Properties

Label 261.2.k.c.190.1
Level $261$
Weight $2$
Character 261.190
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 190.1
Root \(-1.05678 - 1.32516i\) of defining polynomial
Character \(\chi\) \(=\) 261.190
Dual form 261.2.k.c.136.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.626118 - 0.301523i) q^{2} +(-0.945872 - 1.18609i) q^{4} +(-1.81798 - 0.875492i) q^{5} +(-1.49319 + 1.87240i) q^{7} +(0.543873 + 2.38286i) q^{8} +(0.874288 + 1.09632i) q^{10} +(-0.213150 + 0.933871i) q^{11} +(-1.45377 + 6.36940i) q^{13} +(1.49948 - 0.722111i) q^{14} +(-0.297197 + 1.30211i) q^{16} +3.81642 q^{17} +(-2.69251 - 3.37631i) q^{19} +(0.681165 + 2.98438i) q^{20} +(0.415040 - 0.520444i) q^{22} +(-4.85446 + 2.33778i) q^{23} +(-0.578892 - 0.725907i) q^{25} +(2.83075 - 3.54965i) q^{26} +3.63318 q^{28} +(-5.32202 + 0.822256i) q^{29} +(-2.46382 - 1.18651i) q^{31} +(3.62649 - 4.54747i) q^{32} +(-2.38953 - 1.15074i) q^{34} +(4.35384 - 2.09670i) q^{35} +(0.414041 + 1.81403i) q^{37} +(0.667799 + 2.92582i) q^{38} +(1.09743 - 4.80814i) q^{40} -11.8282 q^{41} +(3.33752 - 1.60727i) q^{43} +(1.30926 - 0.630508i) q^{44} +3.74436 q^{46} +(-0.719344 + 3.15165i) q^{47} +(0.281385 + 1.23283i) q^{49} +(0.143577 + 0.629053i) q^{50} +(8.92974 - 4.30034i) q^{52} +(2.04315 + 0.983927i) q^{53} +(1.20510 - 1.51115i) q^{55} +(-5.27376 - 2.53971i) q^{56} +(3.58014 + 1.08988i) q^{58} +9.30726 q^{59} +(1.95684 - 2.45380i) q^{61} +(1.18488 + 1.48579i) q^{62} +(-1.23512 + 0.594802i) q^{64} +(8.21929 - 10.3067i) q^{65} +(-2.69277 - 11.7978i) q^{67} +(-3.60984 - 4.52660i) q^{68} -3.35822 q^{70} +(-1.02436 + 4.48801i) q^{71} +(-8.19102 + 3.94459i) q^{73} +(0.287733 - 1.26064i) q^{74} +(-1.45781 + 6.38710i) q^{76} +(-1.43030 - 1.79354i) q^{77} +(-0.954127 - 4.18030i) q^{79} +(1.68028 - 2.10701i) q^{80} +(7.40582 + 3.56646i) q^{82} +(-10.0888 - 12.6510i) q^{83} +(-6.93816 - 3.34124i) q^{85} -2.57431 q^{86} -2.34121 q^{88} +(13.9137 + 6.70047i) q^{89} +(-9.75529 - 12.2327i) q^{91} +(7.36451 + 3.54656i) q^{92} +(1.40069 - 1.75641i) q^{94} +(1.93900 + 8.49532i) q^{95} +(9.82817 + 12.3241i) q^{97} +(0.195546 - 0.856741i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{2} - 6 q^{4} + q^{5} - 4 q^{7} + 15 q^{8} - 14 q^{10} - 26 q^{11} + 9 q^{13} + 10 q^{14} - 14 q^{16} - 4 q^{17} - 10 q^{19} + q^{20} - 8 q^{22} + 8 q^{23} + 16 q^{25} - 5 q^{26} + 80 q^{28}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.626118 0.301523i −0.442732 0.213209i 0.199218 0.979955i \(-0.436160\pi\)
−0.641950 + 0.766747i \(0.721874\pi\)
\(3\) 0 0
\(4\) −0.945872 1.18609i −0.472936 0.593043i
\(5\) −1.81798 0.875492i −0.813024 0.391532i −0.0193032 0.999814i \(-0.506145\pi\)
−0.793721 + 0.608282i \(0.791859\pi\)
\(6\) 0 0
\(7\) −1.49319 + 1.87240i −0.564371 + 0.707699i −0.979359 0.202128i \(-0.935214\pi\)
0.414988 + 0.909827i \(0.363786\pi\)
\(8\) 0.543873 + 2.38286i 0.192288 + 0.842469i
\(9\) 0 0
\(10\) 0.874288 + 1.09632i 0.276474 + 0.346688i
\(11\) −0.213150 + 0.933871i −0.0642671 + 0.281573i −0.996843 0.0794022i \(-0.974699\pi\)
0.932576 + 0.360975i \(0.117556\pi\)
\(12\) 0 0
\(13\) −1.45377 + 6.36940i −0.403205 + 1.76655i 0.211078 + 0.977469i \(0.432302\pi\)
−0.614283 + 0.789086i \(0.710555\pi\)
\(14\) 1.49948 0.722111i 0.400753 0.192992i
\(15\) 0 0
\(16\) −0.297197 + 1.30211i −0.0742994 + 0.325527i
\(17\) 3.81642 0.925617 0.462808 0.886458i \(-0.346842\pi\)
0.462808 + 0.886458i \(0.346842\pi\)
\(18\) 0 0
\(19\) −2.69251 3.37631i −0.617705 0.774578i 0.370315 0.928906i \(-0.379250\pi\)
−0.988020 + 0.154329i \(0.950678\pi\)
\(20\) 0.681165 + 2.98438i 0.152313 + 0.667328i
\(21\) 0 0
\(22\) 0.415040 0.520444i 0.0884868 0.110959i
\(23\) −4.85446 + 2.33778i −1.01222 + 0.487462i −0.865070 0.501652i \(-0.832726\pi\)
−0.147155 + 0.989113i \(0.547012\pi\)
\(24\) 0 0
\(25\) −0.578892 0.725907i −0.115778 0.145181i
\(26\) 2.83075 3.54965i 0.555156 0.696144i
\(27\) 0 0
\(28\) 3.63318 0.686607
\(29\) −5.32202 + 0.822256i −0.988274 + 0.152689i
\(30\) 0 0
\(31\) −2.46382 1.18651i −0.442515 0.213104i 0.199339 0.979931i \(-0.436120\pi\)
−0.641855 + 0.766826i \(0.721835\pi\)
\(32\) 3.62649 4.54747i 0.641079 0.803887i
\(33\) 0 0
\(34\) −2.38953 1.15074i −0.409800 0.197349i
\(35\) 4.35384 2.09670i 0.735934 0.354407i
\(36\) 0 0
\(37\) 0.414041 + 1.81403i 0.0680679 + 0.298225i 0.997491 0.0707903i \(-0.0225521\pi\)
−0.929423 + 0.369015i \(0.879695\pi\)
\(38\) 0.667799 + 2.92582i 0.108331 + 0.474631i
\(39\) 0 0
\(40\) 1.09743 4.80814i 0.173519 0.760234i
\(41\) −11.8282 −1.84725 −0.923624 0.383300i \(-0.874788\pi\)
−0.923624 + 0.383300i \(0.874788\pi\)
\(42\) 0 0
\(43\) 3.33752 1.60727i 0.508967 0.245106i −0.161733 0.986835i \(-0.551708\pi\)
0.670700 + 0.741729i \(0.265994\pi\)
\(44\) 1.30926 0.630508i 0.197379 0.0950526i
\(45\) 0 0
\(46\) 3.74436 0.552075
\(47\) −0.719344 + 3.15165i −0.104927 + 0.459716i 0.894980 + 0.446106i \(0.147189\pi\)
−0.999907 + 0.0136100i \(0.995668\pi\)
\(48\) 0 0
\(49\) 0.281385 + 1.23283i 0.0401979 + 0.176119i
\(50\) 0.143577 + 0.629053i 0.0203049 + 0.0889615i
\(51\) 0 0
\(52\) 8.92974 4.30034i 1.23833 0.596350i
\(53\) 2.04315 + 0.983927i 0.280648 + 0.135153i 0.568913 0.822398i \(-0.307364\pi\)
−0.288265 + 0.957551i \(0.593078\pi\)
\(54\) 0 0
\(55\) 1.20510 1.51115i 0.162495 0.203763i
\(56\) −5.27376 2.53971i −0.704736 0.339383i
\(57\) 0 0
\(58\) 3.58014 + 1.08988i 0.470096 + 0.143108i
\(59\) 9.30726 1.21170 0.605851 0.795578i \(-0.292833\pi\)
0.605851 + 0.795578i \(0.292833\pi\)
\(60\) 0 0
\(61\) 1.95684 2.45380i 0.250547 0.314176i −0.640614 0.767863i \(-0.721320\pi\)
0.891161 + 0.453687i \(0.149891\pi\)
\(62\) 1.18488 + 1.48579i 0.150480 + 0.188696i
\(63\) 0 0
\(64\) −1.23512 + 0.594802i −0.154390 + 0.0743503i
\(65\) 8.21929 10.3067i 1.01948 1.27838i
\(66\) 0 0
\(67\) −2.69277 11.7978i −0.328975 1.44133i −0.821088 0.570801i \(-0.806633\pi\)
0.492113 0.870531i \(-0.336225\pi\)
\(68\) −3.60984 4.52660i −0.437757 0.548930i
\(69\) 0 0
\(70\) −3.35822 −0.401384
\(71\) −1.02436 + 4.48801i −0.121569 + 0.532629i 0.877065 + 0.480373i \(0.159499\pi\)
−0.998634 + 0.0522567i \(0.983359\pi\)
\(72\) 0 0
\(73\) −8.19102 + 3.94459i −0.958687 + 0.461679i −0.846723 0.532033i \(-0.821428\pi\)
