05150i 0.0761098 + 0.333459i
\(584\) −1.73611 + 7.60637i −0.0718406 + 0.314754i
\(585\) 0 0
\(586\) −6.60818 + 8.28640i −0.272981 + 0.342308i
\(587\) −2.15654 9.44844i −0.0890101 0.389979i 0.910725 0.413014i \(-0.135524\pi\)
−0.999735 + 0.0230356i \(0.992667\pi\)
\(588\) 0 0
\(589\) −22.0945 + 10.6402i −0.910389 + 0.438420i
\(590\) −0.185409 + 0.812330i −0.00763317 + 0.0334431i
\(591\) 0 0
\(592\) 0.927007 0.0380997
\(593\) −11.8757 5.71902i −0.487675 0.234852i 0.173854 0.984771i \(-0.444378\pi\)
−0.661529 + 0.749919i \(0.730092\pi\)
\(594\) 0 0
\(595\) 26.9410 33.7830i 1.10447 1.38497i
\(596\) −6.74441 3.24794i −0.276262 0.133041i
\(597\) 0 0
\(598\) −11.7902 5.67786i −0.482137 0.232185i
\(599\) −3.21314 + 14.0777i −0.131285 + 0.575198i 0.865900 + 0.500218i \(0.166747\pi\)
−0.997185 + 0.0749808i \(0.976110\pi\)
\(600\) 0 0
\(601\) −4.40415 + 2.12093i −0.179649 + 0.0865143i −0.521546 0.853223i \(-0.674645\pi\)
0.341898 + 0.939737i \(0.388930\pi\)
\(602\) −2.01529 8.82955i −0.0821369 0.359865i
\(603\) 0 0
\(604\) −0.977124 1.22527i −0.0397586 0.0498557i
\(605\) −3.95560 + 17.3306i −0.160818 + 0.704590i
\(606\) 0 0
\(607\) −7.82778 9.81573i −0.317720 0.398408i 0.597168 0.802116i \(-0.296293\pi\)
−0.914888 + 0.403708i \(0.867721\pi\)
\(608\) 18.8014 0.762496
\(609\) 0 0
\(610\) 11.9026 0.481923
\(611\) 22.9869 + 28.8246i 0.929950 + 1.16612i
\(612\) 0 0
\(613\) −0.778292 + 3.40992i −0.0314349 + 0.137725i −0.988210 0.153102i \(-0.951074\pi\)
0.956775 + 0.290828i \(0.0939307\pi\)
\(614\) −25.6023 32.1042i −1.03322 1.29562i
\(615\) 0 0
\(616\) −3.08426 13.5130i −0.124268 0.544455i
\(617\) −24.5871 + 11.8405i −0.989838 + 0.476681i −0.857478 0.514521i \(-0.827970\pi\)
−0.132360 + 0.991202i \(0.542255\pi\)
\(618\) 0 0
\(619\) 5.68340 24.9006i 0.228435 1.00084i −0.722481 0.691391i \(-0.756998\pi\)
0.950916 0.309449i \(-0.100145\pi\)
\(620\) −3.31036 1.59419i −0.132947 0.0640240i
\(621\) 0 0
\(622\) 8.86372 + 4.26854i 0.355403 + 0.171153i
\(623\) 47.8508 60.0030i 1.91710 2.40397i
\(624\) 0 0
\(625\) 11.7616 + 5.66409i 0.470464 + 0.226564i
\(626\) 3.05995 0.122300
\(627\) 0 0
\(628\) 1.92461 8.43225i 0.0768002 0.336484i
\(629\) −1.77298 + 0.853821i −0.0706933 + 0.0340441i
\(630\) 0 0
\(631\) −4.62745 20.2742i −0.184216 0.807102i −0.979594 0.200988i \(-0.935585\pi\)
0.795378 0.606114i \(-0.207272\pi\)
\(632\) −19.6423 + 24.6306i −0.781328 + 0.979754i
\(633\) 0 0
