Properties

Label 261.2.k.c.199.3
Level $261$
Weight $2$
Character 261.199
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 199.3
Root \(-1.38228 - 0.665671i\) of defining polynomial
Character \(\chi\) \(=\) 261.199
Dual form 261.2.k.c.181.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.563916 - 2.47068i) q^{2} +(-3.98431 - 1.91874i) q^{4} +(0.242440 - 1.06220i) q^{5} +(-1.55919 + 0.750867i) q^{7} +(-3.82730 + 4.79928i) q^{8} +(-2.48764 - 1.19798i) q^{10} +(-3.92495 - 4.92173i) q^{11} +(-0.797744 - 1.00034i) q^{13} +(0.975897 + 4.27568i) q^{14} +(4.18475 + 5.24750i) q^{16} +5.08291 q^{17} +(5.88048 + 2.83189i) q^{19} +(-3.00404 + 3.76695i) q^{20} +(-14.3734 + 6.92184i) q^{22} +(-1.00672 - 4.41072i) q^{23} +(3.43536 + 1.65438i) q^{25} +(-2.92138 + 1.40686i) q^{26} +7.65302 q^{28} +(1.89363 + 5.04125i) q^{29} +(1.52535 - 6.68301i) q^{31} +(4.26353 - 2.05321i) q^{32} +(2.86633 - 12.5582i) q^{34} +(0.419560 + 1.83821i) q^{35} +(3.84958 - 4.82721i) q^{37} +(10.3128 - 12.9318i) q^{38} +(4.16990 + 5.22889i) q^{40} -4.04550 q^{41} +(-0.407490 - 1.78533i) q^{43} +(6.19468 + 27.1407i) q^{44} -11.4652 q^{46} +(-0.945516 - 1.18564i) q^{47} +(-2.49715 + 3.13133i) q^{49} +(6.02469 - 7.55473i) q^{50} +(1.25907 + 5.51633i) q^{52} +(-0.839814 + 3.67947i) q^{53} +(-6.17942 + 2.97585i) q^{55} +(2.36387 - 10.3568i) q^{56} +(13.5231 - 1.83571i) q^{58} +8.72197 q^{59} +(2.78187 - 1.33968i) q^{61} +(-15.6514 - 7.53731i) q^{62} +(0.318497 + 1.39543i) q^{64} +(-1.25596 + 0.604841i) q^{65} +(-1.49443 + 1.87396i) q^{67} +(-20.2519 - 9.75280i) q^{68} +4.77822 q^{70} +(-5.82579 - 7.30531i) q^{71} +(0.400049 + 1.75273i) q^{73} +(-9.75566 - 12.2332i) q^{74} +(-17.9960 - 22.5663i) q^{76} +(9.81531 + 4.72681i) q^{77} +(-1.78668 + 2.24043i) q^{79} +(6.58844 - 3.17283i) q^{80} +(-2.28132 + 9.99513i) q^{82} +(5.94056 + 2.86082i) q^{83} +(1.23230 - 5.39906i) q^{85} -4.64077 q^{86} +38.6427 q^{88} +(0.744447 - 3.26164i) q^{89} +(1.99496 + 0.960721i) q^{91} +(-4.45196 + 19.5053i) q^{92} +(-3.46252 + 1.66746i) q^{94} +(4.43370 - 5.55968i) q^{95} +(-2.04297 - 0.983843i) q^{97} +(6.32833 + 7.93547i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{2} - 6 q^{4} + q^{5} - 4 q^{7} + 15 q^{8} - 14 q^{10} - 26 q^{11} + 9 q^{13} + 10 q^{14} - 14 q^{16} - 4 q^{17} - 10 q^{19} + q^{20} - 8 q^{22} + 8 q^{23} + 16 q^{25} - 5 q^{26} + 80 q^{28}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.563916 2.47068i 0.398749 1.74703i −0.233584 0.972337i \(-0.575045\pi\)
0.632333 0.774697i \(-0.282097\pi\)
\(3\) 0 0
\(4\) −3.98431 1.91874i −1.99216 0.959372i
\(5\) 0.242440 1.06220i 0.108422 0.475030i −0.891342 0.453331i \(-0.850235\pi\)
0.999765 0.0216985i \(-0.00690738\pi\)
\(6\) 0 0
\(7\) −1.55919 + 0.750867i −0.589319 + 0.283801i −0.704683 0.709522i \(-0.748911\pi\)
0.115364 + 0.993323i \(0.463196\pi\)
\(8\) −3.82730 + 4.79928i −1.35315 + 1.69680i
\(9\) 0 0
\(10\) −2.48764 1.19798i −0.786659 0.378835i
\(11\) −3.92495 4.92173i −1.18342 1.48396i −0.838138 0.545458i \(-0.816356\pi\)
−0.345279 0.938500i \(-0.612216\pi\)
\(12\) 0 0
\(13\) −0.797744 1.00034i −0.221255 0.277444i 0.658799 0.752319i \(-0.271065\pi\)
−0.880053 + 0.474875i \(0.842493\pi\)
\(14\) 0.975897 + 4.27568i 0.260819 + 1.14272i
\(15\) 0 0
\(16\) 4.18475 + 5.24750i 1.04619 + 1.31188i
\(17\) 5.08291 1.23279 0.616393 0.787439i \(-0.288593\pi\)
0.616393 + 0.787439i \(0.288593\pi\)
\(18\) 0 0
\(19\) 5.88048 + 2.83189i 1.34908 + 0.649680i 0.962173 0.272440i \(-0.0878307\pi\)
0.386903 + 0.922121i \(0.373545\pi\)
\(20\) −3.00404 + 3.76695i −0.671724 + 0.842316i
\(21\) 0 0
\(22\) −14.3734 + 6.92184i −3.06441 + 1.47574i
\(23\) −1.00672 4.41072i −0.209915 0.919699i −0.964622 0.263637i \(-0.915078\pi\)
0.754707 0.656062i \(-0.227779\pi\)
\(24\) 0 0
\(25\) 3.43536 + 1.65438i 0.687071 + 0.330876i
\(26\) −2.92138 + 1.40686i −0.572930 + 0.275908i
\(27\) 0 0
\(28\) 7.65302 1.44629
\(29\) 1.89363 + 5.04125i 0.351638 + 0.936136i
\(30\) 0 0
\(31\) 1.52535 6.68301i 0.273961 1.20030i −0.631331 0.775514i \(-0.717491\pi\)
0.905292 0.424790i \(-0.139652\pi\)
\(32\) 4.26353 2.05321i 0.753692 0.362959i
\(33\) 0 0
\(34\) 2.86633 12.5582i 0.491572 2.15372i
\(35\) 0.419560 + 1.83821i 0.0709185 + 0.310714i
\(36\) 0 0
\(37\) 3.84958 4.82721i 0.632866 0.793589i −0.357224 0.934019i \(-0.616277\pi\)
0.990091 + 0.140429i \(0.0448483\pi\)
\(38\) 10.3128 12.9318i 1.67296 2.09782i
\(39\) 0 0
\(40\) 4.16990 + 5.22889i 0.659319 + 0.826760i
\(41\) −4.04550 −0.631801 −0.315901 0.948792i \(-0.602307\pi\)
−0.315901 + 0.948792i \(0.602307\pi\)
\(42\) 0 0
\(43\) −0.407490 1.78533i −0.0621417 0.272260i 0.934306 0.356471i \(-0.116020\pi\)
−0.996448 + 0.0842108i \(0.973163\pi\)
\(44\) 6.19468 + 27.1407i 0.933884 + 4.09161i
\(45\) 0 0
\(46\) −11.4652 −1.69045
\(47\) −0.945516 1.18564i −0.137918 0.172943i 0.708076 0.706136i \(-0.249563\pi\)
−0.845994 + 0.533193i \(0.820992\pi\)
\(48\) 0 0
\(49\) −2.49715 + 3.13133i −0.356736 + 0.447333i
\(50\) 6.02469 7.55473i 0.852020 1.06840i
\(51\) 0 0
\(52\) 1.25907 + 5.51633i 0.174601 + 0.764978i
\(53\) −0.839814 + 3.67947i −0.115357 + 0.505414i 0.883928 + 0.467622i \(0.154889\pi\)
−0.999286 + 0.0377912i \(0.987968\pi\)
\(54\) 0 0
\(55\) −6.17942 + 2.97585i −0.833233 + 0.401264i
\(56\) 2.36387 10.3568i 0.315885 1.38398i
\(57\) 0 0
\(58\) 13.5231 1.83571i 1.77568 0.241041i
\(59\) 8.72197 1.13550 0.567752 0.823200i \(-0.307813\pi\)
0.567752 + 0.823200i \(0.307813\pi\)
\(60\) 0 0
\(61\) 2.78187 1.33968i 0.356182 0.171528i −0.247232 0.968956i \(-0.579521\pi\)
0.603414 + 0.797428i \(0.293807\pi\)
\(62\) −15.6514 7.53731i −1.98773 0.957240i
\(63\) 0 0
\(64\) 0.318497 + 1.39543i 0.0398121 + 0.174428i
\(65\) −1.25596 + 0.604841i −0.155783 + 0.0750213i
\(66\) 0 0
\(67\) −1.49443 + 1.87396i −0.182574 + 0.228941i −0.864693 0.502300i \(-0.832487\pi\)
0.682119 + 0.731241i \(0.261059\pi\)
\(68\) −20.2519 9.75280i −2.45590 1.18270i
\(69\) 0 0
\(70\) 4.77822 0.571107
\(71\) −5.82579 7.30531i −0.691394 0.866980i 0.304954 0.952367i \(-0.401359\pi\)
−0.996348 + 0.0853867i \(0.972787\pi\)
\(72\) 0 0