−0.111963 + 0.993712i \(0.535714\pi\)
\(74\) 0.287733 1.26064i 0.0334483 0.146547i
\(75\) 0 0
\(76\) −1.45781 + 6.38710i −0.167223 + 0.732651i
\(77\) −1.43030 1.79354i −0.162998 0.204393i
\(78\) 0 0
\(79\) −0.954127 4.18030i −0.107348 0.470321i −0.999815 0.0192099i \(-0.993885\pi\)
0.892468 0.451111i \(-0.148972\pi\)
\(80\) 1.68028 2.10701i 0.187861 0.235571i
\(81\) 0 0
\(82\) 7.40582 + 3.56646i 0.817836 + 0.393849i
\(83\) −10.0888 12.6510i −1.10739 1.38863i −0.913124 0.407681i \(-0.866338\pi\)
−0.194270 0.980948i \(-0.562234\pi\)
\(84\) 0 0
\(85\) −6.93816 3.34124i −0.752549 0.362408i
\(86\) −2.57431 −0.277595
\(87\) 0 0
\(88\) −2.34121 −0.249574
\(89\) 13.9137 + 6.70047i 1.47485 + 0.710248i 0.986706 0.162517i \(-0.0519612\pi\)
0.488140 + 0.872765i \(0.337675\pi\)
\(90\) 0 0
\(91\) −9.75529 12.2327i −1.02263 1.28234i
\(92\) 7.36451 + 3.54656i 0.767803 + 0.369754i
\(93\) 0 0
\(94\) 1.40069 1.75641i 0.144470 0.181160i
\(95\) 1.93900 + 8.49532i 0.198937 + 0.871602i
\(96\) 0 0
\(97\) 9.82817 + 12.3241i 0.997899 + 1.25133i 0.967785 + 0.251780i \(0.0810159\pi\)
0.0301150 + 0.999546i \(0.490413\pi\)
\(98\) 0.195546 0.856741i 0.0197531 0.0865439i
\(99\) 0 0
\(100\) −0.313431 + 1.37323i −0.0313431 + 0.137323i
\(101\) 8.33981 4.01624i 0.829842 0.399631i 0.0297862 0.999556i \(-0.490517\pi\)
0.800056 + 0.599925i \(0.204803\pi\)
\(102\) 0 0
\(103\) −2.35751 + 10.3289i −0.232292 + 1.01774i 0.715440 + 0.698674i \(0.246226\pi\)
−0.947733 + 0.319065i \(0.896631\pi\)
\(104\) −15.9681 −1.56580
\(105\) 0 0
\(106\) −0.982574 1.23211i −0.0954360 0.119673i
\(107\) −0.0279718 0.122553i −0.00270414 0.0118476i 0.973558 0.228441i \(-0.0733627\pi\)
−0.976262 + 0.216593i \(0.930506\pi\)
\(108\) 0 0
\(109\) −6.01455 + 7.54201i −0.576089 + 0.722393i −0.981440 0.191768i \(-0.938578\pi\)
0.405351 + 0.914161i \(0.367149\pi\)
\(110\) −1.21018 + 0.582791i −0.115386 + 0.0555669i
\(111\) 0 0
\(112\) −1.99429 2.50076i −0.188442 0.236299i
\(113\) −1.93810 + 2.43030i −0.182321 + 0.228623i −0.864590 0.502478i \(-0.832422\pi\)
0.682269 + 0.731101i \(0.260993\pi\)
\(114\) 0 0
\(115\) 10.8720 1.01382
\(116\) 6.00921 + 5.53462i 0.557941 + 0.513877i
\(117\) 0 0
\(118\) −5.82744 2.80635i −0.536460 0.258345i
\(119\) −5.69862 + 7.14584i −0.522391 + 0.655058i
\(120\) 0 0
\(121\) 9.08398 + 4.37461i 0.825816 + 0.397692i
\(122\) −1.96509 + 0.946336i −0.177911 + 0.0856772i
\(123\) 0 0
\(124\) 0.923152 + 4.04459i 0.0829015 + 0.363215i
\(125\) 2.66190 + 11.6626i 0.238088 + 1.04313i
\(126\) 0 0
\(127\) 0.872287 3.82174i 0.0774029 0.339124i −0.921368 0.388692i \(-0.872927\pi\)
0.998771 + 0.0495674i \(0.0157843\pi\)
\(128\) −10.6802 −0.944005
\(129\) 0 0
\(130\) −8.25394 + 3.97489i −0.723918 + 0.348621i
\(131\) −14.8614 + 7.15689i −1.29845 + 0.625300i −0.950065 0.312052i \(-0.898984\pi\)
−0.348384 + 0.937352i \(0.613270\pi\)
\(132\) 0 0
\(133\) 10.3422 0.896782
\(134\) −1.87131 + 8.19876i −0.161657 + 0.708265i
\(135\) 0 0
\(136\) 2.07564 + 9.09399i 0.177985 + 0.779803i
\(137\) −0.677588 2.96871i −0.0578902 0.253634i 0.937700 0.347447i \(-0.112951\pi\)
−0.995590 + 0.0938135i \(0.970094\pi\)
\(138\) 0 0
\(139\) −10.1634 + 4.89444i −0.862050 + 0.415141i −0.812036 0.583607i \(-0.801641\pi\)
−0.0500136 + 0.998749i \(0.515926\pi\)
\(140\) −6.60505 3.18082i −0.558228 0.268829i
\(141\) 0 0
\(142\) 1.99461 2.50116i 0.167384 0.209893i
\(143\) −5.63833 2.71528i −0.471501 0.227063i
\(144\) 0 0
\(145\) 10.3952 + 3.16454i 0.863274 + 0.262801i
\(146\) 6.31793 0.522875
\(147\) 0 0
\(148\) 1.75997 2.20693i 0.144668 0.181408i
\(149\) −3.05371 3.82923i −0.250170 0.313703i 0.640851 0.767665i \(-0.278582\pi\)
−0.891021 + 0.453962i \(0.850010\pi\)
\(150\) 0 0
\(151\) −15.3405 + 7.38759i −1.24839 + 0.601194i −0.937080 0.349114i \(-0.886483\pi\)
−0.311312 + 0.950308i \(0.600768\pi\)
\(152\) 6.58088 8.25217i 0.533780 0.669339i
\(153\) 0 0
\(154\) 0.354745 + 1.55424i 0.0285861 + 0.125244i
\(155\) 3.44039 + 4.31411i 0.276339 + 0.346518i
\(156\) 0 0
\(157\) 20.3897 1.62728 0.813639 0.581371i \(-0.197483\pi\)
0.813639 + 0.581371i \(0.197483\pi\)
\(158\) −0.663060 + 2.90505i −0.0527502 + 0.231114i
\(159\) 0 0
\(160\) −10.5742 + 5.09224i −0.835960 + 0.402577i
\(161\) 2.87135 12.5802i 0.226294 0.991459i
\(162\) 0 0
\(163\) −1.69789 + 7.43895i −0.132989 + 0.582664i 0.863887 + 0.503685i \(0.168023\pi\)
−0.996876 + 0.0789783i \(0.974834\pi\)
\(164\) 11.1879 + 14.0292i 0.873630 + 1.09550i
\(165\) 0 0
\(166\) 2.50224 + 10.9630i 0.194212 + 0.850897i
\(167\) 13.5489 16.9898i 1.04845 1.31471i 0.100972 0.994889i \(-0.467805\pi\)
0.947477 0.319824i \(-0.103624\pi\)
\(168\) 0 0
\(169\) −26.7433 12.8789i −2.05717 0.990682i
\(170\) 3.33665 + 4.18402i 0.255909 + 0.320900i
\(171\) 0 0
\(172\) −5.06322 2.43832i −0.386067 0.185920i
\(173\) −4.01358 −0.305147 −0.152573 0.988292i \(-0.548756\pi\)
−0.152573 + 0.988292i \(0.548756\pi\)
\(174\) 0 0
\(175\) 2.22358 0.168087
\(176\) −1.15265 0.555088i −0.0868844 0.0418413i
\(177\) 0 0
\(178\) −6.69126 8.39057i −0.501531 0.628900i
\(179\) −3.48470 1.67814i −0.260459 0.125430i 0.299098 0.954222i \(-0.403314\pi\)
−0.559557 + 0.828792i \(0.689029\pi\)
\(180\) 0 0
\(181\) 10.3685 13.0017i 0.770686 0.966410i −0.229290 0.973358i \(-0.573640\pi\)
0.999976 + 0.00694853i \(0.00221180\pi\)
\(182\) 2.41951 + 10.6006i 0.179346 + 0.785767i
\(183\) 0 0
\(184\) −8.21082 10.2960i −0.605310 0.759034i
\(185\) 0.835453 3.66036i 0.0614237 0.269115i
\(186\) 0 0
\(187\) −0.813469 + 3.56404i −0.0594867 + 0.260628i
\(188\) 4.41854 2.12785i 0.322255 0.155190i
\(189\) 0 0
\(190\) 1.34749 5.90373i 0.0977570 0.428301i
\(191\) 2.64112 0.191105 0.0955525 0.995424i \(-0.469538\pi\)
0.0955525 + 0.995424i \(0.469538\pi\)
\(192\) 0 0
\(193\) 4.07831 + 5.11404i 0.293563 + 0.368117i 0.906639 0.421907i \(-0.138639\pi\)
−0.613075 + 0.790024i \(0.710068\pi\)
\(194\) −2.43759 10.6798i −0.175009 0.766763i
\(195\) 0 0
\(196\) 1.19609 1.49985i 0.0854348 0.107132i
\(197\) −8.85143 + 4.26262i −0.630638 + 0.303699i −0.721763 0.692140i \(-0.756668\pi\)
0.0911250 + 0.995839i \(0.470954\pi\)
\(198\) 0 0
\(199\) 0.327153 + 0.410236i 0.0231912 + 0.0290809i 0.793292 0.608842i \(-0.208365\pi\)
