Properties

Label 261.2.k.c.181.1
Level $261$
Weight $2$
Character 261.181
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 181.1
Root \(2.87569 - 1.38486i\) of defining polynomial
Character \(\chi\) \(=\) 261.181
Dual form 261.2.k.c.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.487716 - 2.13682i) q^{2} +(-2.52621 + 1.21656i) q^{4} +(-0.533332 - 2.33668i) q^{5} +(-1.21803 - 0.586571i) q^{7} +(1.09855 + 1.37753i) q^{8} +(-4.73296 + 2.27927i) q^{10} +(-2.18816 + 2.74387i) q^{11} +(3.76255 - 4.71809i) q^{13} +(-0.659347 + 2.88879i) q^{14} +(-1.08862 + 1.36508i) q^{16} -3.05437 q^{17} +(-5.07762 + 2.44525i) q^{19} +(4.19002 + 5.25412i) q^{20} +(6.93036 + 3.33749i) q^{22} +(0.225809 - 0.989335i) q^{23} +(-0.670784 + 0.323033i) q^{25} +(-11.9168 - 5.73883i) q^{26} +3.79059 q^{28} +(5.14766 - 1.58164i) q^{29} +(-1.80501 - 7.90829i) q^{31} +(6.62277 + 3.18936i) q^{32} +(1.48967 + 6.52665i) q^{34} +(-0.721015 + 3.15897i) q^{35} +(3.42698 + 4.29729i) q^{37} +(7.70151 + 9.65739i) q^{38} +(2.63296 - 3.30163i) q^{40} +6.85782 q^{41} +(1.73610 - 7.60636i) q^{43} +(2.18968 - 9.59361i) q^{44} -2.22416 q^{46} +(0.260777 - 0.327004i) q^{47} +(-3.22491 - 4.04390i) q^{49} +(1.01742 + 1.27580i) q^{50} +(-3.76517 + 16.4963i) q^{52} +(-2.96899 - 13.0080i) q^{53} +(7.57855 + 3.64964i) q^{55} +(-0.530037 - 2.32225i) q^{56} +(-5.89028 - 10.2283i) q^{58} -3.56102 q^{59} +(-6.49557 - 3.12810i) q^{61} +(-16.0183 + 7.71400i) q^{62} +(2.80802 - 12.3027i) q^{64} +(-13.0314 - 6.27557i) q^{65} +(5.18318 + 6.49950i) q^{67} +(7.71599 - 3.71582i) q^{68} +7.10182 q^{70} +(6.10196 - 7.65161i) q^{71} +(0.0675863 - 0.296115i) q^{73} +(7.51117 - 9.41871i) q^{74} +(9.85235 - 12.3545i) q^{76} +(4.27471 - 2.05859i) q^{77} +(2.49794 + 3.13231i) q^{79} +(3.77036 + 1.81571i) q^{80} +(-3.34467 - 14.6540i) q^{82} +(-3.88709 + 1.87192i) q^{83} +(1.62899 + 7.13709i) q^{85} -17.1002 q^{86} -6.18356 q^{88} +(3.11361 + 13.6416i) q^{89} +(-7.35039 + 3.53976i) q^{91} +(0.633143 + 2.77398i) q^{92} +(-0.825935 - 0.397749i) q^{94} +(8.42183 + 10.5606i) q^{95} +(3.42690 - 1.65031i) q^{97} +(-7.06827 + 8.86333i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{2} - 6 q^{4} + q^{5} - 4 q^{7} + 15 q^{8} - 14 q^{10} - 26 q^{11} + 9 q^{13} + 10 q^{14} - 14 q^{16} - 4 q^{17} - 10 q^{19} + q^{20} - 8 q^{22} + 8 q^{23} + 16 q^{25} - 5 q^{26} + 80 q^{28}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{3}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.487716 2.13682i −0.344867 1.51096i −0.788658 0.614832i \(-0.789224\pi\)
0.443791 0.896130i \(-0.353633\pi\)
\(3\) 0 0
\(4\) −2.52621 + 1.21656i −1.26311 + 0.608280i
\(5\) −0.533332 2.33668i −0.238513 1.04499i −0.942349 0.334632i \(-0.891388\pi\)
0.703836 0.710363i \(-0.251469\pi\)
\(6\) 0 0
\(7\) −1.21803 0.586571i −0.460371 0.221703i 0.189299 0.981920i \(-0.439378\pi\)
−0.649670 + 0.760217i \(0.725093\pi\)
\(8\) 1.09855 + 1.37753i 0.388395 + 0.487031i
\(9\) 0 0
\(10\) −4.73296 + 2.27927i −1.49669 + 0.720769i
\(11\) −2.18816 + 2.74387i −0.659755 + 0.827307i −0.993317 0.115421i \(-0.963178\pi\)
0.333561 + 0.942728i \(0.391750\pi\)
\(12\) 0 0
\(13\) 3.76255 4.71809i 1.04354 1.30856i 0.0937822 0.995593i \(-0.470104\pi\)
0.949763 0.312971i \(-0.101324\pi\)
\(14\) −0.659347 + 2.88879i −0.176218 + 0.772061i
\(15\) 0 0
\(16\) −1.08862 + 1.36508i −0.272155 + 0.341271i
\(17\) −3.05437 −0.740794 −0.370397 0.928874i \(-0.620778\pi\)
−0.370397 + 0.928874i \(0.620778\pi\)
\(18\) 0 0
\(19\) −5.07762 + 2.44525i −1.16489 + 0.560980i −0.913473 0.406900i \(-0.866610\pi\)
−0.251414 + 0.967880i \(0.580895\pi\)
\(20\) 4.19002 + 5.25412i 0.936916 + 1.17486i
\(21\) 0 0
\(22\) 6.93036 + 3.33749i 1.47756 + 0.711555i
\(23\) 0.225809 0.989335i 0.0470845 0.206291i −0.945914 0.324417i \(-0.894832\pi\)
0.992999 + 0.118127i \(0.0376889\pi\)
\(24\) 0 0
\(25\) −0.670784 + 0.323033i −0.134157 + 0.0646065i
\(26\) −11.9168 5.73883i −2.33708 1.12548i
\(27\) 0 0
\(28\) 3.79059 0.716354
\(29\) 5.14766 1.58164i 0.955897 0.293703i
\(30\) 0 0
\(31\) −1.80501 7.90829i −0.324190 1.42037i −0.830018 0.557736i \(-0.811670\pi\)
0.505828 0.862634i \(-0.331187\pi\)
\(32\) 6.62277 + 3.18936i 1.17075 + 0.563804i
\(33\) 0 0
\(34\) 1.48967 + 6.52665i 0.255476 + 1.11931i
\(35\) −0.721015 + 3.15897i −0.121874 + 0.533964i