\(73\) 0.400049 + 1.75273i 0.0468222 + 0.205142i 0.992928 0.118715i \(-0.0378775\pi\)
−0.946106 + 0.323857i \(0.895020\pi\)
\(74\) −9.75566 12.2332i −1.13407 1.42208i
\(75\) 0 0
\(76\) −17.9960 22.5663i −2.06428 2.58853i
\(77\) 9.81531 + 4.72681i 1.11856 + 0.538669i
\(78\) 0 0
\(79\) −1.78668 + 2.24043i −0.201018 + 0.252068i −0.872115 0.489301i \(-0.837252\pi\)
0.671097 + 0.741369i \(0.265823\pi\)
\(80\) 6.58844 3.17283i 0.736610 0.354733i
\(81\) 0 0
\(82\) −2.28132 + 9.99513i −0.251930 + 1.10378i
\(83\) 5.94056 + 2.86082i 0.652061 + 0.314016i 0.730510 0.682902i \(-0.239283\pi\)
−0.0784490 + 0.996918i \(0.524997\pi\)
\(84\) 0 0
\(85\) 1.23230 5.39906i 0.133662 0.585610i
\(86\) −4.64077 −0.500427
\(87\) 0 0
\(88\) 38.6427 4.11933
\(89\) 0.744447 3.26164i 0.0789113 0.345733i −0.920024 0.391861i \(-0.871831\pi\)
0.998936 + 0.0461286i \(0.0146884\pi\)
\(90\) 0 0
\(91\) 1.99496 + 0.960721i 0.209128 + 0.100711i
\(92\) −4.45196 + 19.5053i −0.464149 + 2.03357i
\(93\) 0 0
\(94\) −3.46252 + 1.66746i −0.357132 + 0.171986i
\(95\) 4.43370 5.55968i 0.454888 0.570411i
\(96\) 0 0
\(97\) −2.04297 0.983843i −0.207432 0.0998941i 0.327283 0.944926i \(-0.393867\pi\)
−0.534715 + 0.845032i \(0.679581\pi\)
\(98\) 6.32833 + 7.93547i 0.639257 + 0.801604i
\(99\) 0 0
\(100\) −10.5132 13.1831i −1.05132 1.31831i
\(101\) 2.79423 + 12.2423i 0.278036 + 1.21816i 0.900273 + 0.435326i \(0.143367\pi\)
−0.622237 + 0.782829i \(0.713776\pi\)
\(102\) 0 0
\(103\) 1.73041 + 2.16986i 0.170502 + 0.213803i 0.859740 0.510732i \(-0.170626\pi\)
−0.689237 + 0.724536i \(0.742054\pi\)
\(104\) 7.85412 0.770160
\(105\) 0 0
\(106\) 8.61719 + 4.14982i 0.836976 + 0.403066i
\(107\) −6.20858 + 7.78532i −0.600206 + 0.752635i −0.985410 0.170197i \(-0.945560\pi\)
0.385204 + 0.922832i \(0.374131\pi\)
\(108\) 0 0
\(109\) 4.25748 2.05029i 0.407793 0.196383i −0.218731 0.975785i \(-0.570192\pi\)
0.626523 + 0.779403i \(0.284477\pi\)
\(110\) 3.86770 + 16.9455i 0.368771 + 1.61569i
\(111\) 0 0
\(112\) −10.4650 5.03967i −0.988849 0.476205i
\(113\) −0.494143 + 0.237967i −0.0464851 + 0.0223860i −0.456982 0.889476i \(-0.651070\pi\)
0.410497 + 0.911862i \(0.365355\pi\)
\(114\) 0 0
\(115\) −4.92913 −0.459644
\(116\) 2.12804 23.7193i 0.197584 2.20228i
\(117\) 0 0
\(118\) 4.91846 21.5492i 0.452781 1.98376i
\(119\) −7.92522 + 3.81659i −0.726504 + 0.349866i
\(120\) 0 0
\(121\) −6.37048 + 27.9109i −0.579135 + 2.53735i
\(122\) −1.74117 7.62857i −0.157638 0.690659i
\(123\) 0 0
\(124\) −18.9005 + 23.7004i −1.69731 + 2.12836i
\(125\) 5.98666 7.50703i 0.535463 0.671449i
\(126\) 0 0
\(127\) 8.88268 + 11.1385i 0.788211 + 0.988385i 0.999939 + 0.0110562i \(0.00351937\pi\)
−0.211728 + 0.977329i \(0.567909\pi\)
\(128\) 13.0916 1.15714
\(129\) 0 0
\(130\) 0.786108 + 3.44416i 0.0689462 + 0.302073i
\(131\) 1.52161 + 6.66661i 0.132944 + 0.582464i 0.996885 + 0.0788714i \(0.0251316\pi\)
−0.863941 + 0.503593i \(0.832011\pi\)
\(132\) 0 0
\(133\) −11.2952 −0.979415
\(134\) 3.78722 + 4.74902i 0.327166 + 0.410253i
\(135\) 0 0
\(136\) −19.4538 + 24.3943i −1.66815 + 2.09179i
\(137\) −8.40101 + 10.5345i −0.717746 + 0.900026i −0.998208 0.0598397i \(-0.980941\pi\)
0.280462 + 0.959865i \(0.409512\pi\)
\(138\) 0 0
\(139\) −2.62174 11.4866i −0.222373 0.974278i −0.955686 0.294388i \(-0.904884\pi\)
0.733313 0.679891i \(-0.237973\pi\)
\(140\) 1.85540 8.12903i 0.156810 0.687028i
\(141\) 0 0
\(142\) −21.3343 + 10.2741i −1.79034 + 0.862180i
\(143\) −1.79230 + 7.85257i −0.149879 + 0.656665i
\(144\) 0 0
\(145\) 5.81390 0.789213i 0.482818 0.0655405i
\(146\) 4.55603 0.377060
\(147\) 0 0
\(148\) −24.6001 + 11.8468i −2.02212 + 0.973799i
\(149\) 0.686505 + 0.330603i 0.0562406 + 0.0270841i 0.461793 0.886988i \(-0.347206\pi\)
−0.405552 + 0.914072i \(0.632921\pi\)
\(150\) 0 0
\(151\) −4.10254 17.9744i −0.333860 1.46274i −0.811589 0.584228i \(-0.801397\pi\)
0.477730 0.878507i \(-0.341460\pi\)
\(152\) −36.0974 + 17.3836i −2.92789 + 1.41000i
\(153\) 0 0
\(154\) 17.2134 21.5850i 1.38710 1.73937i
\(155\) −6.72887 3.24046i −0.540476 0.260280i
\(156\) 0 0
\(157\) 10.9681 0.875353 0.437676 0.899133i \(-0.355802\pi\)
0.437676 + 0.899133i \(0.355802\pi\)
\(158\) 4.52784 + 5.67773i 0.360216 + 0.451696i
\(159\) 0 0
\(160\) −1.14726 5.02649i −0.0906991 0.397379i
\(161\) 4.88153 + 6.12125i 0.384719 + 0.482422i
\(162\) 0 0
\(163\) 14.8705 + 18.6470i 1.16475 + 1.46055i 0.861590 + 0.507604i \(0.169469\pi\)
0.303155 + 0.952941i \(0.401960\pi\)
\(164\) 16.1185 + 7.76228i 1.25865 + 0.606132i
\(165\) 0 0
\(166\) 10.4181 13.0639i 0.808605 1.01396i
\(167\) −12.9629 + 6.24261i −1.00310 + 0.483068i −0.861990 0.506926i \(-0.830782\pi\)
−0.141111 + 0.989994i \(0.545068\pi\)
\(168\) 0 0
\(169\) 2.52849 11.0780i 0.194499 0.852156i
\(170\) −12.6444 6.08923i −0.969783 0.467023i
\(171\) 0 0
\(172\) −1.80202 + 7.89518i −0.137403 + 0.602002i
\(173\) 3.94904 0.300240 0.150120 0.988668i \(-0.452034\pi\)
0.150120 + 0.988668i \(0.452034\pi\)
\(174\) 0 0
\(175\) −6.59859 −0.498807
\(176\) 9.40189 41.1924i 0.708694 3.10499i
\(177\) 0 0
\(178\) −7.63865 3.67858i −0.572541 0.275721i
\(179\) 3.65240 16.0022i 0.272993 1.19606i −0.633467 0.773770i \(-0.718369\pi\)
0.906460 0.422291i \(-0.138774\pi\)
\(180\) 0 0
\(181\) 15.0941 7.26893i 1.12193 0.540295i 0.221445 0.975173i \(-0.428923\pi\)
0.900489 + 0.434878i \(0.143208\pi\)
\(182\) 3.49862 4.38713i 0.259335 0.325196i
\(183\) 0 0
\(184\) 25.0213 + 12.0496i 1.84460 + 0.888310i
\(185\) −4.19417 5.25932i −0.308362 0.386673i
\(186\) 0 0
\(187\) −19.9502 25.0167i −1.45890 1.82940i
\(188\) 1.49229 + 6.53816i 0.108837 + 0.476844i
\(189\) 0 0
\(190\) −11.2359 14.0894i −0.815141 1.02215i
\(191\) 2.95004 0.213457 0.106729 0.994288i \(-0.465962\pi\)
0.106729 + 0.994288i \(0.465962\pi\)
\(192\) 0 0
\(193\) 4.39974 + 2.11880i 0.316700 + 0.152515i 0.585480 0.810687i \(-0.300906\pi\)
−0.268780 + 0.963202i \(0.586620\pi\)
\(194\) −3.58282 + 4.49272i −0.257232 + 0.322559i
\(195\) 0 0
\(196\) 15.9577 7.68480i 1.13983 0.548914i
\(197\) −0.560429 2.45540i −0.0399289 0.174940i 0.951032 0.309094i \(-0.100026\pi\)
−0.990961 + 0.134153i \(0.957168\pi\)
\(198\) 0 0
\(199\) −23.0213 11.0865i −1.63193 0.785898i −0.999940 0.0109244i \(-0.996523\pi\)