−0.770101 + 0.637922i \(0.779794\pi\)
\(200\) 1.41489 1.77422i 0.100048 0.125456i
\(201\) 0 0
\(202\) −6.43269 −0.452603
\(203\) 6.40717 11.1927i 0.449695 0.785574i
\(204\) 0 0
\(205\) 21.5033 + 10.3555i 1.50186 + 0.723257i
\(206\) 4.59048 5.75628i 0.319834 0.401059i
\(207\) 0 0
\(208\) −7.86159 3.78594i −0.545103 0.262508i
\(209\) 3.72694 1.79480i 0.257798 0.124149i
\(210\) 0 0
\(211\) −3.68219 16.1327i −0.253493 1.11062i −0.928066 0.372416i \(-0.878529\pi\)
0.674573 0.738208i \(-0.264328\pi\)
\(212\) −0.765532 3.35401i −0.0525770 0.230355i
\(213\) 0 0
\(214\) −0.0194387 + 0.0851665i −0.00132880 + 0.00582186i
\(215\) −7.47469 −0.509769
\(216\) 0 0
\(217\) 5.90056 2.84156i 0.400556 0.192898i
\(218\) 6.03990 2.90866i 0.409074 0.197000i
\(219\) 0 0
\(220\) −2.93222 −0.197690
\(221\) −5.54821 + 24.3083i −0.373213 + 1.63515i
\(222\) 0 0
\(223\) 2.61351 + 11.4505i 0.175014 + 0.766785i 0.983885 + 0.178800i \(0.0572215\pi\)
−0.808872 + 0.587985i \(0.799921\pi\)
\(224\) 3.09965 + 13.5804i 0.207104 + 0.907381i
\(225\) 0 0
\(226\) 1.94627 0.937273i 0.129464 0.0623465i
\(227\) −19.1970 9.24479i −1.27415 0.613598i −0.330270 0.943887i \(-0.607140\pi\)
−0.943880 + 0.330288i \(0.892854\pi\)
\(228\) 0 0
\(229\) 0.114294 0.143320i 0.00755275 0.00947084i −0.778041 0.628214i \(-0.783786\pi\)
0.785594 + 0.618743i \(0.212358\pi\)
\(230\) −6.80716 3.27816i −0.448851 0.216155i
\(231\) 0 0
\(232\) −4.85382 12.2344i −0.318669 0.803230i
\(233\) 23.8810 1.56449 0.782247 0.622969i \(-0.214074\pi\)
0.782247 + 0.622969i \(0.214074\pi\)
\(234\) 0 0
\(235\) 4.06700 5.09985i 0.265302 0.332678i
\(236\) −8.80347 11.0392i −0.573057 0.718591i
\(237\) 0 0
\(238\) 5.72264 2.75588i 0.370943 0.178637i
\(239\) 5.24316 6.57471i 0.339152 0.425283i −0.582783 0.812628i \(-0.698036\pi\)
0.921935 + 0.387345i \(0.126608\pi\)
\(240\) 0 0
\(241\) 0.119797 + 0.524865i 0.00771681 + 0.0338095i 0.978640 0.205583i \(-0.0659090\pi\)
−0.970923 + 0.239392i \(0.923052\pi\)
\(242\) −4.36860 5.47805i −0.280824 0.352142i
\(243\) 0 0
\(244\) −4.76133 −0.304813
\(245\) 0.567780 2.48761i 0.0362742 0.158927i
\(246\) 0 0
\(247\) 25.4194 12.2413i 1.61740 0.778896i
\(248\) 1.48729 6.51625i 0.0944432 0.413783i
\(249\) 0 0
\(250\) 1.84986 8.10476i 0.116995 0.512590i
\(251\) 1.06622 + 1.33699i 0.0672989 + 0.0843902i 0.814341 0.580386i \(-0.197098\pi\)
−0.747043 + 0.664776i \(0.768527\pi\)
\(252\) 0 0
\(253\) −1.14846 5.03173i −0.0722031 0.316342i
\(254\) −1.69849 + 2.12984i −0.106573 + 0.133638i
\(255\) 0 0
\(256\) 9.15730 + 4.40992i 0.572331 + 0.275620i
\(257\) 11.2754 + 14.1389i 0.703339 + 0.881959i 0.997268 0.0738684i \(-0.0235345\pi\)
−0.293929 + 0.955827i \(0.594963\pi\)
\(258\) 0 0
\(259\) −4.01482 1.93344i −0.249469 0.120138i
\(260\) −19.9990 −1.24028
\(261\) 0 0
\(262\) 11.4630 0.708185
\(263\) 0.869873 + 0.418909i 0.0536387 + 0.0258310i 0.460511 0.887654i \(-0.347666\pi\)
−0.406872 + 0.913485i \(0.633381\pi\)
\(264\) 0 0
\(265\) −2.85297 3.57752i −0.175257 0.219765i
\(266\) −6.47544 3.11841i −0.397035 0.191202i
\(267\) 0 0
\(268\) −11.4462 + 14.3531i −0.699188 + 0.876754i
\(269\) 2.16024 + 9.46463i 0.131712 + 0.577069i 0.997109 + 0.0759819i \(0.0242091\pi\)
−0.865397 + 0.501087i \(0.832934\pi\)
\(270\) 0 0
\(271\) 10.5687 + 13.2527i 0.642002 + 0.805045i 0.991252 0.131985i \(-0.0421350\pi\)
−0.349250 + 0.937030i \(0.613564\pi\)
\(272\) −1.13423 + 4.96938i −0.0687727 + 0.301313i
\(273\) 0 0
\(274\) −0.470882 + 2.06307i −0.0284470 + 0.124635i
\(275\) 0.801294 0.385883i 0.0483199 0.0232696i
\(276\) 0 0
\(277\) 4.90011 21.4688i 0.294419 1.28994i −0.583886 0.811835i \(-0.698469\pi\)
0.878306 0.478100i \(-0.158674\pi\)
\(278\) 7.83928 0.470169
\(279\) 0 0
\(280\) 7.36408 + 9.23427i 0.440088 + 0.551853i
\(281\) 2.38729 + 10.4594i 0.142414 + 0.623957i 0.994870 + 0.101158i \(0.0322548\pi\)
−0.852456 + 0.522798i \(0.824888\pi\)
\(282\) 0 0
\(283\) 9.48869 11.8984i 0.564044 0.707289i −0.415256 0.909705i \(-0.636308\pi\)
0.979300 + 0.202416i \(0.0648793\pi\)
\(284\) 6.29208 3.03011i 0.373366 0.179804i
\(285\) 0 0
\(286\) 2.71154 + 3.40017i 0.160337 + 0.201056i
\(287\) 17.6616 22.1470i 1.04253 1.30730i
\(288\) 0 0
\(289\) −2.43497 −0.143234
\(290\) −5.55444 5.11576i −0.326168 0.300408i
\(291\) 0 0
\(292\) 12.4263 + 5.98418i 0.727193 + 0.350198i
\(293\) −14.4563 + 18.1276i −0.844547 + 1.05903i 0.152944 + 0.988235i \(0.451125\pi\)
−0.997491 + 0.0707934i \(0.977447\pi\)
\(294\) 0 0
\(295\) −16.9204 8.14843i −0.985143 0.474420i
\(296\) −4.09740 + 1.97320i −0.238157 + 0.114690i
\(297\) 0 0
\(298\) 0.757384 + 3.31832i 0.0438741 + 0.192225i
\(299\) −7.83300 34.3186i −0.452994 1.98470i
\(300\) 0 0
\(301\) −1.97410 + 8.64910i −0.113785 + 0.498526i
\(302\) 11.8325 0.680883
\(303\) 0 0
\(304\) 5.19652 2.50251i 0.298041 0.143529i
\(305\) −5.70577 + 2.74775i −0.326711 + 0.157336i
\(306\) 0 0
\(307\) −18.8555 −1.07614 −0.538070 0.842900i \(-0.680846\pi\)
−0.538070 + 0.842900i \(0.680846\pi\)
\(308\) −0.774413 + 3.39292i −0.0441262 + 0.193330i
\(309\) 0 0
\(310\) −0.853287 3.73850i −0.0484635 0.212332i
\(311\) 6.04072 + 26.4661i 0.342538 + 1.50076i 0.793698 + 0.608312i \(0.208153\pi\)
−0.451160 + 0.892443i \(0.648990\pi\)
\(312\) 0 0
\(313\) −6.67788 + 3.21590i −0.377456 + 0.181773i −0.612986 0.790094i \(-0.710032\pi\)
0.235530 + 0.971867i \(0.424317\pi\)
\(314\) −12.7664 6.14796i −0.720448 0.346950i
\(315\) 0 0
\(316\) −4.05572 + 5.08571i −0.228152 + 0.286093i
\(317\) 2.01091 + 0.968401i 0.112944 + 0.0543908i 0.489502 0.872002i \(-0.337178\pi\)
−0.376559 + 0.926393i \(0.622893\pi\)
\(318\) 0 0
\(319\) 0.366507 5.14534i 0.0205205 0.288084i
\(320\) 2.76617 0.154633
\(321\) 0 0
\(322\) −5.59102 + 7.01092i −0.311575 + 0.390703i
\(323\) −10.2758 12.8854i −0.571758 0.716962i
\(324\) 0 0
\(325\) 5.46518 2.63189i 0.303153 0.145991i
\(326\) 3.30609 4.14571i 0.183108 0.229610i
\(327\) 0 0
\(328\) −6.43301 28.1849i −0.355204 1.55625i
\(329\) −4.82702 6.05290i −0.266122 0.333707i
\(330\) 0 0
\(331\) −23.2235 −1.27648 −0.638241 0.769837i \(-0.720337\pi\)
−0.638241 + 0.769837i \(0.720337\pi\)
\(332\) −5.46243 + 23.9325i −0.299790 + 1.31346i
\(333\) 0 0
\(334\) −13.6061 + 6.55233i −0.744491 + 0.358528i