\(634\) 4.48252 19.6392i 0.178024 0.779973i
\(635\) −1.78712 7.82990i −0.0709198 0.310720i
\(636\) 0 0
\(637\) −59.6442 −2.36319
\(638\) 4.88737 + 4.85185i 0.193493 + 0.192086i
\(639\) 0 0
\(640\) −5.42895 6.80769i −0.214598 0.269097i
\(641\) −3.14628 13.7848i −0.124271 0.544466i −0.998284 0.0585631i \(-0.981348\pi\)
0.874013 0.485903i \(-0.161509\pi\)
\(642\) 0 0
\(643\) 22.1303 + 27.7505i 0.872734 + 1.09437i 0.994800 + 0.101852i \(0.0324768\pi\)
−0.122066 + 0.992522i \(0.538952\pi\)
\(644\) 2.91481 3.65505i 0.114859 0.144029i
\(645\) 0 0
\(646\) 39.2905 18.9213i 1.54586 0.744448i
\(647\) −18.0758 + 8.70484i −0.710633 + 0.342223i −0.754034 0.656835i \(-0.771895\pi\)
0.0434016 + 0.999058i \(0.486181\pi\)
\(648\) 0 0
\(649\) −0.364168 0.175374i −0.0142948 0.00688404i
\(650\) 11.2911 0.442872
\(651\) 0 0
\(652\) −4.52054 + 5.66858i −0.177038 + 0.221999i
\(653\) −8.32587 + 10.4403i −0.325816 + 0.408561i −0.917580 0.397550i \(-0.869860\pi\)
0.591764 + 0.806111i \(0.298432\pi\)
\(654\) 0 0
\(655\) 0.0179114 0.000699856
\(656\) 8.63682 + 4.15927i 0.337211 + 0.162392i
\(657\) 0 0
\(658\) 32.5644 15.6822i 1.26949 0.611356i
\(659\) 10.2522 4.93720i 0.399369 0.192326i −0.223408 0.974725i \(-0.571718\pi\)
0.622778 + 0.782399i \(0.286004\pi\)
\(660\) 0 0
\(661\) −23.0877 + 28.9510i −0.898007 + 1.12606i 0.0934495 + 0.995624i \(0.470211\pi\)
−0.991456 + 0.130441i \(0.958361\pi\)
\(662\) 9.75940 + 12.2379i 0.379310 + 0.475640i
\(663\) 0 0
\(664\) −1.03870 4.55082i −0.0403092 0.176606i
\(665\) −30.7491 38.5582i −1.19240 1.49522i
\(666\) 0 0
\(667\) −1.19388 + 10.9550i −0.0462271 + 0.424178i
\(668\) −8.73974 −0.338151
\(669\) 0 0
\(670\) 3.78488 + 16.5826i 0.146223 + 0.640643i
\(671\) −1.28483 + 5.62921i −0.0496003 + 0.217313i
\(672\) 0 0
\(673\) 23.2210 29.1182i 0.895103 1.12242i −0.0967842 0.995305i \(-0.530856\pi\)
0.991888 0.127119i \(-0.0405729\pi\)
\(674\) 1.49866 + 6.56604i 0.0577261 + 0.252915i
\(675\) 0 0
\(676\) 7.17021 3.45299i 0.275777 0.132807i
\(677\) 9.99898 43.8084i 0.384292 1.68369i −0.299564 0.954076i \(-0.596841\pi\)
0.683856 0.729617i \(-0.260302\pi\)
\(678\) 0 0
\(679\) −29.1245 −1.11770
\(680\) 27.9280 + 13.4494i 1.07099 + 0.515761i
\(681\) 0 0
\(682\) −3.04958 + 3.82406i −0.116775 + 0.146431i
\(683\) 20.3639 + 9.80672i 0.779201 + 0.375244i 0.780821 0.624755i \(-0.214801\pi\)
−0.00161933 + 0.999999i \(0.500515\pi\)
\(684\) 0 0
\(685\) −19.7898 9.53029i −0.756131 0.364134i