\(36\) 0 0
\(37\) 3.42698 + 4.29729i 0.563392 + 0.706471i 0.979181 0.202990i \(-0.0650660\pi\)
−0.415789 + 0.909461i \(0.636495\pi\)
\(38\) 7.70151 + 9.65739i 1.24935 + 1.56664i
\(39\) 0 0
\(40\) 2.63296 3.30163i 0.416308 0.522034i
\(41\) 6.85782 1.07101 0.535506 0.844531i \(-0.320121\pi\)
0.535506 + 0.844531i \(0.320121\pi\)
\(42\) 0 0
\(43\) 1.73610 7.60636i 0.264753 1.15996i −0.651274 0.758843i \(-0.725765\pi\)
0.916027 0.401116i \(-0.131378\pi\)
\(44\) 2.18968 9.59361i 0.330107 1.44629i
\(45\) 0 0
\(46\) −2.22416 −0.327935
\(47\) 0.260777 0.327004i 0.0380382 0.0476984i −0.762449 0.647049i \(-0.776003\pi\)
0.800487 + 0.599350i \(0.204574\pi\)
\(48\) 0 0
\(49\) −3.22491 4.04390i −0.460701 0.577700i
\(50\) 1.01742 + 1.27580i 0.143884 + 0.180425i
\(51\) 0 0
\(52\) −3.76517 + 16.4963i −0.522135 + 2.28762i
\(53\) −2.96899 13.0080i −0.407821 1.78678i −0.594214 0.804307i \(-0.702537\pi\)
0.186392 0.982475i \(-0.440320\pi\)
\(54\) 0 0
\(55\) 7.57855 + 3.64964i 1.02189 + 0.492117i
\(56\) −0.530037 2.32225i −0.0708292 0.310323i
\(57\) 0 0
\(58\) −5.89028 10.2283i −0.773432 1.34304i
\(59\) −3.56102 −0.463606 −0.231803 0.972763i \(-0.574462\pi\)
−0.231803 + 0.972763i \(0.574462\pi\)
\(60\) 0 0
\(61\) −6.49557 3.12810i −0.831672 0.400512i −0.0309301 0.999522i \(-0.509847\pi\)
−0.800742 + 0.599009i \(0.795561\pi\)
\(62\) −16.0183 + 7.71400i −2.03432 + 0.979679i
\(63\) 0 0
\(64\) 2.80802 12.3027i 0.351002 1.53784i
\(65\) −13.0314 6.27557i −1.61634 0.778389i
\(66\) 0 0
\(67\) 5.18318 + 6.49950i 0.633226 + 0.794040i 0.990138 0.140098i \(-0.0447418\pi\)
−0.356912 + 0.934138i \(0.616170\pi\)
\(68\) 7.71599 3.71582i 0.935701 0.450610i
\(69\) 0 0
\(70\) 7.10182 0.848830
\(71\) 6.10196 7.65161i 0.724169 0.908079i −0.274397 0.961617i \(-0.588478\pi\)
0.998566 + 0.0535372i \(0.0170496\pi\)
\(72\) 0 0
\(73\) 0.0675863 0.296115i 0.00791038 0.0346577i −0.970819 0.239815i \(-0.922913\pi\)
0.978729 + 0.205157i \(0.0657705\pi\)
\(74\) 7.51117 9.41871i 0.873156 1.09490i
\(75\) 0 0
\(76\) 9.85235 12.3545i 1.13014 1.41715i
\(77\) 4.27471 2.05859i 0.487148 0.234598i
\(78\) 0 0
\(79\) 2.49794 + 3.13231i 0.281040 + 0.352413i 0.902236 0.431242i \(-0.141924\pi\)
−0.621196 + 0.783655i \(0.713353\pi\)
\(80\) 3.77036 + 1.81571i 0.421539 + 0.203002i
\(81\) 0 0
\(82\) −3.34467 14.6540i −0.369357 1.61826i
\(83\) −3.88709 + 1.87192i −0.426663 + 0.205470i −0.634877 0.772613i \(-0.718949\pi\)
0.208214 + 0.978083i \(0.433235\pi\)
\(84\) 0 0
\(85\) 1.62899 + 7.13709i 0.176689 + 0.774126i
\(86\) −17.1002 −1.84396
\(87\) 0 0
\(88\) −6.18356 −0.659170
\(89\) 3.11361 + 13.6416i 0.330042 + 1.44601i 0.819046 + 0.573728i \(0.194503\pi\)
−0.489004 + 0.872282i \(0.662640\pi\)
\(90\) 0 0
\(91\) −7.35039 + 3.53976i −0.770530 + 0.371068i
\(92\) 0.633143 + 2.77398i 0.0660097 + 0.289207i
\(93\) 0 0
\(94\) −0.825935 0.397749i −0.0851887 0.0410247i
\(95\) 8.42183 + 10.5606i 0.864062 + 1.08350i
\(96\) 0 0
\(97\) 3.42690 1.65031i 0.347949 0.167563i −0.251743 0.967794i \(-0.581004\pi\)
0.599692 + 0.800231i \(0.295290\pi\)
\(98\) −7.06827 + 8.86333i −0.714003 + 0.895332i
\(99\) 0 0
\(100\) 1.30155 1.63210i 0.130155 0.163210i
\(101\) −0.00939526 + 0.0411633i −0.000934863 + 0.00409590i −0.975393 0.220472i \(-0.929240\pi\)
0.974458 + 0.224568i \(0.0720972\pi\)
\(102\) 0 0
\(103\) 7.34494 9.21026i 0.723718 0.907514i −0.274824 0.961495i \(-0.588620\pi\)
0.998542 + 0.0539808i \(0.0171910\pi\)
\(104\) 10.6327 1.04262
\(105\) 0 0
\(106\) −26.3477 + 12.6884i −2.55912 + 1.23241i
\(107\) 3.90752 + 4.89987i 0.377754 + 0.473688i 0.933971 0.357349i \(-0.116319\pi\)
−0.556217 + 0.831037i \(0.687748\pi\)
\(108\) 0 0
\(109\) 13.3409 + 6.42464i 1.27783 + 0.615369i 0.944831 0.327559i \(-0.106226\pi\)
0.332996 + 0.942928i \(0.391940\pi\)
\(110\) 4.10245 17.9740i 0.391154 1.71376i
\(111\) 0 0
\(112\) 2.12668 1.02416i 0.200953 0.0967737i
\(113\) 10.7154 + 5.16029i 1.00802 + 0.485439i 0.863654 0.504085i \(-0.168170\pi\)
0.144370 + 0.989524i \(0.453884\pi\)
\(114\) 0 0
\(115\) −2.43219 −0.226803
\(116\) −11.0799 + 10.2580i −1.02874 + 0.952430i
\(117\) 0 0
\(118\) 1.73677 + 7.60928i 0.159883 + 0.700491i
\(119\) 3.72031 + 1.79160i 0.341040 + 0.164236i
\(120\) 0 0
\(121\) −0.293028 1.28384i −0.0266389 0.116713i
\(122\) −3.51621 + 15.4055i −0.318342 + 1.39475i
