Properties

Label 261.2.k.c.226.1
Level $261$
Weight $2$
Character 261.226
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 226.1
Root \(-0.353498 - 1.54877i\) of defining polynomial
Character \(\chi\) \(=\) 261.226
Dual form 261.2.k.c.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61397 + 2.02385i) q^{2} +(-1.04604 - 4.58301i) q^{4} +(0.716354 - 0.898279i) q^{5} +(-0.615328 + 2.69593i) q^{7} +(6.29911 + 3.03349i) q^{8} +(0.661812 + 2.89959i) q^{10} +(-3.92298 + 1.88921i) q^{11} +(-5.07168 + 2.44239i) q^{13} +(-4.46304 - 5.59648i) q^{14} +(-7.83521 + 3.77324i) q^{16} -2.41516 q^{17} +(-0.416772 - 1.82600i) q^{19} +(-4.86616 - 2.34342i) q^{20} +(2.50809 - 10.9886i) q^{22} +(5.49948 + 6.89613i) q^{23} +(0.818862 + 3.58767i) q^{25} +(3.24249 - 14.2063i) q^{26} +12.9991 q^{28} +(-4.53581 - 2.90283i) q^{29} +(0.972977 - 1.22007i) q^{31} +(1.89780 - 8.31482i) q^{32} +(3.89799 - 4.88793i) q^{34} +(1.98091 + 2.48398i) q^{35} +(-6.99449 - 3.36837i) q^{37} +(4.36821 + 2.10362i) q^{38} +(7.23731 - 3.48530i) q^{40} -3.16072 q^{41} +(-0.912772 - 1.14458i) q^{43} +(12.7618 + 16.0028i) q^{44} -22.8327 q^{46} +(0.321962 - 0.155049i) q^{47} +(-0.582626 - 0.280578i) q^{49} +(-8.58252 - 4.13313i) q^{50} +(16.4987 + 20.6887i) q^{52} +(1.01940 - 1.27828i) q^{53} +(-1.11320 + 4.87727i) q^{55} +(-12.0541 + 15.1154i) q^{56} +(13.1955 - 4.49474i) q^{58} +4.85026 q^{59} +(-0.346042 + 1.51611i) q^{61} +(0.898897 + 3.93832i) q^{62} +(2.92070 + 3.66245i) q^{64} +(-1.43917 + 6.30540i) q^{65} +(8.71192 + 4.19544i) q^{67} +(2.52636 + 11.0687i) q^{68} -8.22432 q^{70} +(-7.37090 + 3.54964i) q^{71} +(7.09446 + 8.89617i) q^{73} +(18.1060 - 8.71937i) q^{74} +(-7.93260 + 3.82014i) q^{76} +(-2.67925 - 11.7386i) q^{77} +(7.32556 + 3.52780i) q^{79} +(-2.22336 + 9.74119i) q^{80} +(5.10130 - 6.39683i) q^{82} +(-0.107218 - 0.469754i) q^{83} +(-1.73011 + 2.16949i) q^{85} +3.78965 q^{86} -30.4421 q^{88} +(1.24461 - 1.56070i) q^{89} +(-3.46377 - 15.1758i) q^{91} +(25.8523 - 32.4178i) q^{92} +(-0.205841 + 0.901847i) q^{94} +(-1.93881 - 0.933683i) q^{95} +(-1.03142 - 4.51895i) q^{97} +(1.50819 - 0.726305i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{2} - 6 q^{4} + q^{5} - 4 q^{7} + 15 q^{8} - 14 q^{10} - 26 q^{11} + 9 q^{13} + 10 q^{14} - 14 q^{16} - 4 q^{17} - 10 q^{19} + q^{20} - 8 q^{22} + 8 q^{23} + 16 q^{25} - 5 q^{26} + 80 q^{28}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61397 + 2.02385i −1.14125 + 1.43108i −0.255563 + 0.966792i \(0.582261\pi\)
−0.885685 + 0.464287i \(0.846311\pi\)
\(3\) 0 0
\(4\) −1.04604 4.58301i −0.523021 2.29150i
\(5\) 0.716354 0.898279i 0.320363 0.401723i −0.595408 0.803424i \(-0.703009\pi\)
0.915771 + 0.401701i \(0.131581\pi\)
\(6\) 0 0
\(7\) −0.615328 + 2.69593i −0.232572 + 1.01897i 0.714925 + 0.699201i \(0.246461\pi\)
−0.947497 + 0.319764i \(0.896396\pi\)
\(8\) 6.29911 + 3.03349i 2.22707 + 1.07250i
\(9\) 0 0
\(10\) 0.661812 + 2.89959i 0.209283 + 0.916930i
\(11\) −3.92298 + 1.88921i −1.18282 + 0.569617i −0.918732 0.394881i \(-0.870786\pi\)
−0.264090 + 0.964498i \(0.585071\pi\)
\(12\) 0 0
\(13\) −5.07168 + 2.44239i −1.40663 + 0.677397i −0.974494 0.224411i \(-0.927954\pi\)
−0.432135 + 0.901809i \(0.642240\pi\)
\(14\) −4.46304 5.59648i −1.19280 1.49572i
\(15\) 0 0
\(16\) −7.83521 + 3.77324i −1.95880 + 0.943310i
\(17\) −2.41516 −0.585763 −0.292881 0.956149i \(-0.594614\pi\)
−0.292881 + 0.956149i \(0.594614\pi\)
\(18\) 0 0
\(19\) −0.416772 1.82600i −0.0956141 0.418913i 0.904355 0.426781i \(-0.140353\pi\)
−0.999969 + 0.00786845i \(0.997495\pi\)
\(20\) −4.86616 2.34342i −1.08811 0.524004i
\(21\) 0 0
\(22\) 2.50809 10.9886i 0.534726 2.34279i
\(23\) 5.49948 + 6.89613i 1.14672 + 1.43794i 0.880510 + 0.474027i \(0.157200\pi\)
0.266210 + 0.963915i \(0.414229\pi\)
\(24\) 0 0
\(25\) 0.818862 + 3.58767i 0.163772 + 0.717534i
\(26\) 3.24249 14.2063i 0.635904 2.78608i
\(27\) 0 0
\(28\) 12.9991 2.45660
\(29\) −4.53581 2.90283i −0.842279 0.539042i
\(30\) 0 0
\(31\) 0.972977 1.22007i 0.174752 0.219132i −0.686740 0.726903i \(-0.740959\pi\)
0.861492 + 0.507771i \(0.169530\pi\)
\(32\) 1.89780 8.31482i 0.335488 1.46987i
\(33\) 0 0
\(34\) 3.89799 4.88793i 0.668500 0.838273i
\(35\) 1.98091 + 2.48398i 0.334834 + 0.419869i
\(36\) 0 0
\(37\) −6.99449 3.36837i −1.14989 0.553756i −0.240887 0.970553i \(-0.577438\pi\)
−0.909000 + 0.416797i \(0.863153\pi\)
\(38\) 4.36821 + 2.10362i 0.708617 + 0.341252i
\(39\) 0 0
\(40\) 7.23731 3.48530i 1.14432 0.551075i
\(41\) −3.16072 −0.493622 −0.246811 0.969064i \(-0.579383\pi\)
−0.246811 + 0.969064i \(0.579383\pi\)
\(42\) 0 0
\(43\) −0.912772 1.14458i −0.139196 0.174547i 0.707347 0.706867i \(-0.249892\pi\)
−0.846543 + 0.532320i \(0.821320\pi\)
\(44\) 12.7618 + 16.0028i 1.92392 + 2.41252i
\(45\) 0 0
\(46\) −22.8327 −3.36650
\(47\) 0.321962 0.155049i 0.0469630 0.0226162i −0.410255 0.911971i \(-0.634560\pi\)
0.457218 + 0.889355i \(0.348846\pi\)
\(48\) 0 0
\(49\) −0.582626 0.280578i −0.0832323 0.0400826i
\(50\) −8.58252 4.13313i −1.21375 0.584512i
\(51\) 0 0
\(52\) 16.4987 + 20.6887i 2.28796 + 2.86901i
\(53\) 1.01940 1.27828i 0.140025 0.175586i −0.706874 0.707339i \(-0.749895\pi\)
0.846899 + 0.531754i \(0.178467\pi\)
\(54\) 0 0
\(55\) −1.11320 + 4.87727i −0.150104 + 0.657651i
\(56\) −12.0541 + 15.1154i −1.61080 + 2.01987i
\(57\) 0 0
\(58\) 13.1955 4.49474i 1.73266 0.590188i
\(59\) 4.85026 0.631450 0.315725 0.948851i \(-0.397752\pi\)
0.315725 + 0.948851i \(0.397752\pi\)
\(60\) 0 0
\(61\) −0.346042 + 1.51611i −0.0443062 + 0.194118i −0.992238 0.124356i \(-0.960313\pi\)
0.947931 + 0.318474i \(0.103171\pi\)
\(62\) 0.898897 + 3.93832i 0.114160 + 0.500168i
\(63\) 0 0
\(64\) 2.92070 + 3.66245i 0.365088 + 0.457806i
\(65\) −1.43917 + 6.30540i −0.178507 + 0.782088i
\(66\) 0 0
\(67\) 8.71192 + 4.19544i 1.06433 + 0.512554i 0.882275 0.470734i \(-0.156011\pi\)
0.182055 + 0.983288i \(0.441725\pi\)
\(68\) 2.52636 + 11.0687i 0.306366 + 1.34228i
\(69\) 0 0
\(70\) −8.22432 −0.982994
\(71\) −7.37090 + 3.54964i −0.874765 + 0.421264i −0.816710 0.577049i \(-0.804204\pi\)
−0.0580551 + 0.998313i \(0.518490\pi\)
\(72\) 0 0
\(73\) 7.09446 + 8.89617i 0.830344 + 1.04122i 0.998461 + 0.0554515i \(0.0176598\pi\)