−0.631994 0.774974i \(-0.717763\pi\)
\(200\) −21.0880 + 10.1554i −1.49114 + 0.718097i
\(201\) 0 0
\(202\) 31.8225 2.23903
\(203\) −6.73784 6.43840i −0.472903 0.451887i
\(204\) 0 0
\(205\) −0.980791 + 4.29713i −0.0685014 + 0.300124i
\(206\) 6.33684 3.05166i 0.441509 0.212619i
\(207\) 0 0
\(208\) 1.91093 8.37234i 0.132499 0.580517i
\(209\) −9.14279 40.0572i −0.632420 2.77081i
\(210\) 0 0
\(211\) −1.15041 + 1.44257i −0.0791974 + 0.0993104i −0.819852 0.572576i \(-0.805944\pi\)
0.740654 + 0.671886i \(0.234516\pi\)
\(212\) 10.4060 13.0488i 0.714689 0.896192i
\(213\) 0 0
\(214\) 15.7339 + 19.7297i 1.07555 + 1.34869i
\(215\) −1.99517 −0.136069
\(216\) 0 0
\(217\) 2.63973 + 11.5654i 0.179197 + 0.785112i
\(218\) −2.66476 11.6751i −0.180480 0.790735i
\(219\) 0 0
\(220\) 30.3306 2.04489
\(221\) −4.05486 5.08464i −0.272760 0.342030i
\(222\) 0 0
\(223\) −14.9944 + 18.8024i −1.00410 + 1.25910i −0.0384478 + 0.999261i \(0.512241\pi\)
−0.965652 + 0.259840i \(0.916330\pi\)
\(224\) −5.10597 + 6.40268i −0.341157 + 0.427797i
\(225\) 0 0
\(226\) 0.309284 + 1.35506i 0.0205733 + 0.0901374i
\(227\) −5.03786 + 22.0723i −0.334374 + 1.46499i 0.476191 + 0.879342i \(0.342017\pi\)
−0.810565 + 0.585648i \(0.800840\pi\)
\(228\) 0 0
\(229\) 12.4353 5.98852i 0.821747 0.395733i 0.0247336 0.999694i \(-0.492126\pi\)
0.797013 + 0.603962i \(0.206412\pi\)
\(230\) −2.77962 + 12.1783i −0.183283 + 0.803013i
\(231\) 0 0
\(232\) −31.4418 10.2063i −2.06426 0.670076i
\(233\) 6.69816 0.438811 0.219405 0.975634i \(-0.429588\pi\)
0.219405 + 0.975634i \(0.429588\pi\)
\(234\) 0 0
\(235\) −1.48861 + 0.716879i −0.0971065 + 0.0467640i
\(236\) −34.7511 16.7352i −2.26210 1.08937i
\(237\) 0 0
\(238\) 4.96040 + 21.7329i 0.321535 + 1.40874i
\(239\) 10.9580 5.27711i 0.708816 0.341348i −0.0444976 0.999009i \(-0.514169\pi\)
0.753313 + 0.657662i \(0.228454\pi\)
\(240\) 0 0
\(241\) 1.65610 2.07668i 0.106679 0.133771i −0.725626 0.688089i \(-0.758450\pi\)
0.832305 + 0.554319i \(0.187021\pi\)
\(242\) 65.3664 + 31.4788i 4.20191 + 2.02353i
\(243\) 0 0
\(244\) −13.6543 −0.874129
\(245\) 2.72069 + 3.41163i 0.173818 + 0.217961i
\(246\) 0 0
\(247\) −1.85827 8.14161i −0.118239 0.518038i
\(248\) 26.2356 + 32.8985i 1.66597 + 2.08905i
\(249\) 0 0
\(250\) −15.1715 19.0244i −0.959529 1.20321i
\(251\) −20.5109 9.87755i −1.29464 0.623465i −0.345529 0.938408i \(-0.612300\pi\)
−0.949111 + 0.314943i \(0.898015\pi\)
\(252\) 0 0
\(253\) −17.7571 + 22.2667i −1.11638 + 1.39989i
\(254\) 32.5288 15.6651i 2.04104 0.982913i
\(255\) 0 0
\(256\) 6.74555 29.5542i 0.421597 1.84714i
\(257\) 6.94501 + 3.34454i 0.433218 + 0.208627i 0.637767 0.770230i \(-0.279858\pi\)
−0.204549 + 0.978856i \(0.565573\pi\)
\(258\) 0 0
\(259\) −2.37763 + 10.4171i −0.147739 + 0.647285i
\(260\) 6.16469 0.382318
\(261\) 0 0
\(262\) 17.3291 1.07060
\(263\) −0.171243 + 0.750263i −0.0105593 + 0.0462632i −0.979933 0.199327i \(-0.936125\pi\)
0.969374 + 0.245590i \(0.0789817\pi\)
\(264\) 0 0
\(265\) 3.70472 + 1.78410i 0.227579 + 0.109596i
\(266\) −6.36953 + 27.9067i −0.390541 + 1.71107i
\(267\) 0 0
\(268\) 9.54994 4.59901i 0.583356 0.280929i
\(269\) −9.56842 + 11.9984i −0.583397 + 0.731556i −0.982688 0.185268i \(-0.940685\pi\)
0.399291 + 0.916824i \(0.369256\pi\)
\(270\) 0 0
\(271\) −14.1724 6.82505i −0.860910 0.414592i −0.0492945 0.998784i \(-0.515697\pi\)
−0.811616 + 0.584192i \(0.801412\pi\)
\(272\) 21.2707 + 26.6726i 1.28972 + 1.61726i
\(273\) 0 0
\(274\) 21.2900 + 26.6968i 1.28617 + 1.61281i
\(275\) −5.34118 23.4013i −0.322086 1.41115i
\(276\) 0 0
\(277\) −14.1068 17.6894i −0.847595 1.06285i −0.997250 0.0741120i \(-0.976388\pi\)
0.149655 0.988738i \(-0.452184\pi\)
\(278\) −29.8581 −1.79077
\(279\) 0 0
\(280\) −10.4279 5.02180i −0.623184 0.300110i
\(281\) 13.7451 17.2358i 0.819965 1.02820i −0.179051 0.983840i \(-0.557303\pi\)
0.999015 0.0443636i \(-0.0141260\pi\)
\(282\) 0 0
\(283\) −4.66832 + 2.24815i −0.277503 + 0.133638i −0.567459 0.823402i \(-0.692074\pi\)
0.289956 + 0.957040i \(0.406359\pi\)
\(284\) 9.19474 + 40.2848i 0.545608 + 2.39046i
\(285\) 0 0
\(286\) 18.3905 + 8.85638i 1.08745 + 0.523689i
\(287\) 6.30771 3.03763i 0.372332 0.179306i
\(288\) 0 0
\(289\) 8.83596 0.519762
\(290\) 1.32866 14.8093i 0.0780216 0.869633i
\(291\) 0 0
\(292\) 1.76912 7.75102i 0.103530 0.453594i
\(293\) 3.38919 1.63215i 0.197999 0.0953511i −0.332257 0.943189i \(-0.607810\pi\)
0.530256 + 0.847838i \(0.322096\pi\)
\(294\) 0 0
\(295\) 2.11455 9.26447i 0.123114 0.539398i
\(296\) 8.43369 + 36.9504i 0.490198 + 2.14770i
\(297\) 0 0
\(298\) 1.20395 1.50970i 0.0697427 0.0874545i
\(299\) −3.60912 + 4.52569i −0.208721 + 0.261727i
\(300\) 0 0
\(301\) 1.97590 + 2.47770i 0.113889 + 0.142812i
\(302\) −46.7224 −2.68857
\(303\) 0 0
\(304\) 9.74796 + 42.7086i 0.559084 + 2.44951i
\(305\) −0.748568 3.27969i −0.0428629 0.187795i
\(306\) 0 0
\(307\) −4.15007 −0.236857 −0.118428 0.992963i \(-0.537786\pi\)
−0.118428 + 0.992963i \(0.537786\pi\)
\(308\) −30.0377 37.6661i −1.71156 2.14623i
\(309\) 0 0
\(310\) −11.8006 + 14.7975i −0.670232 + 0.840444i
\(311\) 5.11268 6.41109i 0.289913 0.363540i −0.615451 0.788175i \(-0.711026\pi\)
0.905365 + 0.424635i \(0.139598\pi\)
\(312\) 0 0
\(313\) 1.29402 + 5.66946i 0.0731421 + 0.320457i 0.998242 0.0592668i \(-0.0188763\pi\)
−0.925100 + 0.379723i \(0.876019\pi\)
\(314\) 6.18511 27.0987i 0.349046 1.52927i
\(315\) 0 0
\(316\) 11.4175 5.49839i 0.642285 0.309308i
\(317\) −2.46889 + 10.8169i −0.138666 + 0.607537i 0.857062 + 0.515212i \(0.172287\pi\)
−0.995729 + 0.0923249i \(0.970570\pi\)
\(318\) 0 0
\(319\) 17.3793 29.1066i 0.973052 1.62966i
\(320\) 1.55944 0.0871752
\(321\) 0 0
\(322\) 17.8764 8.60882i 0.996213 0.479751i
\(323\) 29.8900 + 14.3942i 1.66312 + 0.800917i
\(324\) 0 0
\(325\) −1.08559 4.75630i −0.0602179 0.263832i
\(326\) 54.4564 26.2248i 3.01606 1.45246i
\(327\) 0 0
\(328\) 15.4833 19.4155i 0.854925 1.07204i
\(329\) 2.36450 + 1.13868i 0.130359 + 0.0627775i
\(330\) 0 0
\(331\) 16.7926 0.923002 0.461501 0.887140i \(-0.347311\pi\)
0.461501 + 0.887140i \(0.347311\pi\)
\(332\) −18.1798 22.7968i −0.997749 1.25114i