\(686\) −4.94560 + 21.6681i −0.188824 + 0.827291i
\(687\) 0 0
\(688\) 4.17011 2.00822i 0.158984 0.0765626i
\(689\) 9.18962 + 40.2623i 0.350097 + 1.53387i
\(690\) 0 0
\(691\) −24.2367 30.3919i −0.922009 1.15616i −0.987391 0.158302i \(-0.949398\pi\)
0.0653818 0.997860i \(-0.479173\pi\)
\(692\) 0.530569 2.32458i 0.0201692 0.0883671i
\(693\) 0 0
\(694\) 6.63294 + 8.31744i 0.251783 + 0.315726i
\(695\) −8.89436 −0.337382
\(696\) 0 0
\(697\) −20.3495 −0.770794
\(698\) 11.4697 + 14.3826i 0.434135 + 0.544388i
\(699\) 0 0
\(700\) −0.897584 + 3.93257i −0.0339255 + 0.148637i
\(701\) 24.5921 + 30.8375i 0.928831 + 1.16472i 0.986066 + 0.166357i \(0.0532004\pi\)
−0.0572342 + 0.998361i \(0.518228\pi\)
\(702\) 0 0
\(703\) 0.499785 + 2.18970i 0.0188498 + 0.0825862i
\(704\) 8.41541 4.05265i 0.317168 0.152740i
\(705\) 0 0
\(706\) −3.33172 + 14.5972i −0.125391 + 0.549373i
\(707\) 18.2100 + 8.76949i 0.684859 + 0.329811i
\(708\) 0 0
\(709\) 3.67038 + 1.76756i 0.137844 + 0.0663823i 0.501534 0.865138i \(-0.332769\pi\)
−0.363690 + 0.931520i \(0.618483\pi\)
\(710\) −21.1939 + 26.5763i −0.795393 + 0.997391i
\(711\) 0 0
\(712\) 49.6038 + 23.8879i 1.85898 + 0.895238i
\(713\) −7.82661 −0.293109
\(714\) 0 0
\(715\) 2.23269 9.78204i 0.0834978 0.365828i
\(716\) −1.63660 + 0.788144i −0.0611625 + 0.0294543i
\(717\) 0 0
\(718\) −4.31497 18.9051i −0.161033 0.705533i
\(719\) 11.4911 14.4094i 0.428546 0.537380i −0.519938 0.854204i \(-0.674045\pi\)
0.948484 + 0.316824i \(0.102616\pi\)
\(720\) 0 0
\(721\) −3.32613 + 14.5727i −0.123872 + 0.542717i
\(722\) −5.95680 26.0985i −0.221689 0.971284i
\(723\) 0 0
\(724\) −3.53686 −0.131446
\(725\) −3.17308 8.96313i −0.117845 0.332882i
\(726\) 0 0
\(727\) 10.9828 + 13.7720i 0.407330 + 0.510775i 0.942608 0.333900i \(-0.108365\pi\)
−0.535279 + 0.844675i \(0.679793\pi\)
\(728\) −15.4231 67.5732i −0.571619 2.50443i
\(729\) 0 0
\(730\) 3.45219 + 4.32891i 0.127771 + 0.160220i
\(731\) −6.12601 + 7.68177i −0.226579 + 0.284121i
\(732\) 0 0
\(733\) 7.41249 3.56967i 0.273786 0.131849i −0.291953 0.956433i \(-0.594305\pi\)
0.565739 + 0.824584i \(0.308591\pi\)
\(734\) 24.2649 11.6854i 0.895634 0.431315i
\(735\) 0 0
\(736\) 5.40627 + 2.60352i 0.199278 + 0.0959671i
\(737\) −8.25113 −0.303934
\(738\) 0 0
\(739\) 22.3350 28.0072i 0.821607 1.03026i −0.177329 0.984152i \(-0.556746\pi\)
0.998936 0.0461112i \(-0.0146829\pi\)
\(740\) −0.209813 + 0.263097i −0.00771288 + 0.00967165i