−0.168117 + 0.985767i \(0.553769\pi\)
\(74\) 18.1060 8.71937i 2.10477 1.01361i
\(75\) 0 0
\(76\) −7.93260 + 3.82014i −0.909932 + 0.438200i
\(77\) −2.67925 11.7386i −0.305329 1.33773i
\(78\) 0 0
\(79\) 7.32556 + 3.52780i 0.824189 + 0.396909i 0.797933 0.602747i \(-0.205927\pi\)
0.0262567 + 0.999655i \(0.491641\pi\)
\(80\) −2.22336 + 9.74119i −0.248579 + 1.08910i
\(81\) 0 0
\(82\) 5.10130 6.39683i 0.563345 0.706412i
\(83\) −0.107218 0.469754i −0.0117687 0.0515622i 0.968703 0.248224i \(-0.0798470\pi\)
−0.980471 + 0.196662i \(0.936990\pi\)
\(84\) 0 0
\(85\) −1.73011 + 2.16949i −0.187657 + 0.235314i
\(86\) 3.78965 0.408648
\(87\) 0 0
\(88\) −30.4421 −3.24514
\(89\) 1.24461 1.56070i 0.131929 0.165434i −0.711479 0.702707i \(-0.751974\pi\)
0.843408 + 0.537274i \(0.180546\pi\)
\(90\) 0 0
\(91\) −3.46377 15.1758i −0.363101 1.59085i
\(92\) 25.8523 32.4178i 2.69529 3.37979i
\(93\) 0 0
\(94\) −0.205841 + 0.901847i −0.0212309 + 0.0930184i
\(95\) −1.93881 0.933683i −0.198918 0.0957938i
\(96\) 0 0
\(97\) −1.03142 4.51895i −0.104725 0.458830i −0.999914 0.0131424i \(-0.995817\pi\)
0.895189 0.445687i \(-0.147041\pi\)
\(98\) 1.50819 0.726305i 0.152350 0.0733679i
\(99\) 0 0
\(100\) 15.5857 7.50570i 1.55857 0.750570i
\(101\) 1.18405 + 1.48475i 0.117817 + 0.147738i 0.837243 0.546831i \(-0.184166\pi\)
−0.719425 + 0.694570i \(0.755595\pi\)
\(102\) 0 0
\(103\) 7.40706 3.56705i 0.729840 0.351472i −0.0317815 0.999495i \(-0.510118\pi\)
0.761621 + 0.648023i \(0.224404\pi\)
\(104\) −39.3560 −3.85917
\(105\) 0 0
\(106\) 0.941781 + 4.12621i 0.0914739 + 0.400773i
\(107\) 4.01632 + 1.93416i 0.388273 + 0.186982i 0.617828 0.786313i \(-0.288013\pi\)
−0.229555 + 0.973296i \(0.573727\pi\)
\(108\) 0 0
\(109\) −3.89981 + 17.0862i −0.373534 + 1.63656i 0.343234 + 0.939250i \(0.388478\pi\)
−0.716768 + 0.697311i \(0.754380\pi\)
\(110\) −8.07419 10.1247i −0.769844 0.965354i
\(111\) 0 0
\(112\) −5.35116 23.4450i −0.505637 2.21534i
\(113\) 1.76485 7.73232i 0.166023 0.727395i −0.821537 0.570155i \(-0.806883\pi\)
0.987560 0.157240i \(-0.0502597\pi\)
\(114\) 0 0
\(115\) 10.1342 0.945021
\(116\) −8.55904 + 23.8241i −0.794687 + 2.21202i
\(117\) 0 0
\(118\) −7.82817 + 9.81621i −0.720641 + 0.903655i
\(119\) 1.48612 6.51111i 0.136232 0.596872i
\(120\) 0 0
\(121\) 4.96226 6.22247i 0.451114 0.565679i
\(122\) −2.50988 3.14729i −0.227234 0.284942i
\(123\) 0 0
\(124\) −6.60939 3.18291i −0.593541 0.285834i
\(125\) 8.98513 + 4.32701i 0.803654 + 0.387020i
\(126\) 0 0
\(127\) 3.02313 1.45586i 0.268259 0.129187i −0.294919 0.955522i \(-0.595293\pi\)
0.563178 + 0.826335i \(0.309578\pi\)
\(128\) 4.93114 0.435855
\(129\) 0 0
\(130\) −10.4384 13.0894i −0.915510 1.14801i
\(131\) 5.42012 + 6.79661i 0.473558 + 0.593823i 0.960038 0.279869i \(-0.0902909\pi\)
−0.486480 + 0.873692i \(0.661719\pi\)
\(132\) 0 0
\(133\) 5.17921 0.449095
\(134\) −22.5517 + 10.8603i −1.94817 + 0.938189i
\(135\) 0 0
\(136\) −15.2134 7.32637i −1.30453 0.628231i
\(137\) 2.90456 + 1.39876i 0.248153 + 0.119504i 0.553826 0.832632i \(-0.313167\pi\)
−0.305673 + 0.952137i \(0.598881\pi\)
\(138\) 0 0
\(139\) −14.0213 17.5821i −1.18927 1.49130i −0.829726 0.558170i \(-0.811504\pi\)
−0.359544 0.933128i \(-0.617068\pi\)
\(140\) 9.31198 11.6768i 0.787006 0.986874i
\(141\) 0 0
\(142\) 4.71245 20.6466i 0.395460 1.73262i
\(143\) 15.2819 19.1629i 1.27794 1.60248i
\(144\) 0 0
\(145\) −5.85680 + 1.99497i −0.486381 + 0.165674i
\(146\) −29.4548 −2.43769
\(147\) 0 0
\(148\) −8.12073 + 35.5792i −0.667520 + 2.92460i
\(149\) 0.286904 + 1.25701i 0.0235041 + 0.102978i 0.985319 0.170721i \(-0.0546098\pi\)
−0.961815 + 0.273700i \(0.911753\pi\)
\(150\) 0 0
\(151\) 4.08507 + 5.12252i 0.332439 + 0.416865i 0.919755 0.392492i \(-0.128387\pi\)
−0.587317 + 0.809357i \(0.699816\pi\)
\(152\) 2.91385 12.7664i 0.236345 1.03549i
\(153\) 0 0
\(154\) 28.0813 + 13.5232i 2.26286 + 1.08973i
\(155\) −0.398972 1.74801i −0.0320462 0.140404i
\(156\) 0 0
\(157\) −24.1178 −1.92481 −0.962407 0.271612i \(-0.912443\pi\)
−0.962407 + 0.271612i \(0.912443\pi\)
\(158\) −18.9630 + 9.13208i −1.50861 + 0.726509i
\(159\) 0 0
\(160\) −6.10953 7.66111i −0.483001 0.605664i
\(161\) −21.9755 + 10.5828i −1.73191 + 0.834043i
\(162\) 0 0
\(163\) −14.5447 + 7.00435i −1.13923 + 0.548623i −0.905781 0.423747i \(-0.860715\pi\)
−0.233446 + 0.972370i \(0.575000\pi\)
\(164\) 3.30625 + 14.4856i 0.258174 + 1.13114i
\(165\) 0 0
\(166\) 1.12376 + 0.541174i 0.0872206 + 0.0420032i
\(167\) −1.20616 + 5.28454i −0.0933357 + 0.408930i −0.999914 0.0131071i \(-0.995828\pi\)
0.906578 + 0.422037i \(0.138685\pi\)
\(168\) 0 0
\(169\) 11.6513 14.6102i 0.896251 1.12386i
\(170\) −1.59838 7.00297i −0.122590 0.537104i
\(171\) 0 0
\(172\) −4.29082 + 5.38052i −0.327172 + 0.410261i
\(173\) 11.2923 0.858537 0.429268 0.903177i \(-0.358771\pi\)
0.429268 + 0.903177i \(0.358771\pi\)
\(174\) 0 0
\(175\) −10.1760 −0.769231
\(176\) 23.6089 29.6047i 1.77959 2.23154i
\(177\) 0 0
\(178\) 1.14985 + 5.03783i 0.0861851 + 0.377601i
\(179\) 6.64270 8.32969i 0.496499 0.622590i −0.468937 0.883232i \(-0.655363\pi\)
0.965436 + 0.260642i \(0.0839341\pi\)
\(180\) 0 0
\(181\) 2.73554 11.9852i 0.203331 0.890853i −0.765559 0.643365i \(-0.777538\pi\)
0.968891 0.247488i \(-0.0796051\pi\)
\(182\) 36.3039 + 17.4830i 2.69102 + 1.29593i
\(183\) 0 0
\(184\) 13.7225 + 60.1220i 1.01163 + 4.43226i
\(185\) −8.03626 + 3.87006i −0.590838 + 0.284533i
\(186\) 0 0
\(187\) 9.47462 4.56274i 0.692853 0.333660i
\(188\) −1.04738 1.31337i −0.0763877 0.0957872i
\(189\) 0 0
\(190\) 5.01882 2.41693i 0.364103 0.175343i
\(191\) 1.68311 0.121786 0.0608929 0.998144i \(-0.480605\pi\)
0.0608929 + 0.998144i \(0.480605\pi\)
\(192\) 0 0
\(193\) −2.35340 10.3109i −0.169402 0.742197i −0.986239 0.165328i \(-0.947132\pi\)
0.816837 0.576869i \(-0.195726\pi\)
\(194\) 10.8104 + 5.20599i 0.776138 + 0.373769i
\(195\) 0 0
\(196\) −0.676440 + 2.96368i −0.0483171 + 0.211691i
\(197\) 7.55361 + 9.47193i 0.538172 + 0.674847i 0.974356 0.225011i \(-0.0722417\pi\)
−0.436184 + 0.899858i \(0.643670\pi\)
\(198\) 0 0
\(199\) −1.11170 4.87066i −0.0788060 0.345272i 0.920118 0.391640i \(-0.128092\pi\)