\(333\) 0 0
\(334\) 8.11349 + 35.5475i 0.443950 + 1.94507i
\(335\) 1.62821 + 2.04171i 0.0889585 + 0.111550i
\(336\) 0 0
\(337\) 13.1418 + 16.4793i 0.715880 + 0.897685i 0.998097 0.0616653i \(-0.0196411\pi\)
−0.282217 + 0.959351i \(0.591070\pi\)
\(338\) −25.9444 12.4942i −1.41119 0.679593i
\(339\) 0 0
\(340\) −15.2693 + 19.1471i −0.828093 + 1.03840i
\(341\) −38.8789 + 18.7231i −2.10541 + 1.01391i
\(342\) 0 0
\(343\) 4.23794 18.5676i 0.228828 1.00256i
\(344\) 10.1279 + 4.87734i 0.546059 + 0.262968i
\(345\) 0 0
\(346\) 2.22693 9.75680i 0.119720 0.524529i
\(347\) 31.0309 1.66583 0.832914 0.553402i \(-0.186671\pi\)
0.832914 + 0.553402i \(0.186671\pi\)
\(348\) 0 0
\(349\) −35.7539 −1.91386 −0.956931 0.290315i \(-0.906240\pi\)
−0.956931 + 0.290315i \(0.906240\pi\)
\(350\) −3.72105 + 16.3030i −0.198899 + 0.871432i
\(351\) 0 0
\(352\) −26.8395 12.9252i −1.43055 0.688915i
\(353\) −1.34141 + 5.87712i −0.0713962 + 0.312807i −0.997999 0.0632352i \(-0.979858\pi\)
0.926602 + 0.376042i \(0.122715\pi\)
\(354\) 0 0
\(355\) −9.17209 + 4.41705i −0.486804 + 0.234432i
\(356\) −9.22436 + 11.5670i −0.488890 + 0.613048i
\(357\) 0 0
\(358\) −37.4766 18.0478i −1.98070 0.953856i
\(359\) 3.56260 + 4.46736i 0.188027 + 0.235778i 0.866906 0.498472i \(-0.166105\pi\)
−0.678879 + 0.734250i \(0.737534\pi\)
\(360\) 0 0
\(361\) 14.7142 + 18.4510i 0.774430 + 0.971104i
\(362\) −9.44738 41.3917i −0.496543 2.17550i
\(363\) 0 0
\(364\) −6.10516 7.65562i −0.319997 0.401264i
\(365\) 1.95874 0.102525
\(366\) 0 0
\(367\) −24.6356 11.8639i −1.28597 0.619290i −0.339051 0.940768i \(-0.610106\pi\)
−0.946917 + 0.321478i \(0.895820\pi\)
\(368\) 18.9324 23.7405i 0.986921 1.23756i
\(369\) 0 0
\(370\) −15.3593 + 7.39663i −0.798490 + 0.384532i
\(371\) −1.45336 6.36758i −0.0754546 0.330588i
\(372\) 0 0
\(373\) 11.3717 + 5.47631i 0.588803 + 0.283552i 0.704468 0.709736i \(-0.251186\pi\)
−0.115665 + 0.993288i \(0.536900\pi\)
\(374\) −73.0585 + 35.1831i −3.77776 + 1.81927i
\(375\) 0 0
\(376\) 9.30899 0.480074
\(377\) 3.53233 5.91590i 0.181924 0.304684i
\(378\) 0 0
\(379\) 0.734451 3.21784i 0.0377262 0.165289i −0.952556 0.304365i \(-0.901556\pi\)
0.990282 + 0.139075i \(0.0444130\pi\)
\(380\) −28.3328 + 13.6444i −1.45344 + 0.699941i
\(381\) 0 0
\(382\) 1.66357 7.28859i 0.0851158 0.372917i
\(383\) 2.14467 + 9.39639i 0.109587 + 0.480133i 0.999702 + 0.0243974i \(0.00776669\pi\)
−0.890115 + 0.455736i \(0.849376\pi\)
\(384\) 0 0
\(385\) 7.40043 9.27984i 0.377161 0.472945i
\(386\) 7.71596 9.67551i 0.392732 0.492470i
\(387\) 0 0
\(388\) 6.25209 + 7.83988i 0.317402 + 0.398009i
\(389\) −10.7987 −0.547518 −0.273759 0.961798i \(-0.588267\pi\)
−0.273759 + 0.961798i \(0.588267\pi\)
\(390\) 0 0
\(391\) −5.11706 22.4193i −0.258781 1.13379i
\(392\) −5.47079 23.9691i −0.276316 1.21062i
\(393\) 0 0
\(394\) −6.38254 −0.321548
\(395\) 1.94662 + 2.44098i 0.0979450 + 0.122819i
\(396\) 0 0
\(397\) 18.5378 23.2457i 0.930385 1.16667i −0.0553677 0.998466i \(-0.517633\pi\)
0.985753 0.168200i \(-0.0537955\pi\)
\(398\) −40.3731 + 50.6263i −2.02372 + 2.53767i
\(399\) 0 0
\(400\) 5.69472 + 24.9502i 0.284736 + 1.24751i
\(401\) 2.54450 11.1482i 0.127066 0.556713i −0.870813 0.491615i \(-0.836407\pi\)
0.997879 0.0650982i \(-0.0207361\pi\)
\(402\) 0 0
\(403\) −7.90212 + 3.80546i −0.393633 + 0.189564i
\(404\) 12.3568 54.1386i 0.614773 2.69350i
\(405\) 0 0
\(406\) −19.7068 + 13.0163i −0.978032 + 0.645988i
\(407\) −38.8677 −1.92660
\(408\) 0 0
\(409\) −26.9918 + 12.9985i −1.33466 + 0.642737i −0.958837 0.283956i \(-0.908353\pi\)
−0.375820 + 0.926693i \(0.622639\pi\)
\(410\) 10.0637 + 4.84644i 0.497012 + 0.239349i
\(411\) 0 0
\(412\) −2.73108 11.9656i −0.134550 0.589504i
\(413\) −13.5992 + 6.54904i −0.669174 + 0.322257i
\(414\) 0 0
\(415\) 4.47899 5.61647i 0.219865 0.275702i
\(416\) −5.45511 2.62704i −0.267459 0.128801i
\(417\) 0 0
\(418\) −104.124 −5.09288
\(419\) 12.7136 + 15.9424i 0.621101 + 0.778836i 0.988499 0.151228i \(-0.0483228\pi\)
−0.367398 + 0.930064i \(0.619751\pi\)
\(420\) 0 0
\(421\) 5.11531 + 22.4116i 0.249305 + 1.09228i 0.932253 + 0.361808i \(0.117840\pi\)
−0.682948 + 0.730467i \(0.739302\pi\)
\(422\) 2.91539 + 3.65578i 0.141919 + 0.177960i
\(423\) 0 0
\(424\) −14.4446 18.1129i −0.701491 0.879641i
\(425\) 17.4616 + 8.40906i 0.847012 + 0.407899i
\(426\) 0 0
\(427\) −3.33155 + 4.17763i −0.161225 + 0.202170i
\(428\) 39.6750 19.1065i 1.91776 0.923545i
\(429\) 0 0
\(430\) −1.12511 + 4.92942i −0.0542575 + 0.237718i
\(431\) −3.64629 1.75596i −0.175636 0.0845817i 0.344000 0.938970i \(-0.388218\pi\)
−0.519636 + 0.854388i \(0.673932\pi\)
\(432\) 0 0
\(433\) −0.585130 + 2.56362i −0.0281196 + 0.123200i −0.987040 0.160476i \(-0.948697\pi\)
0.958920 + 0.283676i \(0.0915541\pi\)
\(434\) 30.0630 1.44307
\(435\) 0 0
\(436\) −20.8971 −1.00079
\(437\) 6.57069 28.7881i 0.314319 1.37712i
\(438\) 0 0
\(439\) 23.4338 + 11.2851i 1.11843 + 0.538609i 0.899408 0.437110i \(-0.143998\pi\)
0.219025 + 0.975719i \(0.429712\pi\)
\(440\) 9.36854 41.0463i 0.446628 1.95680i
\(441\) 0 0
\(442\) −14.8491 + 7.15095i −0.706300 + 0.340136i
\(443\) −11.7311 + 14.7103i −0.557360 + 0.698907i −0.978067 0.208290i \(-0.933210\pi\)
0.420708 + 0.907196i \(0.361782\pi\)
\(444\) 0 0
\(445\) −3.28402 1.58150i −0.155678 0.0749704i
\(446\) 37.9991 + 47.6493i 1.79931 + 2.25626i
\(447\) 0 0
\(448\) −1.54438 1.93659i −0.0729650 0.0914952i
\(449\) 2.75254 + 12.0597i 0.129900 + 0.569130i 0.997424 + 0.0717342i \(0.0228533\pi\)
−0.867523 + 0.497396i \(0.834290\pi\)
\(450\) 0 0
\(451\) 15.8784 + 19.9109i 0.747684 + 0.937567i
\(452\) 2.42542 0.114082
\(453\) 0 0
\(454\) 51.6926 + 24.8939i 2.42606 + 1.16833i
\(455\) 1.50413 1.88612i 0.0705149 0.0884229i
\(456\) 0 0
\(457\) 18.1340 8.73289i 0.848275 0.408508i 0.0413378 0.999145i \(-0.486838\pi\)
0.806937 + 0.590638i \(0.201124\pi\)
\(458\) −7.78324 34.1006i −0.363687 1.59342i
\(459\) 0 0
\(460\) 19.6392 + 9.45774i 0.915682 + 0.440969i
\(461\) 17.8198 8.58155i 0.829950 0.399683i 0.0298534 0.999554i \(-0.490496\pi\)
0.800096 + 0.599872i \(0.204782\pi\)
\(462\) 0 0
\(463\) 2.22268 0.103297 0.0516484 0.998665i \(-0.483552\pi\)