\(335\) −5.43349 + 23.8057i −0.296863 + 1.30064i
\(336\) 0 0
\(337\) −6.02416 + 26.3936i −0.328157 + 1.43775i 0.494484 + 0.869187i \(0.335357\pi\)
−0.822641 + 0.568562i \(0.807500\pi\)
\(338\) 12.8612 + 16.1274i 0.699555 + 0.877214i
\(339\) 0 0
\(340\) 2.59961 + 11.3896i 0.140984 + 0.617690i
\(341\) 1.63321 2.04798i 0.0884435 0.110905i
\(342\) 0 0
\(343\) −17.8325 8.58769i −0.962865 0.463691i
\(344\) 5.64508 + 7.07870i 0.304362 + 0.381658i
\(345\) 0 0
\(346\) 2.51297 + 1.21018i 0.135098 + 0.0650599i
\(347\) 33.0378 1.77356 0.886780 0.462191i \(-0.152937\pi\)
0.886780 + 0.462191i \(0.152937\pi\)
\(348\) 0 0
\(349\) 6.36434 0.340675 0.170338 0.985386i \(-0.445514\pi\)
0.170338 + 0.985386i \(0.445514\pi\)
\(350\) −1.39222 0.670459i −0.0744174 0.0358375i
\(351\) 0 0
\(352\) 3.47377 + 4.35597i 0.185152 + 0.232174i
\(353\) 15.8323 + 7.62444i 0.842669 + 0.405808i 0.804851 0.593477i \(-0.202245\pi\)
0.0378175 + 0.999285i \(0.487959\pi\)
\(354\) 0 0
\(355\) 5.79148 7.26229i 0.307380 0.385442i
\(356\) −5.21322 22.8406i −0.276300 1.21055i
\(357\) 0 0
\(358\) 1.67584 + 2.10143i 0.0885707 + 0.111064i
\(359\) 1.74009 7.62384i 0.0918385 0.402371i −0.908025 0.418917i \(-0.862410\pi\)
0.999863 + 0.0165460i \(0.00526700\pi\)
\(360\) 0 0
\(361\) 0.0780901 0.342135i 0.00411000 0.0180071i
\(362\) −10.4122 + 5.01426i −0.547254 + 0.263544i
\(363\) 0 0
\(364\) −5.28183 + 23.1412i −0.276843 + 1.21293i
\(365\) 18.3446 0.960198
\(366\) 0 0
\(367\) 18.1847 + 22.8028i 0.949231 + 1.19030i 0.981624 + 0.190823i \(0.0611157\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(368\) −1.60131 7.01581i −0.0834742 0.365724i
\(369\) 0 0
\(370\) −1.62677 + 2.03991i −0.0845719 + 0.106050i
\(371\) −4.89310 + 2.35639i −0.254037 + 0.122338i
\(372\) 0 0
\(373\) −3.65125 4.57852i −0.189054 0.237067i 0.678267 0.734816i \(-0.262731\pi\)
−0.867321 + 0.497749i \(0.834160\pi\)
\(374\) 1.58397 1.98623i 0.0819049 0.102705i
\(375\) 0 0
\(376\) −7.90118 −0.407472
\(377\) 2.49974 35.0935i 0.128743 1.80741i
\(378\) 0 0
\(379\) 2.08807 + 1.00556i 0.107257 + 0.0516523i 0.486743 0.873545i \(-0.338185\pi\)
−0.379486 + 0.925198i \(0.623899\pi\)
\(380\) 8.24213 10.3353i 0.422812 0.530190i
\(381\) 0 0
\(382\) −1.65366 0.796358i −0.0846084 0.0407452i
\(383\) −16.4369 + 7.91562i −0.839889 + 0.404469i −0.803815 0.594880i \(-0.797200\pi\)
−0.0360743 + 0.999349i \(0.511485\pi\)
\(384\) 0 0
\(385\) 1.03003 + 4.51284i 0.0524950 + 0.229996i
\(386\) −1.01151 4.43170i −0.0514843 0.225568i
\(387\) 0 0
\(388\) 5.32129 23.3141i 0.270148 1.18359i
\(389\) −29.6576 −1.50370 −0.751850 0.659335i \(-0.770838\pi\)
−0.751850 + 0.659335i \(0.770838\pi\)
\(390\) 0 0
\(391\) −18.5266 + 8.92195i −0.936932 + 0.451203i
\(392\) −2.78463 + 1.34100i −0.140645 + 0.0677310i
\(393\) 0 0
\(394\) 6.82732 0.343955
\(395\) −1.92524 + 8.43503i −0.0968694 + 0.424413i
\(396\) 0 0
\(397\) −0.452224 1.98132i −0.0226965 0.0994398i 0.962311 0.271951i \(-0.0876690\pi\)
−0.985008 + 0.172511i \(0.944812\pi\)
\(398\) −0.0811406 0.355500i −0.00406721 0.0178196i
\(399\) 0 0
\(400\) 1.11725 0.538041i 0.0558627 0.0269021i
\(401\) −0.128477 0.0618714i −0.00641585 0.00308971i 0.430673 0.902508i \(-0.358276\pi\)
−0.437089 + 0.899418i \(0.643990\pi\)
\(402\) 0 0
\(403\) 11.1392 13.9681i 0.554884 0.695803i
\(404\) −12.6520 6.09288i −0.629460 0.303132i
\(405\) 0 0
\(406\) −7.38650 + 5.07605i −0.366586 + 0.251920i
\(407\) −1.78232 −0.0883465
\(408\) 0 0
\(409\) −12.9332 + 16.2178i −0.639507 + 0.801917i −0.990941 0.134296i \(-0.957123\pi\)
0.351434 + 0.936213i \(0.385694\pi\)
\(410\) −10.3412 12.9675i −0.510716 0.640418i
\(411\) 0 0
\(412\) 14.4809 6.97363i 0.713422 0.343566i
\(413\) −13.8975 + 17.4269i −0.683849 + 0.857520i
\(414\) 0 0
\(415\) 7.26544 + 31.8320i 0.356646 + 1.56257i
\(416\) 23.6926 + 29.7096i 1.16163 + 1.45663i
\(417\) 0 0
\(418\) −2.87468 −0.140605
\(419\) 1.45786 6.38728i 0.0712209 0.312039i −0.926752 0.375673i \(-0.877412\pi\)
0.997973 + 0.0636334i \(0.0202688\pi\)
\(420\) 0 0
\(421\) −7.77401 + 3.74377i −0.378882 + 0.182460i −0.613625 0.789597i \(-0.710289\pi\)
0.234743 + 0.972057i \(0.424575\pi\)
\(422\) −2.55890 + 11.2113i −0.124565 + 0.545756i
\(423\) 0 0
\(424\) −1.23335 + 5.40366i −0.0598968 + 0.262425i
\(425\) −2.20929 2.77036i −0.107166 0.134382i
\(426\) 0 0
\(427\) 1.67256 + 7.32795i 0.0809406 + 0.354624i
\(428\) −0.118900 + 0.149096i −0.00574725 + 0.00720683i
\(429\) 0 0
\(430\) 4.68004 + 2.25379i 0.225691 + 0.108687i
\(431\) −19.6857 24.6850i −0.948225 1.18904i −0.981861 0.189602i \(-0.939280\pi\)
0.0336362 0.999434i \(-0.489291\pi\)
\(432\) 0 0
\(433\) 2.83832 + 1.36686i 0.136401 + 0.0656873i 0.500839 0.865540i \(-0.333025\pi\)
−0.364438 + 0.931228i \(0.618739\pi\)
\(434\) −4.55124 −0.218467
\(435\) 0 0
\(436\) 14.6345 0.700863
\(437\) 20.9638 + 10.0956i 1.00283 + 0.482939i
\(438\) 0 0
\(439\) 14.2209 + 17.8324i 0.678727 + 0.851096i 0.995236 0.0974931i \(-0.0310824\pi\)
−0.316510 + 0.948589i \(0.602511\pi\)
\(440\) 4.25627 + 2.04971i 0.202910 + 0.0977161i
\(441\) 0 0
\(442\) 10.8033 13.5469i 0.513862 0.644363i
\(443\) 4.25594 + 18.6465i 0.202206 + 0.885922i 0.969590 + 0.244735i \(0.0787008\pi\)
−0.767384 + 0.641188i \(0.778442\pi\)
\(444\) 0 0
\(445\) −19.4285 24.3626i −0.921001 1.15490i
\(446\) 1.81623 7.95742i 0.0860010 0.376795i
\(447\) 0 0
\(448\) 0.730558 3.20078i 0.0345156 0.151223i
\(449\) −35.8493 + 17.2641i −1.69184 + 0.814745i −0.696577 + 0.717482i \(0.745294\pi\)
−0.995259 + 0.0972626i \(0.968991\pi\)
\(450\) 0 0
\(451\) 2.52117 11.0460i 0.118717 0.520134i
\(452\) 4.71573 0.221809
\(453\) 0 0
\(454\) 9.23208 + 11.5767i 0.433283 + 0.543320i
\(455\) 7.02523 + 30.7795i 0.329348 + 1.44297i
\(456\) 0 0
\(457\) 18.2165 22.8427i 0.852130 1.06854i −0.144739 0.989470i \(-0.546234\pi\)
0.996869 0.0790675i \(-0.0251943\pi\)
\(458\) −0.114776 + 0.0552730i −0.00536311 + 0.00258274i
\(459\) 0 0
\(460\) −10.2835 12.8951i −0.479472 0.601239i
\(461\) −0.612669 + 0.768263i −0.0285348 + 0.0357816i −0.795894 0.605436i \(-0.792999\pi\)
0.767359 + 0.641217i \(0.221570\pi\)
\(462\) 0 0
\(463\) −10.1420 −0.471340 −0.235670 0.971833i \(-0.575728\pi\)
−0.235670 + 0.971833i \(0.575728\pi\)