−0.998924 + 0.0463686i \(0.985235\pi\)
\(200\) −5.72505 + 25.0831i −0.404823 + 1.77364i
\(201\) 0 0
\(202\) −4.91594 −0.345884
\(203\) 10.6168 10.4420i 0.745156 0.732887i
\(204\) 0 0
\(205\) −2.26419 + 2.83921i −0.158138 + 0.198299i
\(206\) −4.73557 + 20.7479i −0.329943 + 1.44558i
\(207\) 0 0
\(208\) 30.5219 38.2733i 2.11632 2.65378i
\(209\) 5.08467 + 6.37598i 0.351714 + 0.441036i
\(210\) 0 0
\(211\) 17.3083 + 8.33526i 1.19156 + 0.573823i 0.921257 0.388954i \(-0.127163\pi\)
0.270298 + 0.962777i \(0.412878\pi\)
\(212\) −6.92471 3.33476i −0.475591 0.229033i
\(213\) 0 0
\(214\) −10.3967 + 5.00677i −0.710701 + 0.342256i
\(215\) −1.68202 −0.114713
\(216\) 0 0
\(217\) 2.69054 + 3.37383i 0.182645 + 0.229030i
\(218\) −28.2858 35.4692i −1.91575 2.40228i
\(219\) 0 0
\(220\) 23.5170 1.58552
\(221\) 12.2489 5.89877i 0.823951 0.396794i
\(222\) 0 0
\(223\) 19.1403 + 9.21751i 1.28173 + 0.617250i 0.945835 0.324649i \(-0.105246\pi\)
0.335898 + 0.941898i \(0.390960\pi\)
\(224\) 21.2484 + 10.2327i 1.41972 + 0.683701i
\(225\) 0 0
\(226\) 12.8007 + 16.0515i 0.851487 + 1.06773i
\(227\) −12.3176 + 15.4458i −0.817549 + 1.02517i 0.181577 + 0.983377i \(0.441880\pi\)
−0.999126 + 0.0417977i \(0.986692\pi\)
\(228\) 0 0
\(229\) −4.60927 + 20.1945i −0.304589 + 1.33449i 0.558528 + 0.829486i \(0.311366\pi\)
−0.863116 + 0.505005i \(0.831491\pi\)
\(230\) −16.3563 + 20.5102i −1.07850 + 1.35240i
\(231\) 0 0
\(232\) −19.7659 32.0446i −1.29769 2.10383i
\(233\) −20.7745 −1.36098 −0.680492 0.732756i \(-0.738234\pi\)
−0.680492 + 0.732756i \(0.738234\pi\)
\(234\) 0 0
\(235\) 0.0913617 0.400282i 0.00595978 0.0261115i
\(236\) −5.07358 22.2288i −0.330262 1.44697i
\(237\) 0 0
\(238\) 10.7790 + 13.5164i 0.698697 + 0.876138i
\(239\) −0.506194 + 2.21778i −0.0327430 + 0.143456i −0.988657 0.150190i \(-0.952012\pi\)
0.955914 + 0.293646i \(0.0948687\pi\)
\(240\) 0 0
\(241\) −10.6119 5.11041i −0.683571 0.329190i 0.0596665 0.998218i \(-0.480996\pi\)
−0.743237 + 0.669028i \(0.766711\pi\)
\(242\) 4.58444 + 20.0857i 0.294699 + 1.29116i
\(243\) 0 0
\(244\) 7.31032 0.467995
\(245\) −0.669404 + 0.322368i −0.0427666 + 0.0205953i
\(246\) 0 0
\(247\) 6.57353 + 8.24295i 0.418264 + 0.524486i
\(248\) 9.82997 4.73386i 0.624204 0.300601i
\(249\) 0 0
\(250\) −23.2589 + 11.2009i −1.47102 + 0.708408i
\(251\) −0.317569 1.39136i −0.0200448 0.0878219i 0.963916 0.266206i \(-0.0857702\pi\)
−0.983961 + 0.178384i \(0.942913\pi\)
\(252\) 0 0
\(253\) −34.6025 16.6637i −2.17544 1.04764i
\(254\) −1.93278 + 8.46808i −0.121274 + 0.531334i
\(255\) 0 0
\(256\) −13.8001 + 17.3048i −0.862507 + 1.08155i
\(257\) −6.37412 27.9268i −0.397607 1.74203i −0.636774 0.771051i \(-0.719732\pi\)
0.239167 0.970978i \(-0.423126\pi\)
\(258\) 0 0
\(259\) 13.3848 16.7840i 0.831690 1.04291i
\(260\) 30.4031 1.88552
\(261\) 0 0
\(262\) −22.5032 −1.39025
\(263\) −11.5360 + 14.4657i −0.711340 + 0.891993i −0.997813 0.0660957i \(-0.978946\pi\)
0.286473 + 0.958088i \(0.407517\pi\)
\(264\) 0 0
\(265\) −0.418006 1.83140i −0.0256779 0.112502i
\(266\) −8.35908 + 10.4820i −0.512528 + 0.642690i
\(267\) 0 0
\(268\) 10.1147 44.3154i 0.617853 2.70699i
\(269\) −25.8645 12.4557i −1.57698 0.759435i −0.578564 0.815637i \(-0.696387\pi\)
−0.998419 + 0.0562017i \(0.982101\pi\)
\(270\) 0 0
\(271\) −0.401519 1.75917i −0.0243905 0.106862i 0.961267 0.275617i \(-0.0888823\pi\)
−0.985658 + 0.168756i \(0.946025\pi\)
\(272\) 18.9233 9.11298i 1.14739 0.552556i
\(273\) 0 0
\(274\) −7.51875 + 3.62084i −0.454224 + 0.218743i
\(275\) −9.99022 12.5273i −0.602433 0.755427i
\(276\) 0 0
\(277\) 12.7892 6.15895i 0.768428 0.370055i −0.00823988 0.999966i \(-0.502623\pi\)
0.776667 + 0.629911i \(0.216909\pi\)
\(278\) 58.2136 3.49142
\(279\) 0 0
\(280\) 4.94281 + 21.6559i 0.295390 + 1.29419i
\(281\) 16.9576 + 8.16637i 1.01161 + 0.487165i 0.864862 0.502010i \(-0.167406\pi\)
0.146746 + 0.989174i \(0.453120\pi\)
\(282\) 0 0
\(283\) −4.86946 + 21.3345i −0.289460 + 1.26821i 0.595809 + 0.803126i \(0.296831\pi\)
−0.885269 + 0.465079i \(0.846026\pi\)
\(284\) 23.9783 + 30.0678i 1.42285 + 1.78420i
\(285\) 0 0
\(286\) 14.1184 + 61.8566i 0.834836 + 3.65765i
\(287\) 1.94488 8.52108i 0.114803 0.502983i
\(288\) 0 0
\(289\) −11.1670 −0.656882
\(290\) 5.41515 15.0731i 0.317989 0.885124i
\(291\) 0 0
\(292\) 33.3501 41.8198i 1.95167 2.44732i
\(293\) 0.00172808 0.00757121i 0.000100955 0.000442315i −0.974877 0.222742i \(-0.928499\pi\)
0.974978 + 0.222300i \(0.0713564\pi\)
\(294\) 0 0
\(295\) 3.47450 4.35689i 0.202293 0.253668i
\(296\) −33.8411 42.4354i −1.96697 2.46651i
\(297\) 0 0
\(298\) −3.00706 1.44812i −0.174194 0.0838875i
\(299\) −44.7346 21.5431i −2.58707 1.24587i
\(300\) 0 0
\(301\) 3.64736 1.75648i 0.210231 0.101242i
\(302\) −16.9604 −0.975961
\(303\) 0 0
\(304\) 10.1554 + 12.7345i 0.582454 + 0.730374i
\(305\) 1.11400 + 1.39691i 0.0637876 + 0.0799871i
\(306\) 0 0
\(307\) 0.214941 0.0122673 0.00613367 0.999981i \(-0.498048\pi\)
0.00613367 + 0.999981i \(0.498048\pi\)
\(308\) −50.9953 + 24.5580i −2.90573 + 1.39932i
\(309\) 0 0
\(310\) 4.18164 + 2.01377i 0.237501 + 0.114375i
\(311\) 25.4313 + 12.2471i 1.44207 + 0.694467i 0.981199 0.192998i \(-0.0618211\pi\)
0.460876 + 0.887465i \(0.347535\pi\)
\(312\) 0 0
\(313\) −6.37841 7.99827i −0.360529 0.452089i 0.568177 0.822907i \(-0.307649\pi\)
−0.928706 + 0.370817i \(0.879078\pi\)
\(314\) 38.9254 48.8110i 2.19669 2.75456i
\(315\) 0 0
\(316\) 8.50511 37.2633i 0.478450 2.09622i
\(317\) −14.8259 + 18.5911i −0.832704 + 1.04418i 0.165613 + 0.986191i \(0.447040\pi\)
−0.998317 + 0.0579872i \(0.981532\pi\)
\(318\) 0 0
\(319\) 23.2779 + 2.81864i 1.30331 + 0.157814i
\(320\) 5.38216 0.300872
\(321\) 0 0
\(322\) 14.0496 61.5554i 0.782955 3.43035i
\(323\) 1.00657 + 4.41008i 0.0560072 + 0.245383i
\(324\) 0 0
\(325\) −12.9155 16.1955i −0.716422 0.898365i
\(326\) 9.29888 40.7411i 0.515017 2.25644i
\(327\) 0 0
\(328\) −19.9097 9.58801i −1.09933 0.529409i
\(329\) 0.219888 + 0.963393i 0.0121228 + 0.0531136i
\(330\) 0 0
\(331\) −7.07856 −0.389073 −0.194536 0.980895i \(-0.562320\pi\)
−0.194536 + 0.980895i \(0.562320\pi\)
\(332\) −2.04073 + 0.982764i −0.112000 + 0.0539362i
\(333\) 0 0