\(123\) 0 0
\(124\) 14.1807 + 17.7821i 1.27347 + 1.59688i
\(125\) −6.35924 7.97423i −0.568788 0.713237i
\(126\) 0 0
\(127\) −9.41080 + 11.8008i −0.835074 + 1.04715i 0.163092 + 0.986611i \(0.447853\pi\)
−0.998166 + 0.0605385i \(0.980718\pi\)
\(128\) −12.9568 −1.14523
\(129\) 0 0
\(130\) −7.05419 + 30.9064i −0.618693 + 2.71067i
\(131\) 2.32463 10.1849i 0.203103 0.889855i −0.765930 0.642924i \(-0.777721\pi\)
0.969033 0.246930i \(-0.0794219\pi\)
\(132\) 0 0
\(133\) 7.61899 0.660650
\(134\) 11.3604 14.2454i 0.981386 1.23062i
\(135\) 0 0
\(136\) −3.35537 4.20750i −0.287720 0.360790i
\(137\) 2.28953 + 2.87098i 0.195608 + 0.245284i 0.869956 0.493129i \(-0.164147\pi\)
−0.674348 + 0.738413i \(0.735575\pi\)
\(138\) 0 0
\(139\) −1.28647 + 5.63639i −0.109117 + 0.478072i 0.890611 + 0.454765i \(0.150277\pi\)
−0.999728 + 0.0233073i \(0.992580\pi\)
\(140\) −2.02164 8.85739i −0.170860 0.748586i
\(141\) 0 0
\(142\) −19.3262 9.30699i −1.62182 0.781025i
\(143\) 4.71275 + 20.6479i 0.394100 + 1.72666i
\(144\) 0 0
\(145\) −6.44120 11.1849i −0.534912 0.928855i
\(146\) −0.665709 −0.0550944
\(147\) 0 0
\(148\) −13.8852 6.68675i −1.14135 0.549648i
\(149\) −7.73406 + 3.72453i −0.633599 + 0.305125i −0.722977 0.690873i \(-0.757227\pi\)
0.0893774 + 0.995998i \(0.471512\pi\)
\(150\) 0 0
\(151\) −2.65704 + 11.6412i −0.216227 + 0.947351i 0.744011 + 0.668168i \(0.232921\pi\)
−0.960238 + 0.279184i \(0.909936\pi\)
\(152\) −8.94642 4.30837i −0.725650 0.349455i
\(153\) 0 0
\(154\) −6.48369 8.13029i −0.522471 0.655158i
\(155\) −17.5165 + 8.43548i −1.40696 + 0.677554i
\(156\) 0 0
\(157\) −12.2535 −0.977936 −0.488968 0.872302i \(-0.662626\pi\)
−0.488968 + 0.872302i \(0.662626\pi\)
\(158\) 5.47492 6.86533i 0.435561 0.546176i
\(159\) 0 0
\(160\) 3.92037 17.1763i 0.309933 1.35790i
\(161\) −0.855356 + 1.07258i −0.0674115 + 0.0845314i
\(162\) 0 0
\(163\) −4.94515 + 6.20102i −0.387334 + 0.485701i −0.936825 0.349798i \(-0.886250\pi\)
0.549491 + 0.835499i \(0.314822\pi\)
\(164\) −17.3243 + 8.34295i −1.35280 + 0.651475i
\(165\) 0 0
\(166\) 5.89576 + 7.39305i 0.457600 + 0.573812i
\(167\) 11.6445 + 5.60770i 0.901080 + 0.433937i 0.826279 0.563261i \(-0.190454\pi\)
0.0748008 + 0.997198i \(0.476168\pi\)
\(168\) 0 0
\(169\) −5.21082 22.8301i −0.400833 1.75616i
\(170\) 14.4562 6.96175i 1.10874 0.533941i
\(171\) 0 0
\(172\) 4.86783 + 21.3273i 0.371168 + 1.62619i
\(173\) −2.65357 −0.201747 −0.100874 0.994899i \(-0.532164\pi\)
−0.100874 + 0.994899i \(0.532164\pi\)
\(174\) 0 0
\(175\) 1.00651 0.0760853
\(176\) −1.36354 5.97405i −0.102781 0.450311i
\(177\) 0 0
\(178\) 27.6312 13.3065i 2.07105 0.997363i
\(179\) −2.98150 13.0628i −0.222848 0.976361i −0.955322 0.295566i \(-0.904492\pi\)
0.732474 0.680795i \(-0.238365\pi\)
\(180\) 0 0
\(181\) −1.36397 0.656854i −0.101383 0.0488236i 0.382505 0.923953i \(-0.375062\pi\)
−0.483888 + 0.875130i \(0.660776\pi\)
\(182\) 11.1487 + 13.9801i 0.826400 + 1.03627i
\(183\) 0 0
\(184\) 1.61090 0.775770i 0.118757 0.0571905i
\(185\) 8.21368 10.2996i 0.603882 0.757244i
\(186\) 0 0
\(187\) 6.68346 8.38079i 0.488743 0.612864i
\(188\) −0.260958 + 1.14333i −0.0190323 + 0.0833860i
\(189\) 0 0
\(190\) 18.4588 23.1466i 1.33914 1.67923i
\(191\) 11.6187 0.840696 0.420348 0.907363i \(-0.361908\pi\)
0.420348 + 0.907363i \(0.361908\pi\)
\(192\) 0 0
\(193\) 5.55158 2.67350i 0.399612 0.192443i −0.223274 0.974756i \(-0.571674\pi\)
0.622886 + 0.782313i \(0.285960\pi\)
\(194\) −5.19777 6.51780i −0.373178 0.467951i
\(195\) 0 0
\(196\) 13.0664 + 6.29246i 0.933317 + 0.449462i
\(197\) −0.562248 + 2.46337i −0.0400585 + 0.175508i −0.991000 0.133864i \(-0.957262\pi\)
0.950941 + 0.309372i \(0.100119\pi\)
\(198\) 0 0
\(199\) −11.9665 + 5.76277i −0.848284 + 0.408512i −0.806940 0.590633i \(-0.798878\pi\)
−0.0413438 + 0.999145i \(0.513164\pi\)
\(200\) −1.18187 0.569161i −0.0835712 0.0402458i
\(201\) 0 0
\(202\) 0.0925410 0.00651116
\(203\) −7.19773 1.09299i −0.505182 0.0767128i
\(204\) 0 0
\(205\) −3.65749 16.0245i −0.255451 1.11920i
\(206\) −23.2629 11.2028i −1.62081 0.780539i
\(207\) 0 0
\(208\) 2.34461 + 10.2724i 0.162569 + 0.712263i
\(209\) 4.40120 19.2829i 0.304438 1.33383i
\(210\) 0 0
\(211\) −5.17794 6.49294i −0.356464 0.446992i 0.570974 0.820968i \(-0.306566\pi\)
−0.927438 + 0.373976i \(0.877994\pi\)