\(741\) 0 0
\(742\) 40.4864 1.48630
\(743\) 8.37415 + 4.03278i 0.307218 + 0.147948i 0.581140 0.813803i \(-0.302607\pi\)
−0.273922 + 0.961752i \(0.588321\pi\)
\(744\) 0 0
\(745\) −22.7073 + 10.9353i −0.831933 + 0.400638i
\(746\) −7.55969 + 3.64056i −0.276780 + 0.133290i
\(747\) 0 0
\(748\) −1.97619 + 2.47807i −0.0722568 + 0.0906071i
\(749\) 13.1249 + 16.4581i 0.479573 + 0.601366i
\(750\) 0 0
\(751\) 9.98479 + 43.7462i 0.364350 + 1.59632i 0.742017 + 0.670381i \(0.233869\pi\)
−0.377667 + 0.925941i \(0.623274\pi\)
\(752\) 11.5169 + 14.4417i 0.419977 + 0.526635i
\(753\) 0 0
\(754\) 24.4398 + 24.2622i 0.890045 + 0.883576i
\(755\) −5.27646 −0.192030
\(756\) 0 0
\(757\) −4.81041 21.0758i −0.174837 0.766012i −0.983962 0.178376i \(-0.942916\pi\)
0.809125 0.587636i \(-0.199941\pi\)
\(758\) 2.09830 9.19323i 0.0762135 0.333913i
\(759\) 0 0
\(760\) 22.0586 27.6606i 0.800150 1.00336i
\(761\) −8.76193 38.3885i −0.317620 1.39158i −0.841714 0.539923i \(-0.818453\pi\)
0.524094 0.851660i \(-0.324404\pi\)
\(762\) 0 0
\(763\) 57.3563 27.6213i 2.07644 0.999959i
\(764\) −2.09430 + 9.17572i −0.0757691 + 0.331966i
\(765\) 0 0
\(766\) −30.8279 −1.11386
\(767\) −1.82106 0.876976i −0.0657547 0.0316658i
\(768\) 0 0
\(769\) 2.67820 3.35836i 0.0965784 0.121105i −0.731194 0.682170i \(-0.761037\pi\)
0.827772 + 0.561064i \(0.189608\pi\)
\(770\) −8.86237 4.26789i −0.319378 0.153804i
\(771\) 0 0
\(772\) −6.44826 3.10532i −0.232078 0.111763i
\(773\) 6.20838 27.2007i 0.223300 0.978341i −0.731675 0.681654i \(-0.761261\pi\)
0.954975 0.296687i \(-0.0958819\pi\)
\(774\) 0 0
\(775\) 6.08426 2.93002i 0.218553 0.105250i
\(776\) −4.64917 20.3693i −0.166895 0.731216i
\(777\) 0 0
\(778\) −8.29137 10.3970i −0.297260 0.372752i
\(779\) −5.16826 + 22.6436i −0.185172 + 0.811292i
\(780\) 0 0
\(781\) −10.2812 12.8922i −0.367890 0.461319i
\(782\) 13.9180 0.497706
\(783\) 0 0
\(784\) −29.8829 −1.06725
\(785\) −18.1561 22.7670i −0.648019 0.812591i
\(786\) 0 0
\(787\) 1.31441 5.75879i 0.0468536 0.205279i −0.946083 0.323924i \(-0.894998\pi\)
0.992937 + 0.118645i \(0.0378550\pi\)
\(788\) −2.73255 3.42650i −0.0973429 0.122064i
\(789\) 0 0
\(790\) 4.97501 + 21.7969i 0.177003 + 0.775500i
\(791\) −24.4411 + 11.7702i −0.869027 + 0.418501i
\(792\) 0 0
\(793\) −6.42493 + 28.1494i −0.228156 + 0.999616i
\(794\) −5.56369 2.67933i −0.197448 0.0950860i
\(795\) 0 0
\(796\) 11.7887 + 5.67715i 0.417840 + 0.201221i