0.0516484 + 0.998665i \(0.483552\pi\)
\(464\) −18.5296 + 31.0332i −0.860215 + 1.44068i
\(465\) 0 0
\(466\) 3.77720 16.5490i 0.174975 0.766617i
\(467\) 4.17491 2.01053i 0.193192 0.0930362i −0.334787 0.942294i \(-0.608664\pi\)
0.527979 + 0.849258i \(0.322950\pi\)
\(468\) 0 0
\(469\) 0.923013 4.04398i 0.0426208 0.186734i
\(470\) 0.931724 + 4.08215i 0.0429772 + 0.188295i
\(471\) 0 0
\(472\) −33.3816 + 41.8592i −1.53651 + 1.92673i
\(473\) −7.18754 + 9.01289i −0.330484 + 0.414413i
\(474\) 0 0
\(475\) 15.5165 + 19.4571i 0.711947 + 0.892753i
\(476\) 38.8996 1.78296
\(477\) 0 0
\(478\) −6.85863 30.0496i −0.313706 1.37444i
\(479\) −2.11528 9.26766i −0.0966498 0.423450i 0.903335 0.428935i \(-0.141111\pi\)
−0.999985 + 0.00548500i \(0.998254\pi\)
\(480\) 0 0
\(481\) −7.89983 −0.360201
\(482\) −4.19691 5.26276i −0.191164 0.239712i
\(483\) 0 0
\(484\) 78.9358 98.9824i 3.58799 4.49920i
\(485\) −1.54033 + 1.93152i −0.0699430 + 0.0877057i
\(486\) 0 0
\(487\) −1.69061 7.40706i −0.0766090 0.335646i 0.922070 0.387022i \(-0.126496\pi\)
−0.998679 + 0.0513764i \(0.983639\pi\)
\(488\) −4.21756 + 18.4783i −0.190920 + 0.836475i
\(489\) 0 0
\(490\) 9.96328 4.79807i 0.450095 0.216754i
\(491\) −5.01175 + 21.9579i −0.226177 + 0.990947i 0.726548 + 0.687115i \(0.241123\pi\)
−0.952726 + 0.303832i \(0.901734\pi\)
\(492\) 0 0
\(493\) 9.62515 + 25.6242i 0.433495 + 1.15406i
\(494\) −21.1632 −0.952177
\(495\) 0 0
\(496\) 41.4523 19.9624i 1.86126 0.896338i
\(497\) 14.5688 + 7.01598i 0.653501 + 0.314710i
\(498\) 0 0
\(499\) 6.40406 + 28.0580i 0.286685 + 1.25605i 0.889043 + 0.457823i \(0.151371\pi\)
−0.602358 + 0.798226i \(0.705772\pi\)
\(500\) −38.2568 + 18.4235i −1.71089 + 0.823923i
\(501\) 0 0
\(502\) −35.9707 + 45.1058i −1.60545 + 2.01317i
\(503\) −4.50964 2.17173i −0.201075 0.0968325i 0.330637 0.943758i \(-0.392737\pi\)
−0.531711 + 0.846926i \(0.678451\pi\)
\(504\) 0 0
\(505\) 13.6812 0.608805
\(506\) 45.0003 + 56.4285i 2.00051 + 2.50855i
\(507\) 0 0
\(508\) −14.0194 61.4230i −0.622010 2.72520i
\(509\) −3.10581 3.89456i −0.137663 0.172623i 0.708221 0.705990i \(-0.249498\pi\)
−0.845884 + 0.533367i \(0.820926\pi\)
\(510\) 0 0
\(511\) −1.93982 2.43246i −0.0858126 0.107606i
\(512\) −45.6248 21.9717i −2.01635 0.971023i
\(513\) 0 0
\(514\) 12.1797 15.2728i 0.537223 0.673657i
\(515\) 2.72435 1.31198i 0.120049 0.0578126i
\(516\) 0 0
\(517\) −2.12430 + 9.30715i −0.0934264 + 0.409328i
\(518\) 24.3964 + 11.7487i 1.07192 + 0.516209i
\(519\) 0 0
\(520\) 1.90415 8.34263i 0.0835026 0.365849i
\(521\) −4.54404 −0.199078 −0.0995389 0.995034i \(-0.531737\pi\)
−0.0995389 + 0.995034i \(0.531737\pi\)
\(522\) 0 0
\(523\) −3.08967 −0.135102 −0.0675510 0.997716i \(-0.521519\pi\)
−0.0675510 + 0.997716i \(0.521519\pi\)
\(524\) 6.72894 29.4814i 0.293955 1.28790i
\(525\) 0 0
\(526\) 1.75709 + 0.846171i 0.0766129 + 0.0368948i
\(527\) 7.75323 33.9691i 0.337736 1.47972i
\(528\) 0 0
\(529\) 2.28130 1.09862i 0.0991869 0.0477659i
\(530\) 6.49709 8.14709i 0.282215 0.353887i
\(531\) 0 0
\(532\) 45.0035 + 21.6725i 1.95115 + 0.939623i
\(533\) 3.22728 + 4.04688i 0.139789 + 0.175290i
\(534\) 0 0
\(535\) 6.76434 + 8.48222i 0.292448 + 0.366718i
\(536\) −3.27402 14.3444i −0.141416 0.619585i
\(537\) 0 0
\(538\) 24.2484 + 30.4066i 1.04542 + 1.31092i
\(539\) 25.2128 1.08599
\(540\) 0 0
\(541\) −19.3355 9.31147i −0.831297 0.400331i −0.0306954 0.999529i \(-0.509772\pi\)
−0.800601 + 0.599197i \(0.795486\pi\)
\(542\) −24.8545 + 31.1666i −1.06759 + 1.33872i
\(543\) 0 0
\(544\) 21.6711 10.4363i 0.929141 0.447451i
\(545\) −1.14564 5.01936i −0.0490737 0.215006i
\(546\) 0 0
\(547\) 13.0776 + 6.29785i 0.559158 + 0.269276i 0.692045 0.721855i \(-0.256710\pi\)
−0.132886 + 0.991131i \(0.542424\pi\)
\(548\) 53.6853 25.8535i 2.29332 1.10441i
\(549\) 0 0
\(550\) −60.8290 −2.59376
\(551\) −3.14080 + 35.0075i −0.133803 + 1.49137i
\(552\) 0 0
\(553\) 1.10352 4.83482i 0.0469263 0.205597i
\(554\) −51.6597 + 24.8780i −2.19481 + 1.05697i
\(555\) 0 0
\(556\) −11.5940 + 50.7965i −0.491694 + 2.15425i
\(557\) 5.37517 + 23.5502i 0.227753 + 0.997852i 0.951467 + 0.307752i \(0.0995765\pi\)
−0.723714 + 0.690100i \(0.757566\pi\)
\(558\) 0 0
\(559\) −1.46086 + 1.83187i −0.0617880 + 0.0774797i
\(560\) −7.89027 + 9.89408i −0.333425 + 0.418101i
\(561\) 0 0
\(562\) −34.8331 43.6793i −1.46935 1.84250i
\(563\) 7.54185 0.317851 0.158926 0.987291i \(-0.449197\pi\)
0.158926 + 0.987291i \(0.449197\pi\)
\(564\) 0 0
\(565\) 0.132968 + 0.582571i 0.00559400 + 0.0245089i
\(566\) 2.92190 + 12.8017i 0.122817 + 0.538095i
\(567\) 0 0
\(568\) 57.3572 2.40666
\(569\) 12.5014 + 15.6763i 0.524086 + 0.657183i 0.971471 0.237159i \(-0.0762161\pi\)
−0.447385 + 0.894341i \(0.647645\pi\)
\(570\) 0 0
\(571\) −2.84040 + 3.56175i −0.118867 + 0.149054i −0.837705 0.546123i \(-0.816103\pi\)
0.718838 + 0.695178i \(0.244674\pi\)
\(572\) 22.2081 27.8481i 0.928569 1.16439i
\(573\) 0 0
\(574\) −3.94799 17.2973i −0.164786 0.721975i
\(575\) 3.83857 16.8179i 0.160080 0.701355i
\(576\) 0 0
\(577\) −17.6920 + 8.52003i −0.736528 + 0.354693i −0.764248 0.644922i \(-0.776890\pi\)
0.0277198 + 0.999616i \(0.491175\pi\)
\(578\) 4.98274 21.8308i 0.207255 0.908042i
\(579\) 0 0
\(580\) −24.6787 8.01091i −1.02473 0.332635i
\(581\) −11.4106 −0.473390
\(582\) 0 0
\(583\) 21.4056 10.3084i 0.886529 0.426930i
\(584\) −9.94295 4.78827i −0.411442 0.198140i
\(585\) 0 0
\(586\) −2.12129 9.29399i −0.0876298 0.383931i
\(587\) −36.2181 + 17.4417i −1.49488 + 0.719897i −0.989705 0.143120i \(-0.954287\pi\)
−0.505176 + 0.863017i \(0.668572\pi\)
\(588\) 0 0
\(589\) 27.8954 34.9797i 1.14941 1.44131i
\(590\) −21.6971 10.4488i −0.893255 0.430169i
\(591\) 0 0
\(592\) 41.4403 1.70319
\(593\) −28.6572 35.9350i −1.17681 1.47567i −0.846975 0.531633i \(-0.821579\pi\)
−0.329834 0.944039i \(-0.606993\pi\)
\(594\) 0 0
\(595\) 2.13258 + 9.34346i 0.0874274 + 0.383044i
\(596\) −2.10091 2.63445i −0.0860564 0.107911i
\(597\) 0 0
\(598\) 9.14628 + 11.4691i 0.374019 + 0.469005i
\(599\) −9.05961 4.36288i −0.370166 0.178262i 0.239547 0.970885i \(-0.423001\pi\)
−0.609713 + 0.792622i \(0.708715\pi\)
\(600\) 0 0