\(212\) 23.3253 + 29.2489i 1.60198 + 2.00883i
\(213\) 0 0
\(214\) 8.56440 10.7394i 0.585450 0.734132i
\(215\) −18.6995 −1.27530
\(216\) 0 0
\(217\) −2.44021 + 10.6913i −0.165652 + 0.725771i
\(218\) 7.22175 31.6406i 0.489119 2.14297i
\(219\) 0 0
\(220\) −23.5850 −1.59010
\(221\) −11.4922 + 14.4108i −0.773052 + 0.969376i
\(222\) 0 0
\(223\) 15.5947 + 19.5551i 1.04430 + 1.30951i 0.949417 + 0.314019i \(0.101675\pi\)
0.0948805 + 0.995489i \(0.469753\pi\)
\(224\) −6.19592 7.76944i −0.413983 0.519118i
\(225\) 0 0
\(226\) 5.80053 25.4138i 0.385845 1.69050i
\(227\) 0.677325 + 2.96756i 0.0449556 + 0.196964i 0.992419 0.122901i \(-0.0392197\pi\)
−0.947463 + 0.319865i \(0.896363\pi\)
\(228\) 0 0
\(229\) 19.7389 + 9.50577i 1.30439 + 0.628159i 0.951541 0.307523i \(-0.0995001\pi\)
0.352845 + 0.935682i \(0.385214\pi\)
\(230\) 1.18622 + 5.19716i 0.0782169 + 0.342691i
\(231\) 0 0
\(232\) 7.83370 + 5.35357i 0.514308 + 0.351479i
\(233\) −9.96464 −0.652805 −0.326403 0.945231i \(-0.605837\pi\)
−0.326403 + 0.945231i \(0.605837\pi\)
\(234\) 0 0
\(235\) −0.903184 0.434951i −0.0589173 0.0283731i
\(236\) 8.99590 4.33220i 0.585583 0.282002i
\(237\) 0 0
\(238\) 2.01389 8.82343i 0.130541 0.571938i
\(239\) −7.01041 3.37604i −0.453466 0.218378i 0.193187 0.981162i \(-0.438118\pi\)
−0.646653 + 0.762784i \(0.723832\pi\)
\(240\) 0 0
\(241\) −14.4582 18.1300i −0.931334 1.16786i −0.985560 0.169328i \(-0.945840\pi\)
0.0542254 0.998529i \(-0.482731\pi\)
\(242\) −2.60043 + 1.25230i −0.167162 + 0.0805009i
\(243\) 0 0
\(244\) 20.2147 1.29411
\(245\) −7.72936 + 9.69231i −0.493811 + 0.619219i
\(246\) 0 0
\(247\) −7.56789 + 33.1571i −0.481533 + 2.10974i
\(248\) 8.91103 11.1741i 0.565851 0.709555i
\(249\) 0 0
\(250\) −13.9380 + 17.4777i −0.881518 + 1.10539i
\(251\) 1.06363 0.512217i 0.0671357 0.0323308i −0.400015 0.916509i \(-0.630995\pi\)
0.467150 + 0.884178i \(0.345281\pi\)
\(252\) 0 0
\(253\) 2.22050 + 2.78441i 0.139601 + 0.175055i
\(254\) 29.8060 + 14.3538i 1.87019 + 0.900637i
\(255\) 0 0
\(256\) 0.703222 + 3.08102i 0.0439514 + 0.192564i
\(257\) 14.3925 6.93107i 0.897781 0.432348i 0.0726939 0.997354i \(-0.476840\pi\)
0.825087 + 0.565006i \(0.191126\pi\)
\(258\) 0 0
\(259\) −1.65348 7.24438i −0.102742 0.450144i
\(260\) 40.5546 2.51509
\(261\) 0 0
\(262\) −22.8970 −1.41458
\(263\) 3.25116 + 14.2443i 0.200475 + 0.878339i 0.970648 + 0.240504i \(0.0773126\pi\)
−0.770173 + 0.637835i \(0.779830\pi\)
\(264\) 0 0
\(265\) −28.8120 + 13.8751i −1.76991 + 0.852343i
\(266\) −3.71590 16.2804i −0.227837 0.998218i
\(267\) 0 0
\(268\) −21.0008 10.1135i −1.28283 0.617778i
\(269\) −13.7882 17.2899i −0.840681 1.05418i −0.997780 0.0665980i \(-0.978785\pi\)
0.157099 0.987583i \(-0.449786\pi\)
\(270\) 0 0
\(271\) 20.8260 10.0293i 1.26509 0.609236i 0.323574 0.946203i \(-0.395115\pi\)
0.941516 + 0.336967i \(0.109401\pi\)
\(272\) 3.32504 4.16947i 0.201610 0.252812i
\(273\) 0 0
\(274\) 5.01814 6.29255i 0.303157 0.380147i
\(275\) 0.581425 2.54739i 0.0350613 0.153613i
\(276\) 0 0
\(277\) 11.6674 14.6304i 0.701024 0.879056i −0.296076 0.955164i \(-0.595678\pi\)
0.997100 + 0.0761086i \(0.0242496\pi\)
\(278\) 12.6714 0.759980
\(279\) 0 0
\(280\) −5.14366 + 2.47706i −0.307392 + 0.148032i
\(281\) 5.40308 + 6.77525i 0.322321 + 0.404177i 0.916422 0.400213i \(-0.131064\pi\)
−0.594102 + 0.804390i \(0.702492\pi\)
\(282\) 0 0
\(283\) −5.03188 2.42322i −0.299114 0.144046i 0.278307 0.960492i \(-0.410227\pi\)
−0.577421 + 0.816446i \(0.695941\pi\)
\(284\) −6.10619 + 26.7530i −0.362336 + 1.58750i
\(285\) 0 0
\(286\) 41.8224 20.1406i 2.47301 1.19094i
\(287\) −8.35301 4.02260i −0.493063 0.237446i
\(288\) 0 0
\(289\) −7.67081 −0.451224
\(290\) −20.7587 + 19.2188i −1.21899 + 1.12856i
\(291\) 0 0
\(292\) 0.189504 + 0.830272i 0.0110899 + 0.0485880i
\(293\) −4.25166 2.04749i −0.248385 0.119616i 0.305549 0.952176i \(-0.401160\pi\)
−0.553934 + 0.832560i \(0.686874\pi\)
\(294\) 0 0
\(295\) 1.89921 + 8.32097i 0.110576 + 0.484466i
\(296\) −2.15497 + 9.44155i −0.125255 + 0.548779i
\(297\) 0 0
\(298\) 11.7307 + 14.7098i 0.679540 + 0.852117i
\(299\) −3.81816 4.78782i −0.220810 0.276887i
\(300\) 0 0
\(301\) −6.57628 + 8.24640i −0.379051 + 0.475315i
\(302\) 26.1712 1.50598
\(303\) 0 0
\(304\) 2.18961 9.59333i 0.125583 0.550215i
\(305\) −3.84508 + 16.8464i −0.220168 + 0.964621i