\(797\) 4.73789 5.94113i 0.167825 0.210446i −0.690806 0.723040i \(-0.742744\pi\)
0.858631 + 0.512595i \(0.171316\pi\)
\(798\) 0 0
\(799\) −35.3286 17.0133i −1.24983 0.601888i
\(800\) −5.17741 −0.183049
\(801\) 0 0
\(802\) −5.26484 + 23.0668i −0.185908 + 0.814516i
\(803\) −2.41996 + 1.16539i −0.0853984 + 0.0411257i
\(804\) 0 0
\(805\) −3.50246 15.3453i −0.123446 0.540850i
\(806\) −15.2498 + 19.1226i −0.537150 + 0.673564i
\(807\) 0 0
\(808\) −3.22639 + 14.1357i −0.113504 + 0.497294i
\(809\) −2.19189 9.60330i −0.0770628 0.337634i 0.921669 0.387977i \(-0.126826\pi\)
−0.998732 + 0.0503425i \(0.983969\pi\)
\(810\) 0 0
\(811\) 46.3250 1.62669 0.813346 0.581780i \(-0.197644\pi\)
0.813346 + 0.581780i \(0.197644\pi\)
\(812\) −10.3931 + 6.58343i −0.364727 + 0.231033i
\(813\) 0 0
\(814\) 0.279305 + 0.350237i 0.00978963 + 0.0122758i
\(815\) 5.43193 + 23.7988i 0.190272 + 0.833637i
\(816\) 0 0
\(817\) 6.99192 + 8.76759i 0.244616 + 0.306739i
\(818\) −13.5306 + 16.9668i −0.473087 + 0.593232i
\(819\) 0 0
\(820\) −3.13526 + 1.50986i −0.109488 + 0.0527267i
\(821\) 16.2673 7.83393i 0.567733 0.273406i −0.127919 0.991785i \(-0.540830\pi\)
0.695652 + 0.718379i \(0.255115\pi\)
\(822\) 0 0
\(823\) 30.3038 + 14.5936i 1.05633 + 0.508700i 0.879676 0.475574i \(-0.157760\pi\)
0.176650 + 0.984274i \(0.443474\pi\)
\(824\) −10.7229 −0.373551
\(825\) 0 0
\(826\) −1.23545 + 1.54921i −0.0429870 + 0.0539039i
\(827\) −25.6465 + 32.1597i −0.891817 + 1.11830i 0.100544 + 0.994933i \(0.467942\pi\)
−0.992361 + 0.123370i \(0.960630\pi\)
\(828\) 0 0
\(829\) 7.95542 0.276303 0.138152 0.990411i \(-0.455884\pi\)
0.138152 + 0.990411i \(0.455884\pi\)
\(830\) −2.98461 1.43731i −0.103597 0.0498899i
\(831\) 0 0
\(832\) 42.0821 20.2657i 1.45894 0.702586i
\(833\) 57.1536 27.5237i 1.98025 0.953640i
\(834\) 0 0
\(835\) −18.3464 + 23.0056i −0.634903 + 0.796143i
\(836\) 2.25553 + 2.82834i 0.0780091 + 0.0978203i
\(837\) 0 0
\(838\) 1.00711 + 4.41244i 0.0347901 + 0.152425i
\(839\) 7.05968 + 8.85256i 0.243727 + 0.305624i 0.888616 0.458652i \(-0.151668\pi\)
−0.644889 + 0.764277i \(0.723096\pi\)
\(840\) 0 0
\(841\) 12.3917 26.2192i 0.427299 0.904110i
\(842\) 10.0342 0.345801
\(843\) 0 0
\(844\) −0.262855 1.15164i −0.00904784 0.0396412i
\(845\) 5.96232 26.1226i 0.205110 0.898646i
\(846\) 0 0
\(847\) −26.3577 + 33.0516i −0.905663 + 1.13567i
\(848\) 4.60418 + 20.1722i 0.158108 + 0.692717i
\(849\) 0 0
\(850\) −10.8196 + 5.21043i −0.371108 + 0.178716i