\(601\) −0.763319 + 0.957172i −0.0311364 + 0.0390439i −0.797156 0.603773i \(-0.793663\pi\)
0.766019 + 0.642817i \(0.222235\pi\)
\(602\) 7.23584 3.48460i 0.294911 0.142022i
\(603\) 0 0
\(604\) −18.1425 + 79.4873i −0.738206 + 3.23429i
\(605\) 28.1025 + 13.5334i 1.14253 + 0.550212i
\(606\) 0 0
\(607\) −6.84845 + 30.0050i −0.277970 + 1.21787i 0.622385 + 0.782711i \(0.286164\pi\)
−0.900355 + 0.435155i \(0.856693\pi\)
\(608\) 30.8860 1.25259
\(609\) 0 0
\(610\) −8.52519 −0.345175
\(611\) −0.431762 + 1.89167i −0.0174672 + 0.0765289i
\(612\) 0 0
\(613\) 7.12528 + 3.43135i 0.287787 + 0.138591i 0.572208 0.820109i \(-0.306087\pi\)
−0.284421 + 0.958700i \(0.591801\pi\)
\(614\) −2.34029 + 10.2535i −0.0944464 + 0.413797i
\(615\) 0 0
\(616\) −60.2514 + 29.0155i −2.42760 + 1.16907i
\(617\) 7.98066 10.0074i 0.321289 0.402884i −0.594790 0.803881i \(-0.702765\pi\)
0.916079 + 0.400997i \(0.131336\pi\)
\(618\) 0 0
\(619\) 38.2518 + 18.4211i 1.53747 + 0.740406i 0.995019 0.0996833i \(-0.0317830\pi\)
0.542449 + 0.840089i \(0.317497\pi\)
\(620\) 20.5923 + 25.8220i 0.827008 + 1.03704i
\(621\) 0 0
\(622\) −12.9566 16.2471i −0.519513 0.651449i
\(623\) 1.28832 + 5.64450i 0.0516154 + 0.226142i
\(624\) 0 0
\(625\) 5.36415 + 6.72643i 0.214566 + 0.269057i
\(626\) 14.7371 0.589014
\(627\) 0 0
\(628\) −43.7005 21.0450i −1.74384 0.839789i
\(629\) 19.5670 24.5363i 0.780189 0.978326i
\(630\) 0 0
\(631\) −39.7014 + 19.1192i −1.58049 + 0.761123i −0.998638 0.0521737i \(-0.983385\pi\)
−0.581850 + 0.813296i \(0.697671\pi\)
\(632\) −3.91428 17.1496i −0.155702 0.682174i
\(633\) 0 0
\(634\) 25.3328 + 12.1996i 1.00610 + 0.484510i
\(635\) 13.9848 6.73475i 0.554972 0.267260i
\(636\) 0 0
\(637\) 5.12449 0.203040
\(638\) −62.1126 59.3522i −2.45906 2.34978i
\(639\) 0 0
\(640\) 3.17392 13.9058i 0.125460 0.549677i
\(641\) −36.3896 + 17.5243i −1.43730 + 0.692168i −0.980339 0.197318i \(-0.936777\pi\)
−0.456962 + 0.889486i \(0.651062\pi\)
\(642\) 0 0
\(643\) −1.71136 + 7.49794i −0.0674893 + 0.295690i −0.997397 0.0721025i \(-0.977029\pi\)
0.929908 + 0.367792i \(0.119886\pi\)
\(644\) −7.70444 33.7554i −0.303597 1.33015i
\(645\) 0 0
\(646\) 52.4190 65.7313i 2.06240 2.58616i
\(647\) 15.3144 19.2037i 0.602072 0.754975i −0.383627 0.923488i \(-0.625325\pi\)
0.985699 + 0.168513i \(0.0538966\pi\)
\(648\) 0 0
\(649\) −34.2333 42.9272i −1.34377 1.68504i
\(650\) −12.3635 −0.484935
\(651\) 0 0
\(652\) −23.4698 102.828i −0.919150 4.02706i
\(653\) 5.93369 + 25.9972i 0.232203 + 1.01735i 0.947807 + 0.318843i \(0.103294\pi\)
−0.715604 + 0.698506i \(0.753848\pi\)
\(654\) 0 0
\(655\) 7.45016 0.291102
\(656\) −16.9294 21.2288i −0.660982 0.828845i
\(657\) 0 0
\(658\) 4.14669 5.19979i 0.161655 0.202709i
\(659\) 7.62974 9.56739i 0.297212 0.372693i −0.610693 0.791867i \(-0.709109\pi\)
0.907906 + 0.419175i \(0.137681\pi\)
\(660\) 0 0
\(661\) −8.99484 39.4090i −0.349859 1.53283i −0.777500 0.628883i \(-0.783512\pi\)
0.427641 0.903949i \(-0.359345\pi\)
\(662\) 9.46959 41.4890i 0.368046 1.61252i
\(663\) 0 0
\(664\) −36.4662 + 17.5612i −1.41516 + 0.681506i
\(665\) −2.73840 + 11.9977i −0.106191 + 0.465251i
\(666\) 0 0
\(667\) 20.3292 13.4274i 0.787149 0.519911i
\(668\) 63.6263 2.46178
\(669\) 0 0
\(670\) 5.96258 2.87143i 0.230355 0.110933i
\(671\) −17.5122 8.43345i −0.676053 0.325570i
\(672\) 0 0
\(673\) −10.7198 46.9663i −0.413216 1.81042i −0.568659 0.822573i \(-0.692538\pi\)
0.155443 0.987845i \(-0.450320\pi\)
\(674\) 48.1260 23.1762i 1.85374 0.892715i
\(675\) 0 0
\(676\) −31.3302 + 39.2868i −1.20501 + 1.51103i
\(677\) 2.03915 + 0.982003i 0.0783709 + 0.0377415i 0.472659 0.881246i \(-0.343294\pi\)
−0.394288 + 0.918987i \(0.629009\pi\)
\(678\) 0 0
\(679\) 3.92412 0.150594
\(680\) 21.1952 + 26.5780i 0.812800 + 1.01922i
\(681\) 0 0
\(682\) 24.3343 + 106.616i 0.931808 + 4.08252i
\(683\) 17.4383 + 21.8669i 0.667258 + 0.836715i 0.994112 0.108360i \(-0.0345600\pi\)
−0.326854 + 0.945075i \(0.605989\pi\)
\(684\) 0 0
\(685\) 9.15302 + 11.4775i 0.349719 + 0.438534i
\(686\) −43.4848 20.9412i −1.66026 0.799539i
\(687\) 0 0
\(688\) 7.66329 9.60946i 0.292160 0.366357i
\(689\) 4.35068 2.09517i 0.165748 0.0798198i
\(690\) 0 0
\(691\) 2.65566 11.6352i 0.101026 0.442623i −0.898964 0.438024i \(-0.855679\pi\)
0.999989 0.00459992i \(-0.00146421\pi\)
\(692\) −15.7342 7.57719i −0.598124 0.288041i
\(693\) 0 0
\(694\) 17.4988 76.6675i 0.664247 2.91026i
\(695\) −12.8366 −0.486921
\(696\) 0 0
\(697\) −20.5629 −0.778876
\(698\) −20.1622 + 88.3364i −0.763151 + 3.34358i
\(699\) 0 0
\(700\) 26.2909 + 12.6610i 0.993701 + 0.478541i
\(701\) −0.764903 + 3.35126i −0.0288900 + 0.126575i −0.987317 0.158764i \(-0.949249\pi\)
0.958427 + 0.285339i \(0.0921063\pi\)
\(702\) 0 0
\(703\) 36.3075 17.4848i 1.36936 0.659451i
\(704\) 5.61783 7.04454i 0.211730 0.265501i
\(705\) 0 0
\(706\) 13.7640 + 6.62840i 0.518016 + 0.249463i
\(707\) −13.5491 16.9900i −0.509566 0.638975i
\(708\) 0 0
\(709\) −16.5529 20.7566i −0.621656 0.779532i 0.366921 0.930252i \(-0.380412\pi\)
−0.988576 + 0.150721i \(0.951841\pi\)
\(710\) 5.74081 + 25.1521i 0.215449 + 0.943942i
\(711\) 0 0
\(712\) 12.8043 + 16.0561i 0.479861 + 0.601727i
\(713\) −31.0125 −1.16143
\(714\) 0 0
\(715\) 7.90646 + 3.80755i 0.295685 + 0.142394i
\(716\) −45.2564 + 56.7497i −1.69131 + 2.12084i
\(717\) 0 0
\(718\) 13.0464 6.28282i 0.486888 0.234473i
\(719\) −6.93957 30.4043i −0.258802 1.13389i −0.922534 0.385916i \(-0.873885\pi\)
0.663731 0.747971i \(-0.268972\pi\)
\(720\) 0 0
\(721\) −4.32732 2.08393i −0.161158 0.0776095i
\(722\) 53.8840 25.9492i 2.00535 0.965728i
\(723\) 0 0
\(724\) −74.0867 −2.75341
\(725\) −1.83484 + 20.4513i −0.0681443 + 0.759541i
\(726\) 0 0
\(727\) −3.81660 + 16.7216i −0.141550 + 0.620170i 0.853526 + 0.521051i \(0.174460\pi\)
−0.995076 + 0.0991196i \(0.968397\pi\)
\(728\) −12.2461 + 5.89740i −0.453870 + 0.218572i
\(729\) 0 0
\(730\) 1.10456 4.83941i 0.0408817 0.179114i
\(731\) −2.07124 9.07467i −0.0766074 0.335639i
\(732\) 0 0
\(733\) 13.3386 16.7261i 0.492673 0.617792i −0.471886 0.881659i \(-0.656427\pi\)
0.964559 + 0.263867i \(0.0849982\pi\)
\(734\) −43.2042 + 54.1764i −1.59470 + 1.99969i
\(735\) 0 0
\(736\) −13.3483 16.7382i −0.492024 0.616979i