\(334\) −8.74843 10.9702i −0.478693 0.600261i
\(335\) 10.0095 4.82032i 0.546877 0.263362i
\(336\) 0 0
\(337\) 6.32843 3.04761i 0.344731 0.166014i −0.253504 0.967334i \(-0.581583\pi\)
0.598235 + 0.801320i \(0.295869\pi\)
\(338\) 10.7642 + 47.1609i 0.585493 + 2.56521i
\(339\) 0 0
\(340\) 11.7526 + 5.65973i 0.637372 + 0.306942i
\(341\) −1.51199 + 6.62448i −0.0818791 + 0.358736i
\(342\) 0 0
\(343\) −10.9539 + 13.7357i −0.591453 + 0.741658i
\(344\) −2.27758 9.97872i −0.122799 0.538016i
\(345\) 0 0
\(346\) −18.2254 + 22.8539i −0.979803 + 1.22863i
\(347\) −10.0795 −0.541094 −0.270547 0.962707i \(-0.587205\pi\)
−0.270547 + 0.962707i \(0.587205\pi\)
\(348\) 0 0
\(349\) −1.64246 −0.0879187 −0.0439593 0.999033i \(-0.513997\pi\)
−0.0439593 + 0.999033i \(0.513997\pi\)
\(350\) 16.4237 20.5947i 0.877883 1.10083i
\(351\) 0 0
\(352\) 8.26337 + 36.2042i 0.440439 + 1.92969i
\(353\) −15.0406 + 18.8603i −0.800530 + 1.00383i 0.199185 + 0.979962i \(0.436170\pi\)
−0.999715 + 0.0238707i \(0.992401\pi\)
\(354\) 0 0
\(355\) −2.09161 + 9.16392i −0.111011 + 0.486370i
\(356\) −8.45461 4.07153i −0.448093 0.215790i
\(357\) 0 0
\(358\) 6.13694 + 26.8877i 0.324347 + 1.42106i
\(359\) −11.6187 + 5.59526i −0.613210 + 0.295307i −0.714592 0.699541i \(-0.753388\pi\)
0.101382 + 0.994848i \(0.467674\pi\)
\(360\) 0 0
\(361\) 13.9578 6.72174i 0.734623 0.353776i
\(362\) 19.8412 + 24.8801i 1.04283 + 1.30767i
\(363\) 0 0
\(364\) −65.9274 + 31.7489i −3.45553 + 1.66410i
\(365\) 13.0734 0.684293
\(366\) 0 0
\(367\) 7.06325 + 30.9461i 0.368699 + 1.61537i 0.730358 + 0.683064i \(0.239353\pi\)
−0.361659 + 0.932310i \(0.617790\pi\)
\(368\) −69.1103 33.2818i −3.60262 1.73493i
\(369\) 0 0
\(370\) 5.13784 22.5104i 0.267104 1.17026i
\(371\) 2.81890 + 3.53478i 0.146350 + 0.183517i
\(372\) 0 0
\(373\) −1.05811 4.63589i −0.0547869 0.240037i 0.940119 0.340847i \(-0.110714\pi\)
−0.994906 + 0.100810i \(0.967857\pi\)
\(374\) −6.05743 + 26.5393i −0.313222 + 1.37232i
\(375\) 0 0
\(376\) 2.49841 0.128846
\(377\) 30.0940 + 3.64398i 1.54992 + 0.187675i
\(378\) 0 0
\(379\) 1.32155 1.65717i 0.0678834 0.0851231i −0.746730 0.665127i \(-0.768377\pi\)
0.814614 + 0.580004i \(0.196949\pi\)
\(380\) −2.25100 + 9.86226i −0.115474 + 0.505924i
\(381\) 0 0
\(382\) −2.71649 + 3.40637i −0.138988 + 0.174285i
\(383\) −9.12830 11.4465i −0.466434 0.584890i 0.491860 0.870675i \(-0.336317\pi\)
−0.958294 + 0.285784i \(0.907746\pi\)
\(384\) 0 0
\(385\) −12.4638 6.00224i −0.635213 0.305903i
\(386\) 24.6661 + 11.8786i 1.25547 + 0.604604i
\(387\) 0 0
\(388\) −19.6315 + 9.45401i −0.996636 + 0.479955i
\(389\) −1.93401 −0.0980583 −0.0490292 0.998797i \(-0.515613\pi\)
−0.0490292 + 0.998797i \(0.515613\pi\)
\(390\) 0 0
\(391\) −13.2821 16.6553i −0.671706 0.842293i
\(392\) −2.81889 3.53478i −0.142376 0.178533i
\(393\) 0 0
\(394\) −31.3611 −1.57995
\(395\) 8.41664 4.05324i 0.423487 0.203941i
\(396\) 0 0
\(397\) 27.0463 + 13.0248i 1.35742 + 0.653697i 0.964059 0.265689i \(-0.0855995\pi\)
0.393357 + 0.919386i \(0.371314\pi\)
\(398\) 11.6517 + 5.61118i 0.584048 + 0.281263i
\(399\) 0 0
\(400\) −19.9531 25.0204i −0.997654 1.25102i
\(401\) −9.79407 + 12.2814i −0.489093 + 0.613303i −0.963730 0.266879i \(-0.914008\pi\)
0.474638 + 0.880181i \(0.342579\pi\)
\(402\) 0 0
\(403\) −1.95473 + 8.56422i −0.0973719 + 0.426614i
\(404\) 5.56607 6.97963i 0.276922 0.347249i
\(405\) 0 0
\(406\) 3.99791 + 38.3400i 0.198413 + 1.90278i
\(407\) 33.8027 1.67554
\(408\) 0 0
\(409\) 1.08416 4.75001i 0.0536081 0.234873i −0.941025 0.338337i \(-0.890136\pi\)
0.994633 + 0.103464i \(0.0329928\pi\)
\(410\) −2.09180 9.16479i −0.103307 0.452617i
\(411\) 0 0
\(412\) −24.0959 30.2153i −1.18712 1.48860i
\(413\) −2.98450 + 13.0760i −0.146858 + 0.643426i
\(414\) 0 0
\(415\) −0.498776 0.240198i −0.0244840 0.0117909i
\(416\) 10.6830 + 46.8053i 0.523777 + 2.29482i
\(417\) 0 0
\(418\) −21.1105 −1.03255
\(419\) 17.1303 8.24949i 0.836867 0.403014i 0.0341812 0.999416i \(-0.489118\pi\)
0.802686 + 0.596402i \(0.203403\pi\)
\(420\) 0 0
\(421\) 7.80429 + 9.78627i 0.380358 + 0.476954i 0.934752 0.355300i \(-0.115621\pi\)
−0.554394 + 0.832254i \(0.687050\pi\)
\(422\) −44.8044 + 21.5767i −2.18105 + 1.05034i
\(423\) 0 0
\(424\) 10.2989 4.95971i 0.500161 0.240865i
\(425\) −1.97768 8.66480i −0.0959317 0.420304i
\(426\) 0 0
\(427\) −3.87440 1.86581i −0.187495 0.0902929i
\(428\) 4.66303 20.4300i 0.225396 0.987524i
\(429\) 0 0
\(430\) 2.71473 3.40416i 0.130916 0.164163i
\(431\) 7.87657 + 34.5095i 0.379401 + 1.66227i 0.699311 + 0.714817i \(0.253490\pi\)
−0.319910 + 0.947448i \(0.603653\pi\)
\(432\) 0 0
\(433\) 3.65050 4.57758i 0.175432 0.219984i −0.686340 0.727281i \(-0.740784\pi\)
0.861772 + 0.507297i \(0.169355\pi\)
\(434\) −11.1706 −0.536204
\(435\) 0 0
\(436\) 82.3856 3.94555
\(437\) 10.3003 12.9161i 0.492729 0.617863i
\(438\) 0 0
\(439\) −5.52514 24.2072i −0.263700 1.15535i −0.917202 0.398422i \(-0.869558\pi\)
0.653502 0.756925i \(-0.273299\pi\)
\(440\) −21.8073 + 27.3455i −1.03962 + 1.30365i
\(441\) 0 0
\(442\) −7.83113 + 34.3104i −0.372489 + 1.63198i
\(443\) 21.3969 + 10.3042i 1.01660 + 0.489568i 0.866539 0.499109i \(-0.166339\pi\)
0.150060 + 0.988677i \(0.452053\pi\)
\(444\) 0 0
\(445\) −0.510358 2.23602i −0.0241933 0.105998i
\(446\) −49.5468 + 23.8605i −2.34611 + 1.12983i
\(447\) 0 0
\(448\) −11.6709 + 5.62040i −0.551398 + 0.265539i
\(449\) −4.02060 5.04167i −0.189744 0.237931i 0.677856 0.735195i \(-0.262909\pi\)
−0.867599 + 0.497264i \(0.834338\pi\)
\(450\) 0 0
\(451\) 12.3994 5.97125i 0.583866 0.281175i
\(452\) −37.2834 −1.75366
\(453\) 0 0
\(454\) −11.3798 49.8581i −0.534080 2.33996i
\(455\) −16.1134 7.75978i −0.755406 0.363784i
\(456\) 0 0
\(457\) 0.584270 2.55985i 0.0273310 0.119745i −0.959422 0.281973i \(-0.909011\pi\)
0.986753 + 0.162228i \(0.0518682\pi\)
\(458\) −33.4315 41.9218i −1.56215 1.95888i
\(459\) 0 0
\(460\) −10.6008 46.4452i −0.494266 2.16552i
\(461\) −1.59279 + 6.97847i −0.0741837 + 0.325020i −0.998380 0.0568978i \(-0.981879\pi\)
0.924196 + 0.381918i \(0.124736\pi\)
\(462\) 0 0
\(463\) −18.2411 −0.847737 −0.423868 0.905724i \(-0.639328\pi\)
−0.423868 + 0.905724i \(0.639328\pi\)