\(306\) 0 0
\(307\) 11.7362 0.669821 0.334910 0.942250i \(-0.391294\pi\)
0.334910 + 0.942250i \(0.391294\pi\)
\(308\) −8.29442 + 10.4009i −0.472618 + 0.592645i
\(309\) 0 0
\(310\) 26.5682 + 33.3155i 1.50897 + 1.89219i
\(311\) −10.4770 13.1378i −0.594097 0.744974i 0.390348 0.920667i \(-0.372355\pi\)
−0.984445 + 0.175693i \(0.943783\pi\)
\(312\) 0 0
\(313\) 2.66132 11.6600i 0.150427 0.659063i −0.842334 0.538956i \(-0.818819\pi\)
0.992761 0.120107i \(-0.0383239\pi\)
\(314\) 5.97623 + 26.1836i 0.337258 + 1.47762i
\(315\) 0 0
\(316\) −10.1210 4.87400i −0.569349 0.274184i
\(317\) −3.14555 13.7815i −0.176671 0.774048i −0.983152 0.182788i \(-0.941488\pi\)
0.806481 0.591260i \(-0.201369\pi\)
\(318\) 0 0
\(319\) −6.92410 + 17.5854i −0.387675 + 0.984592i
\(320\) −30.2451 −1.69075
\(321\) 0 0
\(322\) 2.70909 + 1.30463i 0.150972 + 0.0727042i
\(323\) 15.5089 7.46871i 0.862941 0.415570i
\(324\) 0 0
\(325\) −0.999763 + 4.38025i −0.0554569 + 0.242973i
\(326\) 15.6623 + 7.54257i 0.867455 + 0.417744i
\(327\) 0 0
\(328\) 7.53363 + 9.44687i 0.415975 + 0.521616i
\(329\) −0.509444 + 0.245335i −0.0280866 + 0.0135258i
\(330\) 0 0
\(331\) 23.0236 1.26549 0.632747 0.774359i \(-0.281927\pi\)
0.632747 + 0.774359i \(0.281927\pi\)
\(332\) 7.54230 9.45774i 0.413937 0.519061i
\(333\) 0 0
\(334\) 6.30346 27.6172i 0.344910 1.51115i
\(335\) 12.4229 15.5778i 0.678735 0.851107i
\(336\) 0 0
\(337\) −1.59382 + 1.99859i −0.0868212 + 0.108870i −0.823345 0.567542i \(-0.807895\pi\)
0.736524 + 0.676412i \(0.236466\pi\)
\(338\) −46.2425 + 22.2692i −2.51526 + 1.21129i
\(339\) 0 0
\(340\) −12.7979 16.0480i −0.694062 0.870326i
\(341\) 25.6490 + 12.3519i 1.38897 + 0.668892i
\(342\) 0 0
\(343\) 3.66178 + 16.0433i 0.197717 + 0.866257i
\(344\) 12.3852 5.96440i 0.667765 0.321579i
\(345\) 0 0
\(346\) 1.29419 + 5.67022i 0.0695761 + 0.304833i
\(347\) 0.891885 0.0478789 0.0239394 0.999713i \(-0.492379\pi\)
0.0239394 + 0.999713i \(0.492379\pi\)
\(348\) 0 0
\(349\) −0.755575 −0.0404450 −0.0202225 0.999796i \(-0.506437\pi\)
−0.0202225 + 0.999796i \(0.506437\pi\)
\(350\) −0.490893 2.15074i −0.0262393 0.114962i
\(351\) 0 0
\(352\) −23.2429 + 11.1932i −1.23885 + 0.596598i
\(353\) 4.28143 + 18.7582i 0.227878 + 0.998397i 0.951367 + 0.308061i \(0.0996802\pi\)
−0.723489 + 0.690336i \(0.757463\pi\)
\(354\) 0 0
\(355\) −21.1337 10.1775i −1.12166 0.540164i
\(356\) −24.4615 30.6737i −1.29646 1.62570i
\(357\) 0 0
\(358\) −26.4588 + 12.7419i −1.39839 + 0.673430i
\(359\) −10.9825 + 13.7716i −0.579634 + 0.726838i −0.982050 0.188619i \(-0.939599\pi\)
0.402416 + 0.915457i \(0.368170\pi\)
\(360\) 0 0
\(361\) 7.95667 9.97735i 0.418772 0.525124i
\(362\) −0.738351 + 3.23493i −0.0388068 + 0.170024i
\(363\) 0 0
\(364\) 14.2623 17.8844i 0.747548 0.937395i
\(365\) −0.727972 −0.0381038
\(366\) 0 0
\(367\) −3.42176 + 1.64783i −0.178614 + 0.0860162i −0.521054 0.853524i \(-0.674461\pi\)
0.342440 + 0.939540i \(0.388747\pi\)
\(368\) 1.10471 + 1.38526i 0.0575867 + 0.0722115i
\(369\) 0 0
\(370\) −26.0144 12.5279i −1.35243 0.651294i
\(371\) −4.01379 + 17.5856i −0.208386 + 0.912998i
\(372\) 0 0
\(373\) 7.47141 3.59804i 0.386855 0.186299i −0.230339 0.973110i \(-0.573984\pi\)
0.617194 + 0.786811i \(0.288269\pi\)
\(374\) −21.1679 10.1939i −1.09457 0.527115i
\(375\) 0 0
\(376\) 0.736934 0.0380045
\(377\) 11.9060 30.2382i 0.613192 1.55734i
\(378\) 0 0
\(379\) 1.98764 + 8.70843i 0.102098 + 0.447322i 0.999975 + 0.00707478i \(0.00225199\pi\)
−0.897877 + 0.440247i \(0.854891\pi\)
\(380\) −34.1230 16.4328i −1.75047 0.842983i
\(381\) 0 0
\(382\) −5.66660 24.8270i −0.289929 1.27026i
\(383\) 7.97804 34.9541i 0.407659 1.78607i −0.187288 0.982305i \(-0.559970\pi\)
0.594947 0.803765i \(-0.297173\pi\)
\(384\) 0 0
\(385\) −7.09011 8.89072i −0.361345 0.453113i
\(386\) −8.42040 10.5588i −0.428587 0.537431i
\(387\) 0 0
\(388\) −6.64938 + 8.33806i −0.337571 + 0.423301i
\(389\) −11.3446 −0.575194 −0.287597 0.957752i \(-0.592856\pi\)
−0.287597 + 0.957752i \(0.592856\pi\)
\(390\) 0 0
\(391\) −0.689705 + 3.02180i −0.0348799 + 0.152819i
\(392\) 2.02790 8.88482i 0.102425 0.448751i
\(393\) 0 0
\(394\) 5.53800 0.279001
\(395\) 5.98699 7.50744i 0.301238 0.377740i
\(396\) 0 0
\(397\) −15.0481 18.8697i −0.755242 0.947043i 0.244503 0.969649i \(-0.421375\pi\)