\(737\) 15.0887 0.555800
\(738\) 0 0
\(739\) 3.85619 + 16.8951i 0.141852 + 0.621495i 0.995004 + 0.0998329i \(0.0318308\pi\)
−0.853152 + 0.521662i \(0.825312\pi\)
\(740\) 6.61959 + 29.0023i 0.243341 + 1.06615i
\(741\) 0 0
\(742\) −16.5518 −0.607636
\(743\) 32.5068 + 40.7623i 1.19256 + 1.49542i 0.824728 + 0.565529i \(0.191328\pi\)
0.367831 + 0.929893i \(0.380100\pi\)
\(744\) 0 0
\(745\) 0.517602 0.649053i 0.0189635 0.0237795i
\(746\) 19.9429 25.0076i 0.730160 0.915592i
\(747\) 0 0
\(748\) 31.4870 + 137.954i 1.15128 + 5.04408i
\(749\) 3.83463 16.8006i 0.140114 0.613881i
\(750\) 0 0
\(751\) −21.6113 + 10.4075i −0.788607 + 0.379773i −0.784430 0.620218i \(-0.787044\pi\)
−0.00417787 + 0.999991i \(0.501330\pi\)
\(752\) 2.26490 9.92319i 0.0825926 0.361862i
\(753\) 0 0
\(754\) −12.6244 12.0633i −0.459752 0.439320i
\(755\) −20.0870 −0.731041
\(756\) 0 0
\(757\) −42.7511 + 20.5878i −1.55381 + 0.748277i −0.996623 0.0821079i \(-0.973835\pi\)
−0.557190 + 0.830385i \(0.688120\pi\)
\(758\) −7.53608 3.62918i −0.273723 0.131818i
\(759\) 0 0
\(760\) 9.71338 + 42.5571i 0.352341 + 1.54371i
\(761\) 34.8798 16.7972i 1.26439 0.608899i 0.323059 0.946379i \(-0.395289\pi\)
0.941333 + 0.337480i \(0.109575\pi\)
\(762\) 0 0
\(763\) −5.09873 + 6.39360i −0.184586 + 0.231464i
\(764\) −11.7539 5.66036i −0.425240 0.204785i
\(765\) 0 0
\(766\) 24.4249 0.882507
\(767\) −6.95790 8.72494i −0.251235 0.315039i
\(768\) 0 0
\(769\) −9.55795 41.8761i −0.344669 1.51009i −0.789092 0.614275i \(-0.789449\pi\)
0.444423 0.895817i \(-0.353409\pi\)
\(770\) −18.7543 23.5171i −0.675858 0.847499i
\(771\) 0 0
\(772\) −13.4645 16.8839i −0.484598 0.607666i
\(773\) 25.4268 + 12.2449i 0.914539 + 0.440419i 0.831118 0.556096i \(-0.187701\pi\)
0.0834206 + 0.996514i \(0.473415\pi\)
\(774\) 0 0
\(775\) 16.2964 20.4350i 0.585383 0.734047i
\(776\) 12.5408 6.03933i 0.450189 0.216799i
\(777\) 0 0
\(778\) −6.08959 + 26.6802i −0.218322 + 0.956533i
\(779\) −23.7895 11.4564i −0.852348 0.410469i
\(780\) 0 0
\(781\) −13.0888 + 57.3459i −0.468355 + 2.05200i
\(782\) −58.2765 −2.08396
\(783\) 0 0
\(784\) −26.8816 −0.960058
\(785\) 2.65911 11.6503i 0.0949079 0.415819i
\(786\) 0 0
\(787\) −12.0574 5.80654i −0.429800 0.206981i 0.206461 0.978455i \(-0.433805\pi\)
−0.636261 + 0.771474i \(0.719520\pi\)
\(788\) −2.47836 + 10.8584i −0.0882879 + 0.386815i
\(789\) 0 0
\(790\) 7.12861 3.43296i 0.253625 0.122139i
\(791\) 0.591782 0.742071i 0.0210413 0.0263850i
\(792\) 0 0
\(793\) −3.55936 1.71410i −0.126396 0.0608693i
\(794\) −46.9788 58.9095i −1.66721 2.09062i
\(795\) 0 0
\(796\) 70.4518 + 88.3438i 2.49710 + 3.13126i
\(797\) −6.61398 28.9777i −0.234279 1.02644i −0.946047 0.324029i \(-0.894962\pi\)
0.711768 0.702415i \(-0.247895\pi\)
\(798\) 0 0
\(799\) −4.80597 6.02649i −0.170023 0.213202i
\(800\) 18.0435 0.637934
\(801\) 0 0
\(802\) −26.1087 12.5733i −0.921929 0.443978i
\(803\) 7.05630 8.84832i 0.249011 0.312250i
\(804\) 0 0
\(805\) 7.68546 3.70112i 0.270877 0.130447i
\(806\) 4.94594 + 21.6696i 0.174213 + 0.763278i
\(807\) 0 0
\(808\) −69.4486 33.4447i −2.44319 1.17658i
\(809\) −42.2376 + 20.3406i −1.48500 + 0.715137i −0.988262 0.152766i \(-0.951182\pi\)
−0.496734 + 0.867903i \(0.665468\pi\)
\(810\) 0 0
\(811\) 5.86820 0.206060 0.103030 0.994678i \(-0.467146\pi\)
0.103030 + 0.994678i \(0.467146\pi\)
\(812\) 14.4920 + 38.5808i 0.508569 + 1.35392i
\(813\) 0 0
\(814\) −21.9181 + 96.0295i −0.768229 + 3.36583i
\(815\) 23.4120 11.2746i 0.820087 0.394933i
\(816\) 0 0
\(817\) 2.65962 11.6526i 0.0930485 0.407672i
\(818\) 16.8941 + 74.0181i 0.590690 + 2.58798i
\(819\) 0 0
\(820\) 12.1529 15.2392i 0.424396 0.532176i
\(821\) 13.9203 17.4555i 0.485822 0.609202i −0.477144 0.878825i \(-0.658328\pi\)
0.962966 + 0.269624i \(0.0868993\pi\)
\(822\) 0 0
\(823\) −11.4860 14.4029i −0.400375 0.502055i 0.540249 0.841505i \(-0.318330\pi\)
−0.940624 + 0.339451i \(0.889759\pi\)
\(824\) −17.0366 −0.593497
\(825\) 0 0
\(826\) 8.51175 + 37.2924i 0.296162 + 1.29757i
\(827\) 6.31476 + 27.6668i 0.219586 + 0.962067i 0.957785 + 0.287485i \(0.0928191\pi\)
−0.738200 + 0.674582i \(0.764324\pi\)
\(828\) 0 0
\(829\) −9.92857 −0.344833 −0.172417 0.985024i \(-0.555158\pi\)
−0.172417 + 0.985024i \(0.555158\pi\)
\(830\) −11.3507 14.2334i −0.393989 0.494047i
\(831\) 0 0
\(832\) 1.14182 1.43180i 0.0395855 0.0496387i
\(833\) −12.6928 + 15.9163i −0.439779 + 0.551466i
\(834\) 0 0
\(835\) 3.48817 + 15.2827i 0.120713 + 0.528878i
\(836\) −40.4317 + 177.143i −1.39836 + 6.12662i
\(837\) 0 0
\(838\) 46.5579 22.4211i 1.60831 0.774524i
\(839\) 11.7856 51.6360i 0.406884 1.78267i −0.191531 0.981487i \(-0.561345\pi\)
0.598415 0.801187i \(-0.295798\pi\)
\(840\) 0 0
\(841\) −21.8283 + 19.0925i −0.752701 + 0.658363i
\(842\) 58.2565 2.00765
\(843\) 0 0
\(844\) 7.35150 3.54030i 0.253049 0.121862i
\(845\) −11.1541 5.37151i −0.383711 0.184786i
\(846\) 0 0
\(847\) −11.0246 48.3018i −0.378809 1.65967i
\(848\) −22.8224 + 10.9907i −0.783725 + 0.377422i
\(849\) 0 0
\(850\) 30.6230 38.4000i 1.05036 1.31711i
\(851\) −25.1669 12.1198i −0.862712 0.415460i
\(852\) 0 0
\(853\) 44.7737 1.53302 0.766512 0.642230i \(-0.221991\pi\)
0.766512 + 0.642230i \(0.221991\pi\)
\(854\) 8.44286 + 10.5870i 0.288909 + 0.362280i
\(855\) 0 0
\(856\) −13.6018 59.5935i −0.464901 2.03686i
\(857\) −0.131742 0.165199i −0.00450022 0.00564309i 0.779576 0.626307i \(-0.215434\pi\)
−0.784077 + 0.620664i \(0.786863\pi\)
\(858\) 0 0
\(859\) 34.9569 + 43.8346i 1.19271 + 1.49562i 0.824488 + 0.565880i \(0.191463\pi\)
0.368227 + 0.929736i \(0.379965\pi\)
\(860\) 7.94937 + 3.82822i 0.271071 + 0.130541i
\(861\) 0 0
\(862\) −6.39462 + 8.01860i −0.217802 + 0.273114i
\(863\) 23.7321 11.4288i 0.807851 0.389040i 0.0160891 0.999871i \(-0.494878\pi\)
0.791762 + 0.610830i \(0.209164\pi\)
\(864\) 0 0
\(865\) 0.957404 4.19466i 0.0325527 0.142623i
\(866\) 6.00392 + 2.89134i 0.204022 + 0.0982516i
\(867\) 0 0
\(868\) 11.6736 51.1452i 0.396226 1.73598i
\(869\) 18.0394 0.611946
\(870\) 0 0
\(871\) 3.06678 0.103914
\(872\) −6.45471 + 28.2799i −0.218584 + 0.957680i
\(873\) 0 0
\(874\) −67.4208 32.4681i −2.28054 1.09825i