\(464\) 0.511025 7.17421i 0.0237238 0.333054i
\(465\) 0 0
\(466\) −14.9523 7.20065i −0.692652 0.333563i
\(467\) −11.2090 + 14.0557i −0.518692 + 0.650419i −0.970331 0.241782i \(-0.922268\pi\)
0.451639 + 0.892201i \(0.350840\pi\)
\(468\) 0 0
\(469\) 26.1110 + 12.5744i 1.20569 + 0.580631i
\(470\) −4.08414 + 1.96682i −0.188387 + 0.0907226i
\(471\) 0 0
\(472\) 5.06196 + 22.1779i 0.232996 + 1.02082i
\(473\) 0.789586 + 3.45940i 0.0363052 + 0.159063i
\(474\) 0 0
\(475\) −0.892211 + 3.90903i −0.0409374 + 0.179359i
\(476\) 13.8657 0.635535
\(477\) 0 0
\(478\) −5.26526 + 2.53562i −0.240827 + 0.115976i
\(479\) 18.5533 8.93481i 0.847723 0.408242i 0.0409911 0.999160i \(-0.486948\pi\)
0.806732 + 0.590918i \(0.201234\pi\)
\(480\) 0 0
\(481\) −12.1562 −0.554276
\(482\) 0.0832516 0.364749i 0.00379201 0.0166139i
\(483\) 0 0
\(484\) −3.40361 14.9122i −0.154710 0.677827i
\(485\) −7.07771 31.0095i −0.321382 1.40807i
\(486\) 0 0
\(487\) −14.4078 + 6.93844i −0.652880 + 0.314411i −0.730843 0.682546i \(-0.760873\pi\)
0.0779626 + 0.996956i \(0.475159\pi\)
\(488\) 6.91133 + 3.32832i 0.312861 + 0.150666i
\(489\) 0 0
\(490\) −1.10557 + 1.38634i −0.0499444 + 0.0626284i
\(491\) −9.19032 4.42582i −0.414753 0.199735i 0.214858 0.976645i \(-0.431071\pi\)
−0.629611 + 0.776911i \(0.716786\pi\)
\(492\) 0 0
\(493\) −20.3110 + 3.13807i −0.914763 + 0.141332i
\(494\) −19.6066 −0.882141
\(495\) 0 0
\(496\) 2.27721 2.85553i 0.102250 0.128217i
\(497\) −6.87378 8.61944i −0.308331 0.386635i
\(498\) 0 0
\(499\) 5.54276 2.66925i 0.248128 0.119492i −0.305687 0.952132i \(-0.598886\pi\)
0.553815 + 0.832640i \(0.313172\pi\)
\(500\) 11.3150 14.1885i 0.506021 0.634530i
\(501\) 0 0
\(502\) −0.264443 1.15860i −0.0118027 0.0517110i
\(503\) 12.6166 + 15.8207i 0.562545 + 0.705410i 0.979026 0.203735i \(-0.0653081\pi\)
−0.416481 + 0.909145i \(0.636737\pi\)
\(504\) 0 0
\(505\) −18.6778 −0.831150
\(506\) −0.798110 + 3.49675i −0.0354803 + 0.155449i
\(507\) 0 0
\(508\) −5.35798 + 2.58027i −0.237722 + 0.114481i
\(509\) −0.903261 + 3.95744i −0.0400363 + 0.175411i −0.990993 0.133913i \(-0.957246\pi\)
0.950957 + 0.309324i \(0.100103\pi\)
\(510\) 0 0
\(511\) 4.84489 21.2268i 0.214325 0.939020i
\(512\) 8.91413 + 11.1780i 0.393952 + 0.494001i
\(513\) 0 0
\(514\) −2.79653 12.2524i −0.123350 0.540429i
\(515\) 13.3288 16.7138i 0.587337 0.736497i
\(516\) 0 0
\(517\) −2.78991 1.34355i −0.122700 0.0590892i
\(518\) 1.93078 + 2.42112i 0.0848335 + 0.106378i
\(519\) 0 0
\(520\) 29.0296 + 13.9799i 1.27303 + 0.613060i
\(521\) −10.9066 −0.477828 −0.238914 0.971041i \(-0.576791\pi\)
−0.238914 + 0.971041i \(0.576791\pi\)
\(522\) 0 0
\(523\) 3.65147 0.159668 0.0798339 0.996808i \(-0.474561\pi\)
0.0798339 + 0.996808i \(0.474561\pi\)
\(524\) 22.5457 + 10.8574i 0.984913 + 0.474309i
\(525\) 0 0
\(526\) −0.418333 0.524573i −0.0182402 0.0228725i
\(527\) −9.40296 4.52823i −0.409600 0.197253i
\(528\) 0 0
\(529\) 3.76026 4.71522i 0.163490 0.205010i
\(530\) 0.707596 + 3.10018i 0.0307360 + 0.134663i
\(531\) 0 0
\(532\) −9.78239 12.2667i −0.424121 0.531830i
\(533\) 17.1955 75.3383i 0.744819 3.26326i
\(534\) 0 0
\(535\) −0.0564416 + 0.247287i −0.00244018 + 0.0106911i
\(536\) 26.6480 12.8330i 1.15102 0.554302i
\(537\) 0 0
\(538\) 1.50123 6.57734i 0.0647228 0.283569i
\(539\) −1.21128 −0.0521736
\(540\) 0 0
\(541\) −21.1554 26.5281i −0.909543 1.14053i −0.989615 0.143741i \(-0.954087\pi\)
0.0800725 0.996789i \(-0.474485\pi\)
\(542\) −2.62125 11.4845i −0.112592 0.493300i
\(543\) 0 0
\(544\) 13.8402 17.3550i 0.593393 0.744092i
\(545\) 17.5373 8.44551i 0.751215 0.361766i
\(546\) 0 0
\(547\) 12.2604 + 15.3741i 0.524217 + 0.657347i 0.971498 0.237046i \(-0.0761792\pi\)
−0.447281 + 0.894393i \(0.647608\pi\)
\(548\) −2.88023 + 3.61169i −0.123037 + 0.154284i
\(549\) 0 0
\(550\) −0.618057 −0.0263541
\(551\) 17.1058 + 15.7548i 0.728731 + 0.671178i
\(552\) 0 0
\(553\) 9.25187 + 4.45547i 0.393430 + 0.189466i
\(554\) −9.54138 + 11.9645i −0.405374 + 0.508323i
\(555\) 0 0
\(556\) 15.4185 + 7.42517i 0.653891 + 0.314897i
\(557\) −34.4588 + 16.5945i −1.46006 + 0.703130i −0.984310 0.176448i \(-0.943539\pi\)
−0.475755 + 0.879578i \(0.657825\pi\)
\(558\) 0 0
\(559\) 5.38532 + 23.5946i 0.227775 + 0.997946i
\(560\) 1.43618 + 6.29231i 0.0606896 + 0.265898i
\(561\) 0 0
\(562\) 1.65902 7.26865i 0.0699817 0.306610i
\(563\) 23.4745 0.989330 0.494665 0.869084i \(-0.335291\pi\)
0.494665 + 0.869084i \(0.335291\pi\)
\(564\) 0 0
\(565\) 5.65113 2.72144i 0.237745 0.114492i
\(566\) −9.52868 + 4.58877i −0.400520 + 0.192880i
\(567\) 0 0
\(568\) −11.2514 −0.472100
\(569\) −0.758682 + 3.32400i −0.0318056 + 0.139349i −0.988338 0.152277i \(-0.951339\pi\)
0.956532 + 0.291627i \(0.0941965\pi\)
\(570\) 0 0
\(571\) −5.16346 22.6226i −0.216084 0.946726i −0.960340 0.278832i \(-0.910053\pi\)
0.744256 0.667894i \(-0.232804\pi\)
\(572\) 2.11259 + 9.25584i 0.0883316 + 0.387006i
\(573\) 0 0
\(574\) −17.7361 + 8.54125i −0.740290 + 0.356505i
\(575\) 4.50722 + 2.17056i 0.187964 + 0.0905187i
\(576\) 0 0
\(577\) −0.183171 + 0.229689i −0.00762551 + 0.00956209i −0.785630 0.618697i \(-0.787661\pi\)
0.778004 + 0.628259i \(0.216232\pi\)
\(578\) 1.52458 + 0.734199i 0.0634142 + 0.0305387i
\(579\) 0 0
\(580\) −6.07910 15.3228i −0.252421 0.636246i
\(581\) 38.7522 1.60771
\(582\) 0 0
\(583\) −1.35436 + 1.69831i −0.0560917 + 0.0703368i
\(584\) −13.8543 17.3727i −0.573294 0.718888i
\(585\) 0 0
\(586\) 14.5173 6.99114i 0.599702 0.288801i
\(587\) 1.71744 2.15360i 0.0708864 0.0888888i −0.745124 0.666926i \(-0.767610\pi\)
0.816010 + 0.578037i \(0.196181\pi\)
\(588\) 0 0
\(589\) 2.62784 + 11.5133i 0.108278 + 0.474398i
\(590\) 8.13723 + 10.2038i 0.335004 + 0.420082i
\(591\) 0 0
\(592\) −2.48512 −0.102138
\(593\) −4.62823 + 20.2776i −0.190059 + 0.832701i 0.786524 + 0.617559i \(0.211879\pi\)
−0.976583 + 0.215142i \(0.930979\pi\)
\(594\) 0 0
\(595\) 16.6161 8.00188i 0.681193 0.328045i
\(596\) −1.65338 + 7.24393i −0.0677251 + 0.296723i
\(597\) 0 0
\(598\) −5.44345 + 23.8493i −0.222599 + 0.975272i
\(599\) −21.7810 27.3125i −0.889946 1.11596i −0.992623 0.121242i \(-0.961312\pi\)
0.102677 0.994715i \(-0.467259\pi\)
\(600\) 0 0
\(601\) −0.641141 2.80902i −0.0261527 0.114582i 0.960167 0.279428i \(-0.0901447\pi\)