\(464\) 46.4921 + 5.62957i 2.15834 + 0.261346i
\(465\) 0 0
\(466\) 33.5294 42.0445i 1.55322 1.94768i
\(467\) 7.89230 34.5784i 0.365212 1.60010i −0.374534 0.927213i \(-0.622197\pi\)
0.739746 0.672886i \(-0.234946\pi\)
\(468\) 0 0
\(469\) −16.6713 + 20.9051i −0.769809 + 0.965310i
\(470\) 0.662656 + 0.830944i 0.0305660 + 0.0383286i
\(471\) 0 0
\(472\) 30.5523 + 14.7132i 1.40628 + 0.677231i
\(473\) 5.74313 + 2.76575i 0.264070 + 0.127169i
\(474\) 0 0
\(475\) 6.20979 2.99048i 0.284925 0.137213i
\(476\) −31.3950 −1.43899
\(477\) 0 0
\(478\) −3.67148 4.60389i −0.167929 0.210577i
\(479\) −16.2734 20.4061i −0.743548 0.932380i 0.255862 0.966713i \(-0.417641\pi\)
−0.999410 + 0.0343330i \(0.989069\pi\)
\(480\) 0 0
\(481\) 43.7006 1.99258
\(482\) 27.4699 13.2288i 1.25122 0.602556i
\(483\) 0 0
\(484\) −33.7084 16.2331i −1.53220 0.737868i
\(485\) −4.79814 2.31066i −0.217872 0.104922i
\(486\) 0 0
\(487\) 13.8098 + 17.3170i 0.625783 + 0.784708i 0.989145 0.146940i \(-0.0469426\pi\)
−0.363362 + 0.931648i \(0.618371\pi\)
\(488\) −6.77886 + 8.50042i −0.306865 + 0.384796i
\(489\) 0 0
\(490\) 0.427971 1.87507i 0.0193338 0.0847068i
\(491\) 7.32494 9.18518i 0.330570 0.414521i −0.588574 0.808443i \(-0.700310\pi\)
0.919144 + 0.393922i \(0.128882\pi\)
\(492\) 0 0
\(493\) 10.9547 + 7.01080i 0.493376 + 0.315750i
\(494\) −27.2920 −1.22792
\(495\) 0 0
\(496\) −3.01985 + 13.2308i −0.135595 + 0.594082i
\(497\) −5.03405 22.0556i −0.225808 0.989330i
\(498\) 0 0
\(499\) −10.2098 12.8027i −0.457056 0.573130i 0.498893 0.866664i \(-0.333740\pi\)
−0.955949 + 0.293534i \(0.905169\pi\)
\(500\) 10.4319 45.7052i 0.466529 2.04400i
\(501\) 0 0
\(502\) 3.32846 + 1.60290i 0.148556 + 0.0715409i
\(503\) 3.30118 + 14.4634i 0.147192 + 0.644892i 0.993658 + 0.112448i \(0.0358691\pi\)
−0.846465 + 0.532444i \(0.821274\pi\)
\(504\) 0 0
\(505\) 2.18192 0.0970942
\(506\) 89.5722 43.1357i 3.98197 1.91762i
\(507\) 0 0
\(508\) −9.83454 12.3321i −0.436337 0.547150i
\(509\) 28.4466 13.6992i 1.26087 0.607204i 0.320467 0.947260i \(-0.396160\pi\)
0.940405 + 0.340055i \(0.110446\pi\)
\(510\) 0 0
\(511\) −28.3489 + 13.6521i −1.25408 + 0.603934i
\(512\) −10.5548 46.2437i −0.466462 2.04370i
\(513\) 0 0
\(514\) 66.8074 + 32.1728i 2.94675 + 1.41908i
\(515\) 2.10187 9.20888i 0.0926193 0.405792i
\(516\) 0 0
\(517\) −0.970130 + 1.21651i −0.0426663 + 0.0535018i
\(518\) 12.3657 + 54.1777i 0.543318 + 2.38043i
\(519\) 0 0
\(520\) −28.1928 + 35.3527i −1.23634 + 1.55032i
\(521\) 8.03875 0.352184 0.176092 0.984374i \(-0.443654\pi\)
0.176092 + 0.984374i \(0.443654\pi\)
\(522\) 0 0
\(523\) −1.48633 −0.0649927 −0.0324963 0.999472i \(-0.510346\pi\)
−0.0324963 + 0.999472i \(0.510346\pi\)
\(524\) 25.4793 31.9500i 1.11307 1.39574i
\(525\) 0 0
\(526\) −10.6577 46.6943i −0.464697 2.03597i
\(527\) −2.34990 + 2.94668i −0.102363 + 0.128359i
\(528\) 0 0
\(529\) −12.1943 + 53.4268i −0.530188 + 2.32291i
\(530\) 4.38114 + 2.10985i 0.190305 + 0.0916459i
\(531\) 0 0
\(532\) −5.41767 23.7364i −0.234886 1.02910i
\(533\) 16.0302 7.71971i 0.694343 0.334378i
\(534\) 0 0
\(535\) 4.61452 2.22224i 0.199503 0.0960757i
\(536\) 42.1505 + 52.8550i 1.82062 + 2.28299i
\(537\) 0 0
\(538\) 66.9528 32.2428i 2.88654 1.39008i
\(539\) 2.81570 0.121281
\(540\) 0 0
\(541\) −8.64061 37.8570i −0.371489 1.62760i −0.722601 0.691266i \(-0.757053\pi\)
0.351112 0.936334i \(-0.385804\pi\)
\(542\) 4.20834 + 2.02663i 0.180764 + 0.0870511i
\(543\) 0 0
\(544\) −4.58350 + 20.0816i −0.196516 + 0.860993i
\(545\) 12.5545 + 15.7429i 0.537777 + 0.674351i
\(546\) 0 0
\(547\) 3.86062 + 16.9145i 0.165068 + 0.723210i 0.987921 + 0.154956i \(0.0495237\pi\)
−0.822853 + 0.568254i \(0.807619\pi\)
\(548\) 3.37225 14.7748i 0.144055 0.631147i
\(549\) 0 0
\(550\) 41.4774 1.76860
\(551\) −3.41016 + 9.49220i −0.145278 + 0.404381i
\(552\) 0 0
\(553\) −14.0183 + 17.5784i −0.596120 + 0.747511i
\(554\) −8.17654 + 35.8238i −0.347388 + 1.52201i
\(555\) 0 0
\(556\) −65.9123 + 82.6514i −2.79530 + 3.50520i
\(557\) −18.9702 23.7879i −0.803794 1.00793i −0.999628 0.0272889i \(-0.991313\pi\)
0.195833 0.980637i \(-0.437259\pi\)
\(558\) 0 0
\(559\) 7.42480 + 3.57559i 0.314036 + 0.151232i
\(560\) −24.8935 11.9881i −1.05194 0.506588i
\(561\) 0 0
\(562\) −43.8966 + 21.1395i −1.85167 + 0.891715i
\(563\) 12.1911 0.513793 0.256897 0.966439i \(-0.417300\pi\)
0.256897 + 0.966439i \(0.417300\pi\)
\(564\) 0 0
\(565\) −5.68152 7.12441i −0.239024 0.299726i
\(566\) −35.3187 44.2883i −1.48456 1.86158i
\(567\) 0 0
\(568\) −57.1978 −2.39997
\(569\) −2.84513 + 1.37014i −0.119274 + 0.0574393i −0.492569 0.870273i \(-0.663942\pi\)
0.373295 + 0.927713i \(0.378228\pi\)
\(570\) 0 0
\(571\) −21.9308 10.5613i −0.917776 0.441977i −0.0854992 0.996338i \(-0.527249\pi\)
−0.832276 + 0.554361i \(0.812963\pi\)
\(572\) −103.809 49.9918i −4.34048 2.09026i
\(573\) 0 0
\(574\) 14.1064 + 17.6889i 0.588791 + 0.738321i
\(575\) −20.2377 + 25.3773i −0.843970 + 1.05831i
\(576\) 0 0
\(577\) −1.77812 + 7.79044i −0.0740240 + 0.324320i −0.998359 0.0572611i \(-0.981763\pi\)
0.924335 + 0.381581i \(0.124620\pi\)
\(578\) 18.0232 22.6003i 0.749665 0.940050i
\(579\) 0 0
\(580\) 15.2694 + 24.7549i 0.634029 + 1.02789i
\(581\) 1.33240 0.0552772
\(582\) 0 0
\(583\) −1.58413 + 6.94052i −0.0656079 + 0.287447i
\(584\) 17.7023 + 77.5589i 0.732527 + 3.20941i
\(585\) 0 0
\(586\) 0.0125339 + 0.0157171i 0.000517772 + 0.000649266i
\(587\) −9.42720 + 41.3033i −0.389102 + 1.70477i 0.278657 + 0.960391i \(0.410111\pi\)
−0.667759 + 0.744378i \(0.732746\pi\)
\(588\) 0 0
\(589\) −2.63336 1.26816i −0.108506 0.0522537i
\(590\) 3.20996 + 14.0638i 0.132152 + 0.578996i
\(591\) 0 0
\(592\) 67.5130 2.77477
\(593\) −23.7641 + 11.4442i −0.975873 + 0.469956i −0.852684 0.522427i \(-0.825027\pi\)
−0.123189 + 0.992383i \(0.539312\pi\)
\(594\) 0 0
\(595\) −4.78421 5.99920i −0.196133 0.245943i
\(596\) 5.46078 2.62977i 0.223682 0.107720i
\(597\) 0 0
\(598\) 115.800 55.7664i 4.73542 2.28046i
\(599\) 1.41472 + 6.19828i 0.0578038 + 0.253255i 0.995571 0.0940086i \(-0.0299681\pi\)
−0.937768 + 0.347263i \(0.887111\pi\)
\(600\) 0 0
\(601\) 15.2278 + 7.33332i 0.621155 + 0.299133i 0.717867 0.696180i \(-0.245118\pi\)