\(851\) −0.159508 + 0.698850i −0.00546786 + 0.0239563i
\(852\) 0 0
\(853\) 14.5146 0.496971 0.248486 0.968636i \(-0.420067\pi\)
0.248486 + 0.968636i \(0.420067\pi\)
\(854\) 25.5029 + 12.2816i 0.872692 + 0.420266i
\(855\) 0 0
\(856\) −9.41545 + 11.8066i −0.321813 + 0.403541i
\(857\) −9.65562 4.64990i −0.329830 0.158838i 0.261638 0.965166i \(-0.415737\pi\)
−0.591468 + 0.806328i \(0.701451\pi\)
\(858\) 0 0
\(859\) −14.1577 6.81799i −0.483055 0.232627i 0.176475 0.984305i \(-0.443530\pi\)
−0.659530 + 0.751678i \(0.729245\pi\)
\(860\) −0.373877 + 1.63806i −0.0127491 + 0.0558575i
\(861\) 0 0
\(862\) 20.8667 10.0489i 0.710724 0.342267i
\(863\) −3.20755 14.0532i −0.109186 0.478377i −0.999725 0.0234684i \(-0.992529\pi\)
0.890538 0.454908i \(-0.150328\pi\)
\(864\) 0 0
\(865\) −5.00522 6.27635i −0.170183 0.213402i
\(866\) 4.35122 19.0639i 0.147860 0.647818i
\(867\) 0 0
\(868\) −5.44794 6.83150i −0.184915 0.231876i
\(869\) −10.8456 −0.367913
\(870\) 0 0
\(871\) −41.2606 −1.39806
\(872\) 28.4738 + 35.7050i 0.964245 + 1.20912i
\(873\) 0 0
\(874\) 3.53481 15.4870i 0.119567 0.523856i
\(875\) 32.4463 + 40.6863i 1.09688 + 1.37545i
\(876\) 0 0
\(877\) −3.02248 13.2424i −0.102062 0.447163i −0.999976 0.00699099i \(-0.997775\pi\)
0.897914 0.440172i \(-0.145082\pi\)
\(878\) −3.23794 + 1.55931i −0.109275 + 0.0526242i
\(879\) 0 0
\(880\) 1.11862 4.90100i 0.0377087 0.165213i
\(881\) 19.2804 + 9.28496i 0.649574 + 0.312818i 0.729498 0.683983i \(-0.239754\pi\)
−0.0799246 + 0.996801i \(0.525468\pi\)
\(882\) 0 0
\(883\) 10.0207 + 4.82569i 0.337222 + 0.162397i 0.594829 0.803852i \(-0.297220\pi\)
−0.257607 + 0.966250i \(0.582934\pi\)
\(884\) −9.88216 + 12.3918i −0.332373 + 0.416782i
\(885\) 0 0
\(886\) 11.4444 + 5.51135i 0.384483 + 0.185157i
\(887\) 1.53319 0.0514795 0.0257397 0.999669i \(-0.491806\pi\)
0.0257397 + 0.999669i \(0.491806\pi\)
\(888\) 0 0
\(889\) 4.25003 18.6206i 0.142541 0.624514i
\(890\) 35.2027 16.9527i 1.18000 0.568256i
\(891\) 0 0
\(892\) 0.321447 + 1.40835i 0.0107629 + 0.0471551i
\(893\) −27.9039 + 34.9903i −0.933767 + 1.17091i
\(894\) 0 0
\(895\) −1.36090 + 5.96248i −0.0454898 + 0.199304i
\(896\) −4.60781 20.1881i −0.153936 0.674438i
\(897\) 0 0
\(898\) 5.33110 0.177901
\(899\) 19.4655 + 6.73169i 0.649212 + 0.224514i
\(900\) 0 0
\(901\) −27.3855 34.3404i −0.912344 1.14404i
\(902\) 1.03082 + 4.51630i 0.0343224 + 0.150376i
\(903\) 0 0
\(904\) −12.1335 15.2149i −0.403554 0.506041i