−0.986319 + 0.164845i \(0.947288\pi\)
\(602\) 3.84392 4.82012i 0.156666 0.196454i
\(603\) 0 0
\(604\) 23.2725 + 11.2074i 0.946943 + 0.456024i
\(605\) −12.6845 15.9059i −0.515699 0.646667i
\(606\) 0 0
\(607\) −20.0682 9.66435i −0.814544 0.392264i −0.0202484 0.999795i \(-0.506446\pi\)
−0.794296 + 0.607531i \(0.792160\pi\)
\(608\) −25.1180 −1.01867
\(609\) 0 0
\(610\) 4.40099 0.178191
\(611\) −19.0284 9.16359i −0.769806 0.370719i
\(612\) 0 0
\(613\) 1.04225 + 1.30693i 0.0420959 + 0.0527866i 0.802434 0.596741i \(-0.203538\pi\)
−0.760338 + 0.649528i \(0.774967\pi\)
\(614\) 11.8058 + 5.68536i 0.476442 + 0.229442i
\(615\) 0 0
\(616\) 3.49586 4.38367i 0.140852 0.176623i
\(617\) 3.20447 + 14.0397i 0.129007 + 0.565216i 0.997572 + 0.0696414i \(0.0221855\pi\)
−0.868565 + 0.495575i \(0.834957\pi\)
\(618\) 0 0
\(619\) −1.71356 2.14873i −0.0688737 0.0863649i 0.746201 0.665720i \(-0.231876\pi\)
−0.815075 + 0.579356i \(0.803304\pi\)
\(620\) 1.86274 8.16119i 0.0748094 0.327761i
\(621\) 0 0
\(622\) 4.19793 18.3923i 0.168322 0.737465i
\(623\) −33.3216 + 16.0468i −1.33500 + 0.642903i
\(624\) 0 0
\(625\) 4.33818 19.0068i 0.173527 0.760272i
\(626\) 5.15081 0.205868
\(627\) 0 0
\(628\) −19.2861 24.1840i −0.769598 0.965045i
\(629\) 1.58015 + 6.92310i 0.0630048 + 0.276042i
\(630\) 0 0
\(631\) −5.65612 + 7.09255i −0.225167 + 0.282350i −0.881563 0.472066i \(-0.843508\pi\)
0.656397 + 0.754416i \(0.272080\pi\)
\(632\) 9.44216 4.54711i 0.375589 0.180874i
\(633\) 0 0
\(634\) −0.967070 1.21267i −0.0384072 0.0481612i
\(635\) −4.93170 + 6.18415i −0.195708 + 0.245411i
\(636\) 0 0
\(637\) −8.26146 −0.327331
\(638\) −1.78091 + 3.11108i −0.0705070 + 0.123169i
\(639\) 0 0
\(640\) 19.4164 + 9.35043i 0.767499 + 0.369608i
\(641\) 7.09852 8.90126i 0.280375 0.351579i −0.621625 0.783315i \(-0.713527\pi\)
0.902000 + 0.431736i \(0.142099\pi\)
\(642\) 0 0
\(643\) 9.74947 + 4.69510i 0.384482 + 0.185157i 0.616133 0.787642i \(-0.288699\pi\)
−0.231651 + 0.972799i \(0.574413\pi\)
\(644\) −17.6371 + 8.49360i −0.695000 + 0.334695i
\(645\) 0 0
\(646\) 2.54860 + 11.1661i 0.100273 + 0.439326i
\(647\) −4.91549 21.5362i −0.193248 0.846674i −0.974844 0.222889i \(-0.928451\pi\)
0.781596 0.623785i \(-0.214406\pi\)
\(648\) 0 0
\(649\) −1.98384 + 8.69178i −0.0778726 + 0.341182i
\(650\) −4.21542 −0.165342
\(651\) 0 0
\(652\) 10.4292 5.02245i 0.408440 0.196694i
\(653\) 17.4603 8.40844i 0.683274 0.329048i −0.0598439 0.998208i \(-0.519060\pi\)
0.743118 + 0.669160i \(0.233346\pi\)
\(654\) 0 0
\(655\) 33.2836 1.30050
\(656\) 3.51530 15.4015i 0.137249 0.601329i
\(657\) 0 0
\(658\) 1.19720 + 5.24528i 0.0466718 + 0.204482i
\(659\) 1.48867 + 6.52230i 0.0579904 + 0.254073i 0.995611 0.0935875i \(-0.0298335\pi\)
−0.937621 + 0.347660i \(0.886976\pi\)
\(660\) 0 0
\(661\) 40.0727 19.2980i 1.55865 0.750606i 0.561602 0.827407i \(-0.310185\pi\)
0.997046 + 0.0768020i \(0.0244709\pi\)
\(662\) 14.5407 + 7.00242i 0.565139 + 0.272157i
\(663\) 0 0
\(664\) 24.6586 30.9209i 0.956938 1.19996i
\(665\) −18.8019 9.05451i −0.729106 0.351119i
\(666\) 0 0
\(667\) 23.9133 16.4333i 0.925925 0.636301i
\(668\) −32.9670 −1.27553
\(669\) 0 0
\(670\) 10.5800 13.2668i 0.408739 0.512543i
\(671\) 1.87443 + 2.35046i 0.0723615 + 0.0907385i
\(672\) 0 0
\(673\) −18.9884 + 9.14433i −0.731949 + 0.352488i −0.762450 0.647047i \(-0.776004\pi\)
0.0305016 + 0.999535i \(0.490290\pi\)
\(674\) 11.7301 14.7091i 0.451826 0.566572i
\(675\) 0 0
\(676\) 10.0202 + 43.9015i 0.385394 + 1.68852i
\(677\) −2.23420 2.80160i −0.0858673 0.107674i 0.737042 0.675847i \(-0.236222\pi\)
−0.822909 + 0.568173i \(0.807651\pi\)
\(678\) 0 0
\(679\) −37.7509 −1.44875
\(680\) 4.18824 18.3499i 0.160612 0.703686i
\(681\) 0 0
\(682\) −1.64010 + 0.789829i −0.0628026 + 0.0302441i
\(683\) −2.99758 + 13.1333i −0.114699 + 0.502530i 0.884643 + 0.466269i \(0.154402\pi\)
−0.999342 + 0.0362615i \(0.988455\pi\)
\(684\) 0 0
\(685\) −1.36724 + 5.99027i −0.0522395 + 0.228876i
\(686\) 8.57588 + 10.7538i 0.327428 + 0.410582i
\(687\) 0 0
\(688\) 1.10093 + 4.82348i 0.0419725 + 0.183894i
\(689\) −9.23730 + 11.5832i −0.351913 + 0.441285i
\(690\) 0 0
\(691\) −15.7501 7.58486i −0.599163 0.288542i 0.109614 0.993974i \(-0.465039\pi\)
−0.708777 + 0.705432i \(0.750753\pi\)
\(692\) 3.79633 + 4.76045i 0.144315 + 0.180965i
\(693\) 0 0
\(694\) −20.6855 9.96163i −0.785213 0.378138i
\(695\) 22.7619 0.863408
\(696\) 0 0
\(697\) −45.1412 −1.70984
\(698\) −3.98483 1.91899i −0.150828 0.0726349i
\(699\) 0 0
\(700\) −2.10322 2.63735i −0.0794942 0.0996826i
\(701\) −26.5799 12.8002i −1.00391 0.483458i −0.141646 0.989917i \(-0.545240\pi\)
−0.862264 + 0.506460i \(0.830954\pi\)
\(702\) 0 0
\(703\) 5.00991 6.28223i 0.188953 0.236939i
\(704\) −0.292203 1.28022i −0.0110128 0.0482503i
\(705\) 0 0
\(706\) −7.61395 9.54759i −0.286555 0.359328i
\(707\) −4.93289 + 21.6124i −0.185521 + 0.812818i
\(708\) 0 0
\(709\) −5.48443 + 24.0289i −0.205972 + 0.902423i 0.761244 + 0.648466i \(0.224589\pi\)
−0.967216 + 0.253957i \(0.918268\pi\)
\(710\) −5.81590 + 2.80079i −0.218267 + 0.105112i
\(711\) 0 0
\(712\) −8.39903 + 36.7985i −0.314767 + 1.37908i
\(713\) 14.7343 0.551805
\(714\) 0 0
\(715\) 7.87315 + 9.87262i 0.294439 + 0.369215i
\(716\) 1.30566 + 5.72046i 0.0487948 + 0.213784i
\(717\) 0 0
\(718\) −3.38826 + 4.24875i −0.126449 + 0.158562i
\(719\) −1.24578 + 0.599937i −0.0464598 + 0.0223739i −0.456969 0.889482i \(-0.651065\pi\)
0.410510 + 0.911856i \(0.365351\pi\)
\(720\) 0 0
\(721\) −15.8196 19.8372i −0.589154 0.738776i
\(722\) −0.152055 + 0.190671i −0.00565890 + 0.00709604i
\(723\) 0 0
\(724\) −25.2284 −0.937607
\(725\) 3.67776 + 3.38730i 0.136588 + 0.125801i
\(726\) 0 0
\(727\) −34.0179 16.3821i −1.26165 0.607580i −0.321041 0.947065i \(-0.604033\pi\)
−0.940611 + 0.339485i \(0.889747\pi\)
\(728\) 23.8433 29.8985i 0.883691 1.10811i
\(729\) 0 0
\(730\) −11.4859 5.53130i −0.425111 0.204722i
\(731\) 12.7374 6.13399i 0.471108 0.226874i
\(732\) 0 0
\(733\) 7.24828 + 31.7568i 0.267721 + 1.17296i 0.912657 + 0.408727i \(0.134027\pi\)
−0.644936 + 0.764237i \(0.723116\pi\)
\(734\) −4.51017 19.7603i −0.166473 0.729368i
\(735\) 0 0
\(736\) −6.97363 + 30.5535i −0.257051 + 1.12622i