−0.0967123 + 0.995312i \(0.530833\pi\)
\(602\) −2.33188 + 10.2166i −0.0950402 + 0.416398i
\(603\) 0 0
\(604\) 19.2034 24.0803i 0.781375 0.979813i
\(605\) −2.03479 8.91498i −0.0827259 0.362446i
\(606\) 0 0
\(607\) −4.62349 + 5.79767i −0.187662 + 0.235320i −0.866758 0.498729i \(-0.833800\pi\)
0.679096 + 0.734049i \(0.262372\pi\)
\(608\) −15.9738 −0.647823
\(609\) 0 0
\(610\) −4.62511 −0.187265
\(611\) −1.25420 + 1.57271i −0.0507394 + 0.0636252i
\(612\) 0 0
\(613\) 6.43653 + 28.2003i 0.259969 + 1.13900i 0.921284 + 0.388891i \(0.127142\pi\)
−0.661315 + 0.750109i \(0.730001\pi\)
\(614\) −0.346908 + 0.435009i −0.0140001 + 0.0175555i
\(615\) 0 0
\(616\) 18.7319 82.0698i 0.754730 3.30669i
\(617\) −31.4553 15.1481i −1.26634 0.609839i −0.324499 0.945886i \(-0.605196\pi\)
−0.941845 + 0.336047i \(0.890910\pi\)
\(618\) 0 0
\(619\) −10.0433 44.0026i −0.403674 1.76861i −0.612309 0.790618i \(-0.709759\pi\)
0.208635 0.977994i \(-0.433098\pi\)
\(620\) −7.59381 + 3.65698i −0.304975 + 0.146868i
\(621\) 0 0
\(622\) −65.8315 + 31.7028i −2.63960 + 1.27117i
\(623\) 3.44168 + 4.31574i 0.137888 + 0.172906i
\(624\) 0 0
\(625\) −6.25412 + 3.01183i −0.250165 + 0.120473i
\(626\) 26.4819 1.05843
\(627\) 0 0
\(628\) 25.2283 + 110.532i 1.00672 + 4.41072i
\(629\) 16.8928 + 8.13515i 0.673561 + 0.324370i
\(630\) 0 0
\(631\) −6.51100 + 28.5266i −0.259199 + 1.13562i 0.662912 + 0.748698i \(0.269321\pi\)
−0.922110 + 0.386927i \(0.873537\pi\)
\(632\) 35.4429 + 44.4440i 1.40984 + 1.76789i
\(633\) 0 0
\(634\) −13.6971 60.0108i −0.543980 2.38333i
\(635\) 0.857859 3.75853i 0.0340431 0.149153i
\(636\) 0 0
\(637\) 3.64017 0.144229
\(638\) −43.2743 + 42.5619i −1.71325 + 1.68504i
\(639\) 0 0
\(640\) 3.53244 4.42954i 0.139632 0.175093i
\(641\) 3.94382 17.2790i 0.155772 0.682480i −0.835372 0.549685i \(-0.814748\pi\)
0.991144 0.132795i \(-0.0423951\pi\)
\(642\) 0 0
\(643\) 23.9696 30.0569i 0.945269 1.18533i −0.0372759 0.999305i \(-0.511868\pi\)
0.982545 0.186025i \(-0.0595605\pi\)
\(644\) 71.4884 + 89.6436i 2.81704 + 3.53245i
\(645\) 0 0
\(646\) −10.5499 5.08057i −0.415081 0.199893i
\(647\) 36.5712 + 17.6118i 1.43776 + 0.692391i 0.980423 0.196901i \(-0.0630878\pi\)
0.457340 + 0.889292i \(0.348802\pi\)
\(648\) 0 0
\(649\) −19.0275 + 9.16314i −0.746893 + 0.359685i
\(650\) 53.6225 2.10325
\(651\) 0 0
\(652\) 47.3153 + 59.3315i 1.85301 + 2.32360i
\(653\) 16.5954 + 20.8099i 0.649427 + 0.814356i 0.992146 0.125082i \(-0.0399194\pi\)
−0.342719 + 0.939438i \(0.611348\pi\)
\(654\) 0 0
\(655\) 9.98798 0.390263
\(656\) 24.7649 11.9262i 0.966908 0.465638i
\(657\) 0 0
\(658\) −2.30466 1.10986i −0.0898449 0.0432670i
\(659\) −20.8219 10.0273i −0.811105 0.390608i −0.0181105 0.999836i \(-0.505765\pi\)
−0.792995 + 0.609228i \(0.791479\pi\)
\(660\) 0 0
\(661\) 14.6279 + 18.3428i 0.568958 + 0.713450i 0.980185 0.198082i \(-0.0634713\pi\)
−0.411228 + 0.911533i \(0.634900\pi\)
\(662\) 11.4246 14.3260i 0.444029 0.556794i
\(663\) 0 0
\(664\) 0.749614 3.28427i 0.0290907 0.127455i
\(665\) 3.71015 4.65238i 0.143873 0.180412i
\(666\) 0 0
\(667\) −4.92632 47.2436i −0.190748 1.82928i
\(668\) 25.4808 0.985882
\(669\) 0 0
\(670\) −6.39939 + 28.0376i −0.247230 + 1.08319i
\(671\) −1.50673 6.60141i −0.0581666 0.254845i
\(672\) 0 0
\(673\) −16.8106 21.0798i −0.648000 0.812567i 0.343978 0.938978i \(-0.388226\pi\)
−0.991978 + 0.126411i \(0.959654\pi\)
\(674\) −4.04597 + 17.7265i −0.155845 + 0.682801i
\(675\) 0 0
\(676\) −79.1465 38.1149i −3.04409 1.46596i
\(677\) 7.46144 + 32.6907i 0.286766 + 1.25641i 0.888934 + 0.458035i \(0.151447\pi\)
−0.602168 + 0.798370i \(0.705696\pi\)
\(678\) 0 0
\(679\) 12.8174 0.491888
\(680\) −17.4793 + 8.41757i −0.670299 + 0.322799i
\(681\) 0 0
\(682\) −10.9667 13.7517i −0.419935 0.526582i
\(683\) −11.1128 + 5.35164i −0.425219 + 0.204775i −0.634240 0.773137i \(-0.718687\pi\)
0.209021 + 0.977911i \(0.432972\pi\)
\(684\) 0 0
\(685\) 3.33717 1.60710i 0.127507 0.0614040i
\(686\) −10.1199 44.3380i −0.386378 1.69283i
\(687\) 0 0
\(688\) 11.4705 + 5.52392i 0.437310 + 0.210598i
\(689\) −2.04798 + 8.97280i −0.0780219 + 0.341836i
\(690\) 0 0
\(691\) 1.26022 1.58026i 0.0479410 0.0601161i −0.757283 0.653087i \(-0.773474\pi\)
0.805224 + 0.592971i \(0.202045\pi\)
\(692\) −11.8122 51.7526i −0.449033 1.96734i
\(693\) 0 0
\(694\) 16.2679 20.3994i 0.617523 0.774349i
\(695\) −25.8379 −0.980087
\(696\) 0 0
\(697\) 7.63365 0.289145
\(698\) 2.65087 3.32409i 0.100337 0.125819i
\(699\) 0 0
\(700\) 10.6445 + 46.6366i 0.402324 + 1.76270i
\(701\) 21.0103 26.3461i 0.793549 0.995079i −0.206313 0.978486i \(-0.566147\pi\)
0.999862 0.0165931i \(-0.00528200\pi\)
\(702\) 0 0
\(703\) −3.23552 + 14.1758i −0.122030 + 0.534649i
\(704\) −18.3770 8.84988i −0.692608 0.333542i
\(705\) 0 0
\(706\) −13.8954 60.8798i −0.522961 2.29124i
\(707\) −4.73137 + 2.27851i −0.177941 + 0.0856921i
\(708\) 0 0
\(709\) −11.4001 + 5.48999i −0.428139 + 0.206181i −0.635528 0.772078i \(-0.719218\pi\)
0.207389 + 0.978258i \(0.433503\pi\)
\(710\) −15.1706 19.0234i −0.569344 0.713935i
\(711\) 0 0
\(712\) 12.5743 6.05547i 0.471243 0.226938i
\(713\) 13.7647 0.515490
\(714\) 0 0
\(715\) −6.26638 27.4548i −0.234349 1.02675i
\(716\) −45.1236 21.7304i −1.68635 0.812102i
\(717\) 0 0
\(718\) 7.42820 32.5451i 0.277218 1.21457i
\(719\) −8.31590 10.4278i −0.310131 0.388892i 0.602200 0.798345i \(-0.294291\pi\)
−0.912331 + 0.409453i \(0.865719\pi\)
\(720\) 0 0
\(721\) 5.05875 + 22.1638i 0.188398 + 0.825424i
\(722\) −8.92370 + 39.0973i −0.332106 + 1.45505i
\(723\) 0 0
\(724\) −57.7898 −2.14774
\(725\) 6.70018 18.6500i 0.248838 0.692644i
\(726\) 0 0
\(727\) −26.0421 + 32.6558i −0.965849 + 1.21114i 0.0115932 + 0.999933i \(0.496310\pi\)
−0.977442 + 0.211203i \(0.932262\pi\)
\(728\) 24.2169 106.101i 0.897536 3.93236i
\(729\) 0 0
\(730\) −21.1000 + 26.4586i −0.780948 + 0.979277i
\(731\) 2.20449 + 2.76435i 0.0815361 + 0.102243i
\(732\) 0 0
\(733\) 38.3484 + 18.4676i 1.41643 + 0.682116i 0.976420 0.215877i \(-0.0692611\pi\)
0.440009 + 0.897994i \(0.354975\pi\)
\(734\) −74.0302 35.6511i −2.73251 1.31591i
\(735\) 0 0
\(736\) 67.7770 32.6397i 2.49829 1.20311i
\(737\) −42.1027 −1.55087
\(738\) 0 0