−0.999744 + 0.0226053i \(0.992804\pi\)
\(398\) 18.1503 + 22.7598i 0.909792 + 1.14084i
\(399\) 0 0
\(400\) 0.289261 1.26734i 0.0144631 0.0633668i
\(401\) 4.30720 + 18.8711i 0.215091 + 0.942376i 0.961048 + 0.276381i \(0.0891353\pi\)
−0.745957 + 0.665994i \(0.768008\pi\)
\(402\) 0 0
\(403\) −44.1035 21.2391i −2.19695 1.05800i
\(404\) −0.0263432 0.115417i −0.00131062 0.00574222i
\(405\) 0 0
\(406\) 1.17492 + 15.9133i 0.0583105 + 0.789766i
\(407\) −19.2900 −0.956169
\(408\) 0 0
\(409\) −10.3124 4.96618i −0.509915 0.245562i 0.161192 0.986923i \(-0.448466\pi\)
−0.671106 + 0.741361i \(0.734181\pi\)
\(410\) −32.4578 + 15.6308i −1.60298 + 0.771952i
\(411\) 0 0
\(412\) −7.35003 + 32.2026i −0.362110 + 1.58651i
\(413\) 4.33742 + 2.08879i 0.213431 + 0.102783i
\(414\) 0 0
\(415\) 6.44719 + 8.08452i 0.316480 + 0.396853i
\(416\) 39.9662 19.2467i 1.95951 0.943648i
\(417\) 0 0
\(418\) −43.3508 −2.12036
\(419\) 13.1672 16.5111i 0.643259 0.806621i −0.348147 0.937440i \(-0.613189\pi\)
0.991406 + 0.130819i \(0.0417605\pi\)
\(420\) 0 0
\(421\) −6.12223 + 26.8233i −0.298379 + 1.30729i 0.574161 + 0.818743i \(0.305329\pi\)
−0.872540 + 0.488543i \(0.837529\pi\)
\(422\) −11.3489 + 14.2311i −0.552455 + 0.692757i
\(423\) 0 0
\(424\) 14.6573 18.3797i 0.711823 0.892598i
\(425\) 2.04882 0.986662i 0.0993826 0.0478601i
\(426\) 0 0
\(427\) 6.07692 + 7.62022i 0.294083 + 0.368768i
\(428\) −15.8322 7.62438i −0.765278 0.368538i
\(429\) 0 0
\(430\) 9.12007 + 39.9576i 0.439809 + 1.92693i
\(431\) −1.75647 + 0.845873i −0.0846064 + 0.0407443i −0.475708 0.879603i \(-0.657808\pi\)
0.391102 + 0.920347i \(0.372094\pi\)
\(432\) 0 0
\(433\) −1.74340 7.63835i −0.0837826 0.367076i 0.915605 0.402080i \(-0.131713\pi\)
−0.999387 + 0.0350044i \(0.988855\pi\)
\(434\) 24.0355 1.15374
\(435\) 0 0
\(436\) −41.5179 −1.98835
\(437\) 1.27260 + 5.57563i 0.0608768 + 0.266719i
\(438\) 0 0
\(439\) −2.15322 + 1.03694i −0.102768 + 0.0494903i −0.484561 0.874757i \(-0.661021\pi\)
0.381794 + 0.924248i \(0.375306\pi\)
\(440\) 3.29789 + 14.4490i 0.157221 + 0.688829i
\(441\) 0 0
\(442\) 36.3983 + 17.5285i 1.73129 + 0.833746i
\(443\) −23.9106 29.9830i −1.13603 1.42453i −0.890405 0.455168i \(-0.849579\pi\)
−0.245623 0.969366i \(-0.578992\pi\)
\(444\) 0 0
\(445\) 30.2155 14.5510i 1.43235 0.689785i
\(446\) 34.1801 42.8604i 1.61847 2.02950i
\(447\) 0 0
\(448\) −10.6367 + 13.3379i −0.502535 + 0.630159i
\(449\) −6.97471 + 30.5582i −0.329157 + 1.44213i 0.491584 + 0.870830i \(0.336418\pi\)
−0.820741 + 0.571301i \(0.806439\pi\)
\(450\) 0 0
\(451\) −15.0060 + 18.8170i −0.706606 + 0.886056i
\(452\) −33.3473 −1.56852
\(453\) 0 0
\(454\) 6.01080 2.89465i 0.282101 0.135853i
\(455\) 12.1915 + 15.2876i 0.571545 + 0.716695i
\(456\) 0 0
\(457\) 29.0691 + 13.9989i 1.35980 + 0.654843i 0.964591 0.263750i \(-0.0849595\pi\)
0.395204 + 0.918593i \(0.370674\pi\)
\(458\) 10.6852 46.8147i 0.499285 2.18751i
\(459\) 0 0
\(460\) 6.14422 2.95890i 0.286476 0.137960i
\(461\) −5.11576 2.46362i −0.238265 0.114742i 0.310942 0.950429i \(-0.399356\pi\)
−0.549206 + 0.835687i \(0.685070\pi\)
\(462\) 0 0
\(463\) 23.2339 1.07977 0.539886 0.841738i \(-0.318467\pi\)
0.539886 + 0.841738i \(0.318467\pi\)
\(464\) −3.44477 + 8.74879i −0.159919 + 0.406152i
\(465\) 0 0
\(466\) 4.85991 + 21.2927i 0.225131 + 0.986364i
\(467\) 10.8811 + 5.24005i 0.503516 + 0.242481i 0.668358 0.743839i \(-0.266997\pi\)
−0.164842 + 0.986320i \(0.552712\pi\)
\(468\) 0 0
\(469\) −2.50083 10.9569i −0.115478 0.505941i
\(470\) −0.488915 + 2.14208i −0.0225520 + 0.0988067i
\(471\) 0 0
\(472\) −3.91195 4.90543i −0.180062 0.225791i
\(473\) 17.0720 + 21.4076i 0.784970 + 0.984321i
\(474\) 0 0
\(475\) 2.61609 3.28047i 0.120034 0.150518i
\(476\) −11.5779 −0.530671
\(477\) 0 0
\(478\) −3.79490 + 16.6266i −0.173575 + 0.760481i
\(479\) −6.78931 + 29.7459i −0.310212 + 1.35913i 0.543950 + 0.839118i \(0.316928\pi\)
−0.854161 + 0.520008i \(0.825929\pi\)
\(480\) 0 0
\(481\) 33.1692 1.51239
\(482\) −31.6891 + 39.7369i −1.44340 + 1.80997i
\(483\) 0 0
\(484\) 2.30212 + 2.88677i 0.104642 + 0.131217i
\(485\) −5.68392 7.12741i −0.258093 0.323639i
\(486\) 0 0
\(487\) 5.23476 22.9350i 0.237210 1.03928i −0.706293 0.707919i \(-0.749634\pi\)
0.943503 0.331364i \(-0.107509\pi\)
\(488\) −2.82662 12.3842i −0.127955 0.560607i
\(489\) 0 0