\(737\) 11.5916 0.426982
\(738\) 0 0
\(739\) 34.2033 16.4714i 1.25819 0.605911i 0.318493 0.947925i \(-0.396823\pi\)
0.939695 + 0.342014i \(0.111109\pi\)
\(740\) −5.13173 + 2.47131i −0.188646 + 0.0908472i
\(741\) 0 0
\(742\) 3.77416 0.138554
\(743\) −2.91935 + 12.7905i −0.107101 + 0.469238i 0.892726 + 0.450601i \(0.148790\pi\)
−0.999826 + 0.0186379i \(0.994067\pi\)
\(744\) 0 0
\(745\) 2.19912 + 9.63496i 0.0805694 + 0.352998i
\(746\) 0.905585 + 3.96763i 0.0331558 + 0.145265i
\(747\) 0 0
\(748\) 4.99669 2.40628i 0.182697 0.0879823i
\(749\) 0.271234 + 0.130619i 0.00991067 + 0.00477273i
\(750\) 0 0
\(751\) −17.5307 + 21.9828i −0.639704 + 0.802163i −0.990966 0.134114i \(-0.957181\pi\)
0.351262 + 0.936277i \(0.385753\pi\)
\(752\) −3.89000 1.87333i −0.141854 0.0683132i
\(753\) 0 0
\(754\) −12.1466 + 21.2189i −0.442353 + 0.772748i
\(755\) 34.3565 1.25036
\(756\) 0 0
\(757\) −11.8885 + 14.9078i −0.432096 + 0.541831i −0.949441 0.313946i \(-0.898349\pi\)
0.517345 + 0.855777i \(0.326920\pi\)
\(758\) −1.00418 1.25920i −0.0364735 0.0457363i
\(759\) 0 0
\(760\) −19.1886 + 9.24074i −0.696044 + 0.335197i
\(761\) −5.51450 + 6.91496i −0.199900 + 0.250667i −0.871670 0.490093i \(-0.836963\pi\)
0.671770 + 0.740760i \(0.265534\pi\)
\(762\) 0 0
\(763\) −5.14078 22.5232i −0.186109 0.815395i
\(764\) −2.49816 3.13260i −0.0903804 0.113333i
\(765\) 0 0
\(766\) 12.6782 0.458082
\(767\) −13.5307 + 59.2817i −0.488564 + 2.14054i
\(768\) 0 0
\(769\) 12.9746 6.24823i 0.467875 0.225317i −0.185065 0.982726i \(-0.559250\pi\)
0.652940 + 0.757409i \(0.273535\pi\)
\(770\) 0.715805 3.13615i 0.0257958 0.113019i
\(771\) 0 0
\(772\) 2.20813 9.67446i 0.0794724 0.348191i
\(773\) 3.56506 + 4.47045i 0.128226 + 0.160791i 0.841800 0.539789i \(-0.181496\pi\)
−0.713574 + 0.700580i \(0.752925\pi\)
\(774\) 0 0
\(775\) 0.564987 + 2.47537i 0.0202949 + 0.0889179i
\(776\) −24.0214 + 30.1219i −0.862319 + 1.08131i
\(777\) 0 0
\(778\) 18.5691 + 8.94243i 0.665736 + 0.320602i
\(779\) 31.8475 + 39.9355i 1.14105 + 1.43084i
\(780\) 0 0
\(781\) −3.97288 1.91324i −0.142161 0.0684611i
\(782\) 14.2900 0.511010
\(783\) 0 0
\(784\) −1.68890 −0.0603180
\(785\) −37.0681 17.8510i −1.32302 0.637131i
\(786\) 0 0
\(787\) 24.1684 + 30.3062i 0.861511 + 1.08030i 0.995997 + 0.0893846i \(0.0284900\pi\)
−0.134487 + 0.990915i \(0.542939\pi\)
\(788\) 13.4282 + 6.46666i 0.478358 + 0.230365i
\(789\) 0 0
\(790\) 3.74878 4.70082i 0.133376 0.167248i
\(791\) −1.65654 7.25777i −0.0588997 0.258057i
\(792\) 0 0
\(793\) 12.7844 + 16.0312i 0.453988 + 0.569283i
\(794\) −0.314268 + 1.37690i −0.0111530 + 0.0488643i
\(795\) 0 0
\(796\) 0.177131 0.776062i 0.00627824 0.0275068i
\(797\) 2.84929 1.37215i 0.100927 0.0486039i −0.382739 0.923856i \(-0.625019\pi\)
0.483666 + 0.875253i \(0.339305\pi\)
\(798\) 0 0
\(799\) −2.74532 + 12.0280i −0.0971223 + 0.425521i
\(800\) −5.40039 −0.190933
\(801\) 0 0
\(802\) 0.0617863 + 0.0774776i 0.00218175 + 0.00273583i
\(803\) −1.93782 8.49014i −0.0683842 0.299611i
\(804\) 0 0
\(805\) −16.2339 + 20.3567i −0.572171 + 0.717479i
\(806\) −11.1862 + 5.38698i −0.394016 + 0.189748i
\(807\) 0 0
\(808\) 14.1059 + 17.6883i 0.496245 + 0.622272i
\(809\) −7.37667 + 9.25005i −0.259350 + 0.325215i −0.894410 0.447248i \(-0.852404\pi\)
0.635060 + 0.772463i \(0.280975\pi\)
\(810\) 0 0
\(811\) −11.2027 −0.393381 −0.196691 0.980466i \(-0.563019\pi\)
−0.196691 + 0.980466i \(0.563019\pi\)
\(812\) −19.3359 + 2.98741i −0.678556 + 0.104837i
\(813\) 0 0
\(814\) 1.11595 + 0.537411i 0.0391139 + 0.0188362i
\(815\) 9.59947 12.0374i 0.336255 0.421650i
\(816\) 0 0
\(817\) −14.4129 6.94091i −0.504245 0.242832i
\(818\) 12.9878 6.25457i 0.454106 0.218686i
\(819\) 0 0
\(820\) −8.05693 35.2997i −0.281360 1.23272i
\(821\) 3.30067 + 14.4612i 0.115194 + 0.504699i 0.999300 + 0.0374118i \(0.0119113\pi\)
−0.884106 + 0.467287i \(0.845232\pi\)
\(822\) 0 0
\(823\) −9.75067 + 42.7205i −0.339887 + 1.48914i 0.459420 + 0.888219i \(0.348057\pi\)
−0.799307 + 0.600923i \(0.794800\pi\)
\(824\) −25.8946 −0.902080
\(825\) 0 0
\(826\) 13.9560 6.72088i 0.485593 0.233849i
\(827\) −6.86968 + 3.30826i −0.238882 + 0.115040i −0.549495 0.835497i \(-0.685180\pi\)
0.310613 + 0.950536i \(0.399466\pi\)
\(828\) 0 0
\(829\) −20.4341 −0.709707 −0.354854 0.934922i \(-0.615469\pi\)
−0.354854 + 0.934922i \(0.615469\pi\)
\(830\) 5.04903 22.1213i 0.175254 0.767840i
\(831\) 0 0
\(832\) −1.99295 8.73169i −0.0690931 0.302717i
\(833\) 1.07388 + 4.70499i 0.0372079 + 0.163018i
\(834\) 0 0
\(835\) −39.5062 + 19.0252i −1.36717 + 0.658393i
\(836\) −5.65400 2.72282i −0.195548 0.0941707i
\(837\) 0 0
\(838\) −2.83870 + 3.55962i −0.0980613 + 0.122965i
\(839\) 15.2616 + 7.34959i 0.526888 + 0.253736i 0.678365 0.734725i \(-0.262689\pi\)
−0.151477 + 0.988461i \(0.548403\pi\)
\(840\) 0 0
\(841\) 27.6478 8.75212i 0.953372 0.301797i
\(842\) 5.99628 0.206645
\(843\) 0 0
\(844\) −15.6519 + 19.6269i −0.538762 + 0.675586i
\(845\) 37.3433 + 46.8270i 1.28465 + 1.61090i
\(846\) 0 0
\(847\) −21.7551 + 10.4767i −0.747513 + 0.359983i
\(848\) −1.88840 + 2.36797i −0.0648478 + 0.0813166i
\(849\) 0 0
\(850\) 0.547950 + 2.40073i 0.0187945 + 0.0823442i
\(851\) −6.25076 7.83820i −0.214273 0.268690i
\(852\) 0 0
\(853\) −9.95085 −0.340711 −0.170355 0.985383i \(-0.554492\pi\)
−0.170355 + 0.985383i \(0.554492\pi\)
\(854\) 1.16232 5.09247i 0.0397739 0.174261i
\(855\) 0 0
\(856\) 0.276813 0.133306i 0.00946126 0.00455630i
\(857\) 7.21912 31.6290i 0.246601 1.08043i −0.688274 0.725450i \(-0.741631\pi\)
0.934875 0.354977i \(-0.115511\pi\)
\(858\) 0 0
\(859\) 11.5600 50.6476i 0.394422 1.72807i −0.254368 0.967107i \(-0.581868\pi\)
0.648790 0.760967i \(-0.275275\pi\)
\(860\) 7.07009 + 8.86562i 0.241088 + 0.302315i
\(861\) 0 0
\(862\) 4.88245 + 21.3914i 0.166297 + 0.728594i
\(863\) −13.0134 + 16.3183i −0.442983 + 0.555483i −0.952327 0.305080i \(-0.901317\pi\)
0.509344 + 0.860563i \(0.329888\pi\)
\(864\) 0 0
\(865\) 7.29660 + 3.51386i 0.248092 + 0.119475i
\(866\) −1.36498 1.71164i −0.0463840 0.0581638i
\(867\) 0 0
\(868\) −8.95151 4.31082i −0.303834 0.146319i
\(869\) 4.10724 0.139328
\(870\) 0 0
\(871\) 79.0597 2.67884
\(872\) −21.2427 10.2299i −0.719369 0.346430i
\(873\) 0 0