\(739\) 13.8667 + 17.3883i 0.510095 + 0.639639i 0.968473 0.249118i \(-0.0801408\pi\)
−0.458378 + 0.888757i \(0.651569\pi\)
\(740\) 26.1428 + 32.7820i 0.961028 + 1.20509i
\(741\) 0 0
\(742\) −11.7035 −0.429648
\(743\) −25.2914 + 12.1797i −0.927853 + 0.446830i −0.835868 0.548930i \(-0.815035\pi\)
−0.0919847 + 0.995760i \(0.529321\pi\)
\(744\) 0 0
\(745\) 1.33467 + 0.642744i 0.0488986 + 0.0235483i
\(746\) 11.0901 + 5.34071i 0.406038 + 0.195537i
\(747\) 0 0
\(748\) −30.8219 38.6495i −1.12696 1.41316i
\(749\) −7.68571 + 9.63758i −0.280830 + 0.352149i
\(750\) 0 0
\(751\) −6.35994 + 27.8647i −0.232077 + 1.01680i 0.715836 + 0.698269i \(0.246046\pi\)
−0.947913 + 0.318529i \(0.896811\pi\)
\(752\) −1.93761 + 2.42968i −0.0706572 + 0.0886013i
\(753\) 0 0
\(754\) −55.9456 + 55.0245i −2.03742 + 2.00388i
\(755\) 7.52781 0.273965
\(756\) 0 0
\(757\) 4.77354 20.9142i 0.173497 0.760140i −0.811044 0.584985i \(-0.801100\pi\)
0.984541 0.175155i \(-0.0560427\pi\)
\(758\) 1.22093 + 5.34924i 0.0443461 + 0.194293i
\(759\) 0 0
\(760\) −9.38047 11.7627i −0.340265 0.426679i
\(761\) −4.76688 + 20.8851i −0.172799 + 0.757083i 0.812038 + 0.583604i \(0.198358\pi\)
−0.984838 + 0.173479i \(0.944499\pi\)
\(762\) 0 0
\(763\) −43.6635 21.0272i −1.58073 0.761237i
\(764\) −1.76061 7.71372i −0.0636965 0.279072i
\(765\) 0 0
\(766\) 37.8989 1.36934
\(767\) −24.5990 + 11.8462i −0.888217 + 0.427743i
\(768\) 0 0
\(769\) −14.1627 17.7594i −0.510719 0.640422i 0.457890 0.889009i \(-0.348605\pi\)
−0.968610 + 0.248587i \(0.920034\pi\)
\(770\) 32.2638 15.5374i 1.16271 0.559930i
\(771\) 0 0
\(772\) −44.7933 + 21.5713i −1.61215 + 0.776369i
\(773\) −0.0401045 0.175709i −0.00144246 0.00631983i 0.974202 0.225680i \(-0.0724603\pi\)
−0.975644 + 0.219360i \(0.929603\pi\)
\(774\) 0 0
\(775\) 5.17396 + 2.49165i 0.185854 + 0.0895026i
\(776\) 7.21115 31.5941i 0.258865 1.13416i
\(777\) 0 0
\(778\) 3.12143 3.91415i 0.111909 0.140329i
\(779\) 1.31730 + 5.77147i 0.0471972 + 0.206784i
\(780\) 0 0
\(781\) 22.2099 27.8503i 0.794731 0.996562i
\(782\) 55.1447 1.97197
\(783\) 0 0
\(784\) 5.62369 0.200846
\(785\) −17.2769 + 21.6646i −0.616640 + 0.773241i
\(786\) 0 0
\(787\) −9.90046 43.3768i −0.352913 1.54621i −0.770418 0.637540i \(-0.779952\pi\)
0.417504 0.908675i \(-0.362905\pi\)
\(788\) 35.5085 44.5263i 1.26494 1.58618i
\(789\) 0 0
\(790\) −5.38103 + 23.5758i −0.191448 + 0.838791i
\(791\) 19.7598 + 9.51583i 0.702578 + 0.338344i
\(792\) 0 0
\(793\) −1.94792 8.53439i −0.0691726 0.303065i
\(794\) −70.0122 + 33.7161i −2.48464 + 1.19654i
\(795\) 0 0
\(796\) −21.1594 + 10.1898i −0.749974 + 0.361169i
\(797\) 1.42201 + 1.78314i 0.0503700 + 0.0631620i 0.806378 0.591400i \(-0.201425\pi\)
−0.756008 + 0.654562i \(0.772853\pi\)
\(798\) 0 0
\(799\) −0.777590 + 0.374468i −0.0275092 + 0.0132477i
\(800\) 31.3849 1.10962
\(801\) 0 0
\(802\) −9.04837 39.6435i −0.319509 1.39986i
\(803\) −44.6381 21.4966i −1.57524 0.758598i
\(804\) 0 0
\(805\) −6.23587 + 27.3211i −0.219786 + 0.962944i
\(806\) −14.1778 17.7784i −0.499393 0.626219i
\(807\) 0 0
\(808\) 2.95448 + 12.9444i 0.103938 + 0.455383i
\(809\) 2.55396 11.1896i 0.0897923 0.393406i −0.909982 0.414648i \(-0.863905\pi\)
0.999774 + 0.0212418i \(0.00676199\pi\)
\(810\) 0 0
\(811\) 27.4524 0.963985 0.481993 0.876175i \(-0.339913\pi\)
0.481993 + 0.876175i \(0.339913\pi\)
\(812\) −58.9616 37.7342i −2.06915 1.32421i
\(813\) 0 0
\(814\) −54.5566 + 68.4118i −1.91221 + 2.39783i
\(815\) −4.12727 + 18.0828i −0.144572 + 0.633412i
\(816\) 0 0
\(817\) −1.70958 + 2.14375i −0.0598107 + 0.0750003i
\(818\) 7.86351 + 9.86053i 0.274941 + 0.344765i
\(819\) 0 0
\(820\) 15.3806 + 7.40689i 0.537113 + 0.258660i
\(821\) −22.6850 10.9245i −0.791712 0.381269i −0.00609509 0.999981i \(-0.501940\pi\)
−0.785617 + 0.618713i \(0.787654\pi\)
\(822\) 0 0
\(823\) −1.91828 + 0.923796i −0.0668671 + 0.0322015i −0.467018 0.884248i \(-0.654672\pi\)
0.400151 + 0.916449i \(0.368958\pi\)
\(824\) 57.4785 2.00236
\(825\) 0 0
\(826\) −21.6469 27.1444i −0.753193 0.944474i
\(827\) 11.4365 + 14.3409i 0.397685 + 0.498681i 0.939848 0.341592i \(-0.110966\pi\)
−0.542164 + 0.840273i \(0.682395\pi\)
\(828\) 0 0
\(829\) 52.9373 1.83859 0.919295 0.393570i \(-0.128760\pi\)
0.919295 + 0.393570i \(0.128760\pi\)
\(830\) 1.29113 0.621778i 0.0448159 0.0215822i
\(831\) 0 0
\(832\) −23.7580 11.4412i −0.823660 0.396654i
\(833\) 1.40714 + 0.677641i 0.0487544 + 0.0234789i
\(834\) 0 0
\(835\) 3.88296 + 4.86907i 0.134375 + 0.168501i
\(836\) 23.9024 29.9726i 0.826681 1.03663i
\(837\) 0 0
\(838\) −10.9519 + 47.9835i −0.378328 + 1.65756i
\(839\) 16.7410 20.9926i 0.577965 0.724745i −0.403799 0.914848i \(-0.632311\pi\)
0.981764 + 0.190102i \(0.0608820\pi\)
\(840\) 0 0
\(841\) 12.1472 + 26.3334i 0.418868 + 0.908047i
\(842\) −32.4018 −1.11664
\(843\) 0 0
\(844\) 20.0953 88.0433i 0.691709 3.03058i
\(845\) −4.77763 20.9322i −0.164356 0.720089i
\(846\) 0 0
\(847\) 13.7219 + 17.2068i 0.471491 + 0.591231i
\(848\) −3.16392 + 13.8620i −0.108649 + 0.476024i
\(849\) 0 0
\(850\) 20.7282 + 9.98217i 0.710971 + 0.342385i
\(851\) −15.2373 66.7591i −0.522329 2.28847i
\(852\) 0 0
\(853\) 39.8554 1.36462 0.682311 0.731062i \(-0.260975\pi\)
0.682311 + 0.731062i \(0.260975\pi\)
\(854\) 10.0293 4.82985i 0.343195 0.165274i
\(855\) 0 0
\(856\) 19.4320 + 24.3669i 0.664172 + 0.832845i
\(857\) 45.9338 22.1206i 1.56907 0.755624i 0.571197 0.820813i \(-0.306479\pi\)
0.997873 + 0.0651893i \(0.0207651\pi\)
\(858\) 0 0
\(859\) −13.3986 + 6.45244i −0.457155 + 0.220154i −0.648266 0.761414i \(-0.724505\pi\)
0.191111 + 0.981569i \(0.438791\pi\)
\(860\) 1.75946 + 7.70872i 0.0599972 + 0.262865i
\(861\) 0 0
\(862\) −82.5547 39.7563i −2.81182 1.35410i
\(863\) −4.55285 + 19.9473i −0.154981 + 0.679016i 0.836413 + 0.548100i \(0.184649\pi\)
−0.991394 + 0.130915i \(0.958208\pi\)
\(864\) 0 0
\(865\) 8.08927 10.1436i 0.275044 0.344894i
\(866\) 3.37255 + 14.7761i 0.114604 + 0.502113i
\(867\) 0 0
\(868\) 12.6479 15.8599i 0.429296 0.538320i
\(869\) −35.4027 −1.20096
\(870\) 0 0
\(871\) −54.4309 −1.84432
\(872\) −76.3961 + 95.7977i −2.58710 + 3.24412i
\(873\) 0 0
\(874\) 9.51604 + 41.6925i 0.321885 + 1.41027i