\(905\) −7.42454 + 9.31008i −0.246800 + 0.309478i
\(906\) 0 0
\(907\) −6.92799 + 3.33634i −0.230040 + 0.110781i −0.545354 0.838206i \(-0.683605\pi\)
0.315314 + 0.948988i \(0.397890\pi\)
\(908\) −6.94103 + 3.34262i −0.230346 + 0.110929i
\(909\) 0 0
\(910\) −44.3172 21.3420i −1.46910 0.707481i
\(911\) 29.5727 0.979788 0.489894 0.871782i \(-0.337036\pi\)
0.489894 + 0.871782i \(0.337036\pi\)
\(912\) 0 0
\(913\) 1.00194 1.25639i 0.0331592 0.0415803i
\(914\) 8.56664 10.7422i 0.283359 0.355321i
\(915\) 0 0
\(916\) −13.7529 −0.454408
\(917\) 0.0383775 + 0.0184816i 0.00126734 + 0.000610317i
\(918\) 0 0
\(919\) 30.8397 14.8516i 1.01731 0.489910i 0.150532 0.988605i \(-0.451901\pi\)
0.866778 + 0.498695i \(0.166187\pi\)
\(920\) 10.1732 4.89915i 0.335400 0.161520i
\(921\) 0 0
\(922\) −14.8779 + 18.6562i −0.489976 + 0.614411i
\(923\) −51.4121 64.4687i −1.69225 2.12201i
\(924\) 0 0
\(925\) −0.137628 0.602987i −0.00452518 0.0198261i
\(926\) 0.568656 + 0.713072i 0.0186872 + 0.0234330i
\(927\) 0 0
\(928\) −11.2066 11.1252i −0.367876 0.365202i
\(929\) −48.1477 −1.57967 −0.789837 0.613317i \(-0.789835\pi\)
−0.789837 + 0.613317i \(0.789835\pi\)
\(930\) 0 0
\(931\) −16.1110 70.5870i −0.528018 2.31340i
\(932\) 2.68675 11.7714i 0.0880075 0.385586i
\(933\) 0 0
\(934\) −7.88466 + 9.88705i −0.257994 + 0.323514i
\(935\) 2.37462 + 10.4039i 0.0776582 + 0.340243i
\(936\) 0 0
\(937\) 12.3770 5.96047i 0.404340 0.194720i −0.220649 0.975353i \(-0.570818\pi\)
0.624989 + 0.780633i \(0.285103\pi\)
\(938\) −9.00097 + 39.4358i −0.293892 + 1.28763i
\(939\) 0 0
\(940\) −6.70542 −0.218707
\(941\) −33.5624 16.1628i −1.09410 0.526892i −0.202303 0.979323i \(-0.564843\pi\)
−0.891800 + 0.452431i \(0.850557\pi\)
\(942\) 0 0
\(943\) −4.62170 + 5.79543i −0.150503 + 0.188725i
\(944\) −0.912387 0.439382i −0.0296957 0.0143007i
\(945\) 0 0
\(946\) 2.01518 + 0.970459i 0.0655191 + 0.0315523i
\(947\) 3.66686 16.0656i 0.119157 0.522061i −0.879755 0.475427i \(-0.842294\pi\)
0.998912 0.0466336i \(-0.0148493\pi\)
\(948\) 0 0
\(949\) −12.1012 + 5.82765i −0.392823 + 0.189174i
\(950\) 3.04993 + 13.3626i 0.0989529 + 0.433541i
\(951\) 0 0
\(952\) 45.9617 + 57.6342i 1.48963 + 1.86794i
\(953\) −6.18414 + 27.0945i −0.200324 + 0.877676i 0.770416 + 0.637542i \(0.220049\pi\)
−0.970740 + 0.240134i \(0.922808\pi\)
\(954\) 0 0
\(955\) 19.7569 + 24.7744i 0.639319 + 0.801681i
\(956\) 12.5118 0.404662
\(957\) 0 0