\(874\) −10.0817 12.6421i −0.341020 0.427625i
\(875\) −25.8116 12.4302i −0.872593 0.420218i
\(876\) 0 0
\(877\) −9.39590 + 11.7821i −0.317277 + 0.397853i −0.914739 0.404044i \(-0.867604\pi\)
0.597463 + 0.801897i \(0.296176\pi\)
\(878\) −3.52708 15.4531i −0.119033 0.521518i
\(879\) 0 0
\(880\) 1.60952 + 2.01828i 0.0542569 + 0.0680360i
\(881\) −3.33843 + 14.6266i −0.112475 + 0.492783i 0.887042 + 0.461689i \(0.152756\pi\)
−0.999516 + 0.0310944i \(0.990101\pi\)
\(882\) 0 0
\(883\) 0.911382 3.99302i 0.0306704 0.134376i −0.957275 0.289180i \(-0.906617\pi\)
0.987945 + 0.154804i \(0.0494746\pi\)
\(884\) 34.0796 16.4119i 1.14622 0.551991i
\(885\) 0 0
\(886\) 2.95762 12.9582i 0.0993632 0.435338i
\(887\) −16.1647 −0.542756 −0.271378 0.962473i \(-0.587479\pi\)
−0.271378 + 0.962473i \(0.587479\pi\)
\(888\) 0 0
\(889\) 5.85332 + 7.33983i 0.196314 + 0.246170i
\(890\) 4.81868 + 21.1120i 0.161522 + 0.707676i
\(891\) 0 0
\(892\) 11.1093 13.9306i 0.371966 0.466431i
\(893\) 12.5778 6.05714i 0.420899 0.202694i
\(894\) 0 0
\(895\) 4.86591 + 6.10166i 0.162649 + 0.203956i
\(896\) 15.9475 19.9975i 0.532769 0.668071i
\(897\) 0 0
\(898\) 27.6514 0.922741
\(899\) 14.0881 + 4.28876i 0.469865 + 0.143038i
\(900\) 0 0
\(901\) 7.79749 + 3.75508i 0.259772 + 0.125100i
\(902\) −4.90916 + 6.15589i −0.163457 + 0.204969i
\(903\) 0 0
\(904\) −6.84514 3.29645i −0.227666 0.109638i
\(905\) −30.2326 + 14.5593i −1.00497 + 0.483966i
\(906\) 0 0
\(907\) −9.19510 40.2863i −0.305318 1.33769i −0.861978 0.506946i \(-0.830774\pi\)
0.556660 0.830741i \(-0.312083\pi\)
\(908\) 7.19279 + 31.5137i 0.238701 + 1.04582i
\(909\) 0 0
\(910\) 4.88210 21.3899i 0.161840 0.709068i
\(911\) −31.3566 −1.03889 −0.519446 0.854504i \(-0.673862\pi\)
−0.519446 + 0.854504i \(0.673862\pi\)
\(912\) 0 0
\(913\) 13.9648 6.72512i 0.462169 0.222569i
\(914\) −18.2932 + 8.80956i −0.605087 + 0.291394i
\(915\) 0 0
\(916\) −0.278097 −0.00918858
\(917\) 8.79035 38.5130i 0.290283 1.27181i
\(918\) 0 0
\(919\) −6.66230 29.1894i −0.219769 0.962871i −0.957649 0.287939i \(-0.907030\pi\)
0.737880 0.674932i \(-0.235827\pi\)
\(920\) 5.91299 + 25.9065i 0.194945 + 0.854112i
\(921\) 0 0
\(922\) 0.615252 0.296290i 0.0202622 0.00975778i
\(923\) −27.0968 13.0491i −0.891902 0.429517i
\(924\) 0 0
\(925\) 1.07713 1.35068i 0.0354160 0.0444102i
\(926\) 6.35011 + 3.05805i 0.208678 + 0.100494i
\(927\) 0 0
\(928\) −15.5611 + 27.1836i −0.510817 + 0.892347i
\(929\) 1.38920 0.0455781 0.0227891 0.999740i \(-0.492745\pi\)
0.0227891 + 0.999740i \(0.492745\pi\)
\(930\) 0 0
\(931\) 3.40478 4.26945i 0.111587 0.139926i
\(932\) −22.5883 28.3249i −0.739905 0.927812i
\(933\) 0 0
\(934\) 11.2563 5.42074i 0.368317 0.177372i
\(935\) 4.59916 5.76716i 0.150408 0.188606i
\(936\) 0 0
\(937\) 1.57652 + 6.90720i 0.0515028 + 0.225649i 0.994129 0.108202i \(-0.0345092\pi\)
−0.942626 + 0.333850i \(0.891652\pi\)
\(938\) −12.5571 15.7461i −0.410004 0.514128i
\(939\) 0 0
\(940\) −9.89572 −0.322763
\(941\) 12.5425 54.9523i 0.408874 1.79139i −0.180546 0.983567i \(-0.557786\pi\)
0.589420 0.807827i \(-0.299357\pi\)
\(942\) 0 0
\(943\) 57.4193 27.6517i 1.86983 0.900462i
\(944\) −2.76609 + 12.1190i −0.0900287 + 0.394441i
\(945\) 0 0
\(946\) 0.548714 2.40407i 0.0178402 0.0781631i
\(947\) −14.8344 18.6018i −0.482054 0.604477i 0.480022 0.877256i \(-0.340629\pi\)
−0.962077 + 0.272779i \(0.912057\pi\)
\(948\) 0 0
\(949\) −13.2168 57.9065i −0.429035 1.87972i
\(950\) 1.73729 2.17849i 0.0563651 0.0706796i
\(951\) 0 0
\(952\) −20.1269 9.69258i −0.652315 0.314138i
\(953\) −13.5680 17.0137i −0.439510 0.551129i 0.511904 0.859043i \(-0.328940\pi\)
−0.951414 + 0.307914i \(0.900369\pi\)
\(954\) 0 0
\(955\) −4.80150 2.31228i −0.155373 0.0748237i
\(956\) −12.7575 −0.412608
\(957\) 0 0
\(958\) −14.3106 −0.462355
\(959\) 6.57036 + 3.16412i 0.212168 + 0.102175i
\(960\) 0 0
\(961\) −14.6656 18.3901i −0.473083 0.593228i
\(962\) 7.61123 + 3.66538i 0.245396 + 0.118176i
\(963\) 0 0
\(964\) 0.509222 0.638545i 0.0164010 0.0205661i
\(965\) −2.93698 12.8678i −0.0945447 0.414228i
\(966\) 0 0
\(967\) 15.5078 + 19.4461i 0.498696 + 0.625345i 0.965935 0.258786i \(-0.0833225\pi\)
−0.467239 + 0.884131i \(0.654751\pi\)
\(968\) −5.48357 + 24.0251i −0.176249 + 0.772195i
\(969\) 0 0
\(970\) −4.91858 + 21.5497i −0.157926 + 0.691919i
\(971\) 54.0273 26.0182i 1.73382 0.834962i 0.748737 0.662868i \(-0.230661\pi\)
0.985080 0.172095i \(-0.0550535\pi\)
\(972\) 0 0
\(973\) 6.01153 26.3382i 0.192721 0.844365i
\(974\) 11.1131 0.356086
\(975\) 0 0
\(976\) 2.61354 + 3.27727i 0.0836573 + 0.104903i
\(977\) −10.2785 45.0329i −0.328837 1.44073i −0.821350 0.570425i \(-0.806779\pi\)
0.492513 0.870305i \(-0.336079\pi\)
\(978\) 0 0
\(979\) −9.22307 + 11.5654i −0.294771 + 0.369631i
\(980\) −3.48756 + 1.67952i −0.111406 + 0.0536504i
\(981\) 0 0
\(982\) 4.41974 + 5.54217i 0.141039 + 0.176858i
\(983\) 0.416228 0.521933i 0.0132756 0.0166471i −0.775149 0.631778i \(-0.782325\pi\)
0.788425 + 0.615131i \(0.210897\pi\)
\(984\) 0 0
\(985\) 19.8236 0.631632
\(986\) 13.6633 + 4.15943i 0.435128 + 0.132463i
\(987\) 0 0
\(988\) −38.5627 18.5708i −1.22684 0.590817i
\(989\) −12.4444 + 15.6048i −0.395709 + 0.496204i
\(990\) 0 0
\(991\) 40.3777 + 19.4449i 1.28264 + 0.617687i 0.946067 0.323971i \(-0.105018\pi\)
0.336573 + 0.941658i \(0.390732\pi\)
\(992\) −14.3307 + 6.90128i −0.454999 + 0.219116i
\(993\) 0 0
\(994\) 1.70484 + 7.46939i 0.0540742 + 0.236915i
\(995\) −0.235598 1.03222i −0.00746894 0.0327236i
\(996\) 0 0
\(997\) 2.48594 10.8916i 0.0787306 0.344941i −0.920186 0.391482i \(-0.871963\pi\)
0.998916 + 0.0465406i \(0.0148197\pi\)
\(998\) −4.27526 −0.135331
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.c.190.1 18
3.2 odd 2 87.2.g.a.16.3 18
29.7 even 7 7569.2.a.bj.1.7 9
29.20 even 7 inner 261.2.k.c.136.1 18
29.22 even 14 7569.2.a.bm.1.3 9
87.20 odd 14 87.2.g.a.49.3 yes 18
87.65 odd 14 2523.2.a.r.1.3 9
87.80 odd 14 2523.2.a.o.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.16.3 18 3.2 odd 2
87.2.g.a.49.3 yes 18 87.20 odd 14
261.2.k.c.136.1 18 29.20 even 7 inner
261.2.k.c.190.1 18 1.1 even 1 trivial
2523.2.a.o.1.7 9 87.80 odd 14
2523.2.a.r.1.3 9 87.65 odd 14
7569.2.a.bj.1.7 9 29.7 even 7
7569.2.a.bm.1.3 9 29.22 even 14