\(875\) −17.1941 + 21.5607i −0.581267 + 0.728886i
\(876\) 0 0
\(877\) 3.43151 15.0344i 0.115874 0.507677i −0.883366 0.468684i \(-0.844728\pi\)
0.999240 0.0389921i \(-0.0124147\pi\)
\(878\) 57.9092 + 27.8876i 1.95434 + 0.941161i
\(879\) 0 0
\(880\) −9.68091 42.4148i −0.326343 1.42980i
\(881\) 49.5884 23.8805i 1.67068 0.804555i 0.672771 0.739851i \(-0.265104\pi\)
0.997904 0.0647040i \(-0.0206103\pi\)
\(882\) 0 0
\(883\) −34.2327 + 16.4856i −1.15202 + 0.554784i −0.909640 0.415397i \(-0.863643\pi\)
−0.242381 + 0.970181i \(0.577929\pi\)
\(884\) −39.8470 49.9665i −1.34020 1.68056i
\(885\) 0 0
\(886\) −55.3882 + 26.6735i −1.86080 + 0.896115i
\(887\) −18.2699 −0.613444 −0.306722 0.951799i \(-0.599232\pi\)
−0.306722 + 0.951799i \(0.599232\pi\)
\(888\) 0 0
\(889\) 2.06468 + 9.04597i 0.0692473 + 0.303392i
\(890\) 5.34908 + 2.57598i 0.179302 + 0.0863471i
\(891\) 0 0
\(892\) 22.2223 97.3623i 0.744058 3.25993i
\(893\) −0.417303 0.523282i −0.0139645 0.0175110i
\(894\) 0 0
\(895\) −2.72386 11.9340i −0.0910486 0.398910i
\(896\) −3.03427 + 13.2940i −0.101368 + 0.444122i
\(897\) 0 0
\(898\) 16.6927 0.557043
\(899\) −7.95491 + 2.70964i −0.265311 + 0.0903717i
\(900\) 0 0
\(901\) −2.46201 + 3.08726i −0.0820213 + 0.102851i
\(902\) −7.92736 + 34.7320i −0.263952 + 1.15645i
\(903\) 0 0
\(904\) 34.5729 43.3530i 1.14988 1.44190i
\(905\) −8.80644 11.0429i −0.292736 0.367079i
\(906\) 0 0
\(907\) −22.7706 10.9658i −0.756086 0.364112i 0.0157979 0.999875i \(-0.494971\pi\)
−0.771884 + 0.635763i \(0.780685\pi\)
\(908\) 83.6730 + 40.2948i 2.77679 + 1.33723i
\(909\) 0 0
\(910\) 41.7111 20.0870i 1.38271 0.665877i
\(911\) −34.3336 −1.13752 −0.568762 0.822502i \(-0.692578\pi\)
−0.568762 + 0.822502i \(0.692578\pi\)
\(912\) 0 0
\(913\) 1.30808 + 1.64028i 0.0432910 + 0.0542852i
\(914\) 4.23777 + 5.31400i 0.140173 + 0.175771i
\(915\) 0 0
\(916\) 97.3731 3.21730
\(917\) −21.6583 + 10.4301i −0.715222 + 0.344433i
\(918\) 0 0
\(919\) 24.2148 + 11.6612i 0.798774 + 0.384669i 0.788312 0.615276i \(-0.210956\pi\)
0.0104619 + 0.999945i \(0.496670\pi\)
\(920\) 63.8365 + 30.7420i 2.10463 + 1.01354i
\(921\) 0 0
\(922\) −11.5527 14.4866i −0.380467 0.477091i
\(923\) 28.7132 36.0052i 0.945107 1.18513i
\(924\) 0 0
\(925\) 6.35707 27.8521i 0.209019 0.915772i
\(926\) 29.4406 36.9173i 0.967478 1.21318i
\(927\) 0 0
\(928\) −32.7446 + 32.2055i −1.07489 + 1.05720i
\(929\) 27.4218 0.899679 0.449839 0.893109i \(-0.351481\pi\)
0.449839 + 0.893109i \(0.351481\pi\)
\(930\) 0 0
\(931\) −0.269512 + 1.18081i −0.00883291 + 0.0386995i
\(932\) 21.7310 + 95.2098i 0.711823 + 3.11870i
\(933\) 0 0
\(934\) 57.2437 + 71.7813i 1.87307 + 2.34876i
\(935\) 2.68857 11.7794i 0.0879256 0.385227i
\(936\) 0 0
\(937\) 9.28962 + 4.47364i 0.303479 + 0.146148i 0.579425 0.815025i \(-0.303277\pi\)
−0.275947 + 0.961173i \(0.588991\pi\)
\(938\) −15.4020 67.4805i −0.502892 2.20331i
\(939\) 0 0
\(940\) −1.93006 −0.0629517
\(941\) 15.2466 7.34239i 0.497026 0.239355i −0.168539 0.985695i \(-0.553905\pi\)
0.665565 + 0.746340i \(0.268191\pi\)
\(942\) 0 0
\(943\) −17.3823 21.7967i −0.566046 0.709799i
\(944\) −38.0028 + 18.3012i −1.23689 + 0.595653i
\(945\) 0 0
\(946\) −14.8667 + 7.15942i −0.483358 + 0.232773i
\(947\) −4.72259 20.6910i −0.153464 0.672368i −0.991863 0.127311i \(-0.959365\pi\)
0.838399 0.545056i \(-0.183492\pi\)
\(948\) 0 0
\(949\) −57.7088 27.7911i −1.87331 0.902136i
\(950\) −3.97012 + 17.3942i −0.128808 + 0.564344i
\(951\) 0 0
\(952\) 29.1126 36.5060i 0.943544 1.18317i
\(953\) −1.95472 8.56419i −0.0633196 0.277421i 0.933350 0.358968i \(-0.116871\pi\)
−0.996670 + 0.0815464i \(0.974014\pi\)
\(954\) 0 0
\(955\) 1.20570 1.51190i 0.0390157 0.0489241i
\(956\) 10.6936 0.345856
\(957\) 0 0
\(958\) 67.5637 2.18288
\(959\) −5.55822 + 6.96979i −0.179484 + 0.225066i
\(960\) 0 0
\(961\) 6.35625 + 27.8486i 0.205040 + 0.898340i
\(962\) −70.5314 + 88.4436i −2.27403 + 2.85154i
\(963\) 0 0
\(964\) −12.3206 + 53.9800i −0.396819 + 1.73858i
\(965\) −10.9480 5.27226i −0.352428 0.169720i
\(966\) 0 0
\(967\) 5.77072 + 25.2832i 0.185574 + 0.813052i 0.978914 + 0.204273i \(0.0654832\pi\)
−0.793340 + 0.608779i \(0.791660\pi\)
\(968\) 50.1336 24.1431i 1.61135 0.775987i
\(969\) 0 0
\(970\) 12.4205 5.98139i 0.398798 0.192051i
\(971\) 36.2491 + 45.4550i 1.16329 + 1.45872i 0.863238 + 0.504796i \(0.168432\pi\)
0.300051 + 0.953923i \(0.402996\pi\)
\(972\) 0 0
\(973\) 56.0279 26.9816i 1.79617 0.864991i
\(974\) −57.3357 −1.83715
\(975\) 0 0
\(976\) −3.00933 13.1847i −0.0963264 0.422033i
\(977\) 26.9623 + 12.9844i 0.862600 + 0.415406i 0.812239 0.583325i \(-0.198248\pi\)
0.0503613 + 0.998731i \(0.483963\pi\)
\(978\) 0 0
\(979\) −1.93412 + 8.47391i −0.0618146 + 0.270827i
\(980\) 2.17764 + 2.73067i 0.0695621 + 0.0872281i
\(981\) 0 0
\(982\) 6.76723 + 29.6492i 0.215951 + 0.946143i
\(983\) −8.94737 + 39.2010i −0.285377 + 1.25032i 0.605417 + 0.795909i \(0.293007\pi\)
−0.890793 + 0.454409i \(0.849851\pi\)
\(984\) 0 0
\(985\) 13.9195 0.443512
\(986\) −31.8694 + 10.8555i −1.01493 + 0.345710i
\(987\) 0 0
\(988\) 30.9013 38.7490i 0.983102 1.23277i
\(989\) 2.87340 12.5892i 0.0913688 0.400313i
\(990\) 0 0
\(991\) 24.4225 30.6249i 0.775808 0.972832i −0.224191 0.974545i \(-0.571974\pi\)
0.999999 + 0.00171317i \(0.000545319\pi\)
\(992\) −8.29819 10.4056i −0.263468 0.330378i
\(993\) 0 0
\(994\) 52.7621 + 25.4089i 1.67351 + 0.805921i
\(995\) −5.17158 2.49050i −0.163950 0.0789542i
\(996\) 0 0
\(997\) −31.0615 + 14.9584i −0.983727 + 0.473738i −0.855385 0.517992i \(-0.826680\pi\)
−0.128342 + 0.991730i \(0.540965\pi\)
\(998\) 42.3892 1.34181
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.c.226.1 18
3.2 odd 2 87.2.g.a.52.3 18
29.13 even 14 7569.2.a.bm.1.8 9
29.16 even 7 7569.2.a.bj.1.2 9
29.24 even 7 inner 261.2.k.c.82.1 18
87.53 odd 14 87.2.g.a.82.3 yes 18
87.71 odd 14 2523.2.a.o.1.2 9
87.74 odd 14 2523.2.a.r.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.52.3 18 3.2 odd 2
87.2.g.a.82.3 yes 18 87.53 odd 14
261.2.k.c.82.1 18 29.24 even 7 inner
261.2.k.c.226.1 18 1.1 even 1 trivial
2523.2.a.o.1.2 9 87.71 odd 14
2523.2.a.r.1.8 9 87.74 odd 14
7569.2.a.bj.1.2 9 29.16 even 7
7569.2.a.bm.1.8 9 29.13 even 14