\(875\) −3.69756 + 16.2001i −0.125000 + 0.547662i
\(876\) 0 0
\(877\) −30.3310 + 14.6066i −1.02420 + 0.493231i −0.869084 0.494665i \(-0.835291\pi\)
−0.155120 + 0.987896i \(0.549577\pi\)
\(878\) 41.0966 51.5334i 1.38694 1.73917i
\(879\) 0 0
\(880\) −41.4751 19.9734i −1.39813 0.673302i
\(881\) 10.2428 + 12.8441i 0.345090 + 0.432729i 0.923842 0.382775i \(-0.125031\pi\)
−0.578752 + 0.815504i \(0.696460\pi\)
\(882\) 0 0
\(883\) 2.67490 + 3.35421i 0.0900175 + 0.112878i 0.824800 0.565424i \(-0.191287\pi\)
−0.734783 + 0.678302i \(0.762716\pi\)
\(884\) 6.39972 + 28.0390i 0.215246 + 0.943054i
\(885\) 0 0
\(886\) 29.7290 + 37.2790i 0.998767 + 1.25241i
\(887\) 39.5279 1.32722 0.663608 0.748081i \(-0.269024\pi\)
0.663608 + 0.748081i \(0.269024\pi\)
\(888\) 0 0
\(889\) −22.2133 10.6974i −0.745012 0.358779i
\(890\) −5.75930 + 7.22193i −0.193052 + 0.242080i
\(891\) 0 0
\(892\) 95.8193 46.1442i 3.20827 1.54502i
\(893\) −2.20249 9.64973i −0.0737034 0.322916i
\(894\) 0 0
\(895\) −16.1120 7.75915i −0.538566 0.259360i
\(896\) −20.4123 + 9.83002i −0.681926 + 0.328398i
\(897\) 0 0
\(898\) 31.3477 1.04609
\(899\) 36.5791 4.96547i 1.21998 0.165608i
\(900\) 0 0
\(901\) −4.26870 + 18.7024i −0.142211 + 0.623067i
\(902\) 58.1475 28.0023i 1.93610 0.932376i
\(903\) 0 0
\(904\) 0.749164 3.28230i 0.0249168 0.109168i
\(905\) −4.06164 17.7952i −0.135013 0.591532i
\(906\) 0 0
\(907\) 16.9123 21.2074i 0.561565 0.704180i −0.417281 0.908777i \(-0.637017\pi\)
0.978846 + 0.204597i \(0.0655884\pi\)
\(908\) 62.4235 78.2766i 2.07160 2.59770i
\(909\) 0 0
\(910\) −3.81180 4.77985i −0.126360 0.158450i
\(911\) 12.8679 0.426333 0.213166 0.977016i \(-0.431622\pi\)
0.213166 + 0.977016i \(0.431622\pi\)
\(912\) 0 0
\(913\) −9.23619 40.4664i −0.305673 1.33924i
\(914\) −11.3501 49.7280i −0.375428 1.64486i
\(915\) 0 0
\(916\) −61.0365 −2.01670
\(917\) −7.37821 9.25199i −0.243650 0.305528i
\(918\) 0 0
\(919\) −14.5746 + 18.2759i −0.480771 + 0.602868i −0.961772 0.273853i \(-0.911702\pi\)
0.481001 + 0.876720i \(0.340273\pi\)
\(920\) 18.8653 23.6563i 0.621969 0.779925i
\(921\) 0 0
\(922\) −11.1534 48.8662i −0.367317 1.60932i
\(923\) −2.66030 + 11.6555i −0.0875648 + 0.383647i
\(924\) 0 0
\(925\) 21.2107 10.2145i 0.697404 0.335852i
\(926\) 1.25341 5.49154i 0.0411895 0.180463i
\(927\) 0 0
\(928\) 18.4243 + 17.6055i 0.604806 + 0.577928i
\(929\) 6.68335 0.219274 0.109637 0.993972i \(-0.465031\pi\)
0.109637 + 0.993972i \(0.465031\pi\)
\(930\) 0 0
\(931\) −23.5521 + 11.3421i −0.771888 + 0.371721i
\(932\) −26.6875 12.8520i −0.874179 0.420983i
\(933\) 0 0
\(934\) −2.61307 11.4486i −0.0855024 0.374610i
\(935\) −31.4094 + 15.1260i −1.02720 + 0.494673i
\(936\) 0 0
\(937\) −22.0868 + 27.6960i −0.721544 + 0.904787i −0.998424 0.0561169i \(-0.982128\pi\)
0.276880 + 0.960904i \(0.410699\pi\)
\(938\) −9.47088 4.56094i −0.309235 0.148920i
\(939\) 0 0
\(940\) 7.30661 0.238315
\(941\) −33.6797 42.2330i −1.09793 1.37676i −0.919632 0.392781i \(-0.871513\pi\)
−0.178296 0.983977i \(-0.557058\pi\)
\(942\) 0 0
\(943\) 4.07268 + 17.8436i 0.132625 + 0.581067i
\(944\) 36.4992 + 45.7686i 1.18795 + 1.48964i
\(945\) 0 0
\(946\) 18.2148 + 22.8406i 0.592214 + 0.742613i
\(947\) −42.3350 20.3874i −1.37570 0.662503i −0.407623 0.913150i \(-0.633642\pi\)
−0.968078 + 0.250648i \(0.919356\pi\)
\(948\) 0 0
\(949\) 1.43419 1.79842i 0.0465558 0.0583791i
\(950\) 56.8223 27.3642i 1.84356 0.887811i
\(951\) 0 0
\(952\) 12.0153 52.6426i 0.389419 1.70616i
\(953\) −35.5481 17.1191i −1.15152 0.554541i −0.242028 0.970269i \(-0.577812\pi\)
−0.909489 + 0.415728i \(0.863527\pi\)
\(954\) 0 0
\(955\) 0.715206 3.13352i 0.0231435 0.101398i
\(956\) −53.7856 −1.73955
\(957\) 0 0
\(958\) −24.0903 −0.778321
\(959\) 5.18875 22.7334i 0.167553 0.734099i
\(960\) 0 0
\(961\) −14.4058 6.93749i −0.464705 0.223790i
\(962\) −4.45484 + 19.5179i −0.143630 + 0.629284i
\(963\) 0 0
\(964\) −10.5830 + 5.09652i −0.340857 + 0.164148i
\(965\) 3.31726 4.15971i 0.106786 0.133906i
\(966\) 0 0
\(967\) 17.2328 + 8.29889i 0.554170 + 0.266874i 0.689940 0.723866i \(-0.257637\pi\)
−0.135771 + 0.990740i \(0.543351\pi\)
\(968\) −109.571 137.397i −3.52173 4.41611i
\(969\) 0 0
\(970\) 3.90354 + 4.89489i 0.125335 + 0.157165i
\(971\) 4.15554 + 18.2066i 0.133358 + 0.584278i 0.996807 + 0.0798432i \(0.0254420\pi\)
−0.863450 + 0.504435i \(0.831701\pi\)
\(972\) 0 0
\(973\) 12.7127 + 15.9412i 0.407550 + 0.511051i
\(974\) −19.2538 −0.616932
\(975\) 0 0
\(976\) 18.6714 + 8.99167i 0.597657 + 0.287816i
\(977\) −33.6793 + 42.2325i −1.07750 + 1.35114i −0.145217 + 0.989400i \(0.546388\pi\)
−0.932280 + 0.361738i \(0.882183\pi\)
\(978\) 0 0
\(979\) −18.9748 + 9.13779i −0.606438 + 0.292045i
\(980\) −4.29401 18.8133i −0.137167 0.600969i
\(981\) 0 0
\(982\) 51.4248 + 24.7649i 1.64103 + 0.790278i
\(983\) −48.3831 + 23.3001i −1.54318 + 0.743157i −0.995610 0.0936012i \(-0.970162\pi\)
−0.547572 + 0.836758i \(0.684448\pi\)
\(984\) 0 0
\(985\) −2.74399 −0.0874309
\(986\) 68.7369 9.33075i 2.18903 0.297152i
\(987\) 0 0
\(988\) −8.21773 + 36.0042i −0.261441 + 1.14545i
\(989\) −7.46437 + 3.59465i −0.237353 + 0.114303i
\(990\) 0 0
\(991\) 0.691898 3.03140i 0.0219789 0.0962957i −0.962749 0.270397i \(-0.912845\pi\)
0.984728 + 0.174102i \(0.0557021\pi\)
\(992\) −7.21821 31.6250i −0.229178 1.00410i
\(993\) 0 0
\(994\) 25.5498 32.0385i 0.810391 1.01620i
\(995\) −17.3573 + 21.7654i −0.550263 + 0.690008i
\(996\) 0 0
\(997\) −23.5799 29.5682i −0.746782 0.936435i 0.252735 0.967536i \(-0.418670\pi\)
−0.999516 + 0.0311010i \(0.990099\pi\)
\(998\) 72.9337 2.30868
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.c.199.3 18
3.2 odd 2 87.2.g.a.25.1 yes 18
29.6 even 14 7569.2.a.bm.1.7 9
29.7 even 7 inner 261.2.k.c.181.3 18
29.23 even 7 7569.2.a.bj.1.3 9
87.23 odd 14 2523.2.a.r.1.7 9
87.35 odd 14 2523.2.a.o.1.3 9
87.65 odd 14 87.2.g.a.7.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.7.1 18 87.65 odd 14
87.2.g.a.25.1 yes 18 3.2 odd 2
261.2.k.c.181.3 18 29.7 even 7 inner
261.2.k.c.199.3 18 1.1 even 1 trivial
2523.2.a.o.1.3 9 87.35 odd 14
2523.2.a.r.1.7 9 87.23 odd 14
7569.2.a.bj.1.3 9 29.23 even 7
7569.2.a.bm.1.7 9 29.6 even 14