\(490\) 24.4805 + 11.7892i 1.10592 + 0.532581i
\(491\) 6.13907 + 26.8970i 0.277052 + 1.21385i 0.901500 + 0.432779i \(0.142467\pi\)
−0.624447 + 0.781067i \(0.714676\pi\)
\(492\) 0 0
\(493\) −15.7229 + 4.83091i −0.708123 + 0.217573i
\(494\) 74.5419 3.35380
\(495\) 0 0
\(496\) 12.7604 + 6.14511i 0.572961 + 0.275924i
\(497\) −11.9206 + 5.74064i −0.534710 + 0.257503i
\(498\) 0 0
\(499\) 8.53765 37.4059i 0.382198 1.67452i −0.308383 0.951262i \(-0.599788\pi\)
0.690580 0.723256i \(-0.257355\pi\)
\(500\) 25.7659 + 12.4082i 1.15229 + 0.554912i
\(501\) 0 0
\(502\) −1.61327 2.02297i −0.0720036 0.0902896i
\(503\) −4.46853 + 2.15193i −0.199242 + 0.0959498i −0.530844 0.847469i \(-0.678125\pi\)
0.331602 + 0.943419i \(0.392411\pi\)
\(504\) 0 0
\(505\) 0.101196 0.00450318
\(506\) 4.86683 6.10281i 0.216357 0.271303i
\(507\) 0 0
\(508\) 9.41733 41.2600i 0.417827 1.83062i
\(509\) 10.2436 12.8450i 0.454038 0.569345i −0.501144 0.865364i \(-0.667087\pi\)
0.955182 + 0.296018i \(0.0956589\pi\)
\(510\) 0 0
\(511\) −0.256014 + 0.321032i −0.0113254 + 0.0142016i
\(512\) −17.1068 + 8.23820i −0.756020 + 0.364080i
\(513\) 0 0
\(514\) −21.8299 27.3739i −0.962878 1.20741i
\(515\) −25.4387 12.2506i −1.12096 0.539828i
\(516\) 0 0
\(517\) 0.326634 + 1.43108i 0.0143653 + 0.0629386i
\(518\) −14.6735 + 7.06640i −0.644718 + 0.310480i
\(519\) 0 0
\(520\) −5.67074 24.8451i −0.248678 1.08953i
\(521\) 30.7040 1.34517 0.672583 0.740021i \(-0.265185\pi\)
0.672583 + 0.740021i \(0.265185\pi\)
\(522\) 0 0
\(523\) 37.0601 1.62052 0.810262 0.586068i \(-0.199325\pi\)
0.810262 + 0.586068i \(0.199325\pi\)
\(524\) 6.51798 + 28.5571i 0.284739 + 1.24752i
\(525\) 0 0
\(526\) 28.8518 13.8943i 1.25800 0.605821i
\(527\) 5.51319 + 24.1548i 0.240158 + 1.05220i
\(528\) 0 0
\(529\) 19.7945 + 9.53252i 0.860630 + 0.414458i
\(530\) 43.7008 + 54.7991i 1.89824 + 2.38032i
\(531\) 0 0
\(532\) −19.2472 + 9.26895i −0.834471 + 0.401860i
\(533\) 25.8029 32.3558i 1.11765 1.40149i
\(534\) 0 0
\(535\) 9.36542 11.7439i 0.404903 0.507732i
\(536\) −3.25931 + 14.2800i −0.140781 + 0.616801i
\(537\) 0 0
\(538\) −30.2206 + 37.8955i −1.30290 + 1.63379i
\(539\) 18.1525 0.781886
\(540\) 0 0
\(541\) −30.6558 + 14.7631i −1.31800 + 0.634714i −0.954870 0.297025i \(-0.904006\pi\)
−0.363128 + 0.931739i \(0.618291\pi\)
\(542\) −31.5880 39.6101i −1.35682 1.70140i
\(543\) 0 0
\(544\) −20.2284 9.74148i −0.867285 0.417663i
\(545\) 7.89720 34.5999i 0.338279 1.48210i
\(546\) 0 0
\(547\) −15.4934 + 7.46124i −0.662451 + 0.319020i −0.734725 0.678365i \(-0.762689\pi\)
0.0722738 + 0.997385i \(0.476974\pi\)
\(548\) −9.27656 4.46735i −0.396275 0.190836i
\(549\) 0 0
\(550\) −5.72689 −0.244196
\(551\) −22.2704 + 20.6183i −0.948750 + 0.878369i
\(552\) 0 0
\(553\) −1.20523 5.28046i −0.0512516 0.224548i
\(554\) −36.9530 17.7956i −1.56998 0.756063i
\(555\) 0 0
\(556\) −3.60711 15.8038i −0.152975 0.670229i
\(557\) −6.60546 + 28.9404i −0.279882 + 1.22624i 0.618060 + 0.786131i \(0.287919\pi\)
−0.897942 + 0.440114i \(0.854938\pi\)
\(558\) 0 0
\(559\) −29.3553 36.8104i −1.24160 1.55692i
\(560\) −3.52736 4.42316i −0.149058 0.186913i
\(561\) 0 0
\(562\) 11.8423 14.8498i 0.499539 0.626402i
\(563\) 27.8621 1.17425 0.587125 0.809497i \(-0.300260\pi\)
0.587125 + 0.809497i \(0.300260\pi\)
\(564\) 0 0
\(565\) 6.34305 27.7907i 0.266854 1.16916i
\(566\) −2.72387 + 11.9341i −0.114493 + 0.501627i
\(567\) 0 0
\(568\) 17.2436 0.723526
\(569\) 6.10300 7.65292i 0.255851 0.320827i −0.637272 0.770639i \(-0.719937\pi\)
0.893124 + 0.449811i \(0.148509\pi\)
\(570\) 0 0
\(571\) −20.1541 25.2725i −0.843424 1.05762i −0.997577 0.0695735i \(-0.977836\pi\)
0.154153 0.988047i \(-0.450735\pi\)
\(572\) −37.0248 46.4276i −1.54808 1.94124i
\(573\) 0 0
\(574\) −4.52168 + 19.8108i −0.188731 + 0.826886i
\(575\) 0.168118 + 0.736574i 0.00701101 + 0.0307172i
\(576\) 0 0
\(577\) 39.2874 + 18.9198i 1.63555 + 0.787641i 0.999877 + 0.0156861i \(0.00499325\pi\)
0.635677 + 0.771955i \(0.280721\pi\)
\(578\) 3.74118 + 16.3912i 0.155613 + 0.681783i
\(579\) 0 0
\(580\) 29.8789 + 20.4193i 1.24065 + 0.847866i
\(581\) 5.83259 0.241977
\(582\) 0 0
\(583\) 42.1888 + 20.3170i 1.74728 + 0.841446i
\(584\) 0.482155 0.232194i 0.0199517 0.00960824i
\(585\) 0 0
\(586\) −2.30153 + 10.0837i −0.0950752 + 0.416552i
\(587\) −39.3393 18.9448i −1.62371 0.781935i −1.00000 0.000275397i \(-0.999912\pi\)