\(958\) 16.9235 0.546773
\(959\) −32.5686 40.8397i −1.05170 1.31878i
\(960\) 0 0
\(961\) 3.64303 15.9612i 0.117517 0.514876i
\(962\) 1.39669 + 1.75140i 0.0450312 + 0.0564673i
\(963\) 0 0
\(964\) 2.66045 + 11.6562i 0.0856873 + 0.375420i
\(965\) −21.7102 + 10.4551i −0.698878 + 0.336562i
\(966\) 0 0
\(967\) 11.5683 50.6842i 0.372012 1.62989i −0.349108 0.937083i \(-0.613515\pi\)
0.721120 0.692810i \(-0.243628\pi\)
\(968\) −27.3233 13.1582i −0.878206 0.422922i
\(969\) 0 0
\(970\) −13.3590 6.43336i −0.428932 0.206563i
\(971\) −16.5938 + 20.8080i −0.532522 + 0.667761i −0.973215 0.229896i \(-0.926161\pi\)
0.440693 + 0.897658i \(0.354733\pi\)
\(972\) 0 0
\(973\) −19.0573 9.17752i −0.610950 0.294218i
\(974\) −1.76799 −0.0566502
\(975\) 0 0
\(976\) −3.21901 + 14.1034i −0.103038 + 0.451440i
\(977\) 54.8653 26.4217i 1.75530 0.845306i 0.779568 0.626317i \(-0.215438\pi\)
0.975727 0.218989i \(-0.0702758\pi\)
\(978\) 0 0
\(979\) 4.21763 + 18.4787i 0.134796 + 0.590580i
\(980\) 6.76352 8.48118i 0.216053 0.270921i
\(981\) 0 0
\(982\) −3.27392 + 14.3440i −0.104475 + 0.457735i
\(983\) 10.4431 + 45.7541i 0.333083 + 1.45933i 0.813127 + 0.582086i \(0.197763\pi\)
−0.480044 + 0.877244i \(0.659379\pi\)
\(984\) 0 0
\(985\) −14.7557 −0.470156
\(986\) −34.6154 11.9709i −1.10238 0.381231i
\(987\) 0 0
\(988\) 11.2790 + 14.1434i 0.358833 + 0.449962i
\(989\) 0.796411 + 3.48930i 0.0253244 + 0.110953i
\(990\) 0 0
\(991\) 31.6674 + 39.7096i 1.00595 + 1.26142i 0.964998 + 0.262256i \(0.0844665\pi\)
0.0409484 + 0.999161i \(0.486962\pi\)
\(992\) 6.99262 8.76847i 0.222016 0.278399i
\(993\) 0 0
\(994\) −72.8331 + 35.0746i −2.31012 + 1.11250i
\(995\) 39.6907 19.1140i 1.25828 0.605956i
\(996\) 0 0
\(997\) 41.2723 + 19.8757i 1.30711 + 0.629469i 0.952212 0.305438i \(-0.0988029\pi\)
0.354893 + 0.934907i \(0.384517\pi\)
\(998\) −43.5469 −1.37845
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.c.82.3 18
3.2 odd 2 87.2.g.a.82.1 yes 18
29.9 even 14 7569.2.a.bm.1.2 9
29.20 even 7 7569.2.a.bj.1.8 9
29.23 even 7 inner 261.2.k.c.226.3 18
87.20 odd 14 2523.2.a.r.1.2 9
87.23 odd 14 87.2.g.a.52.1 18
87.38 odd 14 2523.2.a.o.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.52.1 18 87.23 odd 14
87.2.g.a.82.1 yes 18 3.2 odd 2
261.2.k.c.82.3 18 1.1 even 1 trivial
261.2.k.c.226.3 18 29.23 even 7 inner
2523.2.a.o.1.8 9 87.38 odd 14
2523.2.a.r.1.2 9 87.20 odd 14
7569.2.a.bj.1.8 9 29.20 even 7
7569.2.a.bm.1.2 9 29.9 even 14