−0.623705 0.781660i \(-0.714373\pi\)
\(588\) 0 0
\(589\) 28.5030 + 35.7416i 1.17444 + 1.47271i
\(590\) 16.8542 8.11654i 0.693876 0.334153i
\(591\) 0 0
\(592\) −9.59684 −0.394428
\(593\) −14.9685 + 18.7699i −0.614682 + 0.770787i −0.987585 0.157083i \(-0.949791\pi\)
0.372903 + 0.927870i \(0.378362\pi\)
\(594\) 0 0
\(595\) 2.20225 9.64868i 0.0902834 0.395557i
\(596\) 15.0068 18.8179i 0.614701 0.770811i
\(597\) 0 0
\(598\) −8.36854 + 10.4938i −0.342215 + 0.429124i
\(599\) 3.27503 1.57717i 0.133814 0.0644415i −0.365779 0.930702i \(-0.619197\pi\)
0.499593 + 0.866260i \(0.333483\pi\)
\(600\) 0 0
\(601\) −9.51453 11.9308i −0.388106 0.486669i 0.548947 0.835857i \(-0.315029\pi\)
−0.937053 + 0.349188i \(0.886458\pi\)
\(602\) 20.8285 + 10.0305i 0.848905 + 0.408811i
\(603\) 0 0
\(604\) −7.45003 32.6407i −0.303137 1.32813i
\(605\) −2.84364 + 1.36943i −0.115611 + 0.0556751i
\(606\) 0 0
\(607\) 0.643106 + 2.81763i 0.0261029 + 0.114364i 0.986301 0.164956i \(-0.0527482\pi\)
−0.960198 + 0.279320i \(0.909891\pi\)
\(608\) −41.4267 −1.68007
\(609\) 0 0
\(610\) 37.8730 1.53343
\(611\) −0.561648 2.46074i −0.0227219 0.0995509i
\(612\) 0 0
\(613\) 3.96789 1.91083i 0.160261 0.0771778i −0.352034 0.935987i \(-0.614510\pi\)
0.512295 + 0.858810i \(0.328795\pi\)
\(614\) −5.72394 25.0782i −0.230999 1.01207i
\(615\) 0 0
\(616\) 7.53174 + 3.62710i 0.303463 + 0.146140i
\(617\) −4.33910 5.44106i −0.174686 0.219049i 0.686779 0.726866i \(-0.259024\pi\)
−0.861465 + 0.507817i \(0.830453\pi\)
\(618\) 0 0
\(619\) −11.8459 + 5.70468i −0.476127 + 0.229291i −0.656527 0.754303i \(-0.727975\pi\)
0.180400 + 0.983593i \(0.442261\pi\)
\(620\) 33.9880 42.6196i 1.36499 1.71165i
\(621\) 0 0
\(622\) −22.9633 + 28.7950i −0.920743 + 1.15458i
\(623\) 4.20932 18.4422i 0.168643 0.738872i
\(624\) 0 0
\(625\) −17.5626 + 22.0228i −0.702505 + 0.880914i
\(626\) −26.2134 −1.04770
\(627\) 0 0
\(628\) 30.9549 14.9071i 1.23524 0.594858i
\(629\) −10.4673 13.1255i −0.417357 0.523349i
\(630\) 0 0
\(631\) 11.9773 + 5.76796i 0.476808 + 0.229619i 0.656823 0.754045i \(-0.271900\pi\)
−0.180014 + 0.983664i \(0.557614\pi\)
\(632\) −1.57077 + 6.88198i −0.0624818 + 0.273750i
\(633\) 0 0
\(634\) −27.9146 + 13.4430i −1.10863 + 0.533888i
\(635\) 32.5937 + 15.6963i 1.29344 + 0.622889i
\(636\) 0 0
\(637\) −31.2134 −1.23672
\(638\) 40.9539 + 6.21892i 1.62138 + 0.246209i
\(639\) 0 0
\(640\) 6.91029 + 30.2760i 0.273153 + 1.19676i
\(641\) 18.1431 + 8.73725i 0.716609 + 0.345101i 0.756402 0.654107i \(-0.226955\pi\)
−0.0397927 + 0.999208i \(0.512670\pi\)
\(642\) 0 0
\(643\) −9.82444 43.0437i −0.387438 1.69748i −0.673435 0.739247i \(-0.735182\pi\)
0.285997 0.958231i \(-0.407675\pi\)
\(644\) 0.855950 3.75016i 0.0337292 0.147777i
\(645\) 0 0
\(646\) −23.5233 29.4973i −0.925511 1.16055i
\(647\) −11.3676 14.2546i −0.446908 0.560404i 0.506442 0.862274i \(-0.330961\pi\)
−0.953349 + 0.301870i \(0.902389\pi\)
\(648\) 0 0
\(649\) 7.79210 9.77098i 0.305866 0.383544i
\(650\) 9.84742 0.386248
\(651\) 0 0
\(652\) 4.94858 21.6811i 0.193801 0.849099i
\(653\) −3.38155 + 14.8156i −0.132330 + 0.579778i 0.864667 + 0.502345i \(0.167529\pi\)
−0.996998 + 0.0774324i \(0.975328\pi\)
\(654\) 0 0
\(655\) −25.0385 −0.978336
\(656\) −7.46555 + 9.36150i −0.291481 + 0.365505i
\(657\) 0 0
\(658\) 0.772703 + 0.968939i 0.0301231 + 0.0377732i
\(659\) 10.4628 + 13.1200i 0.407574 + 0.511082i 0.942678 0.333704i \(-0.108299\pi\)
−0.535103 + 0.844787i \(0.679727\pi\)
\(660\) 0 0
\(661\) 0.299039 1.31018i 0.0116313 0.0509599i −0.968779 0.247925i \(-0.920251\pi\)
0.980411 + 0.196965i \(0.0631085\pi\)
\(662\) −11.2290 49.1975i −0.436428 1.91211i
\(663\) 0 0
\(664\) −6.84877 3.29820i −0.265784 0.127995i
\(665\) −4.06345 17.8031i −0.157574 0.690376i
\(666\) 0 0
\(667\) −0.402381 5.44991i −0.0155803 0.211021i
\(668\) −36.2386 −1.40211
\(669\) 0 0
\(670\) −39.3459 18.9480i −1.52006 0.732024i
\(671\) 22.7964 10.9782i 0.880047 0.423808i
\(672\) 0 0
\(673\) −2.65230 + 11.6205i −0.102239 + 0.447937i 0.897734 + 0.440538i \(0.145212\pi\)
−0.999973 + 0.00739895i \(0.997645\pi\)
\(674\) 5.04797 + 2.43098i 0.194441 + 0.0936377i
\(675\) 0 0
\(676\) 40.9378 + 51.3344i 1.57453 + 1.97440i
\(677\) 14.6012 7.03155i 0.561169 0.270245i −0.131723 0.991287i \(-0.542051\pi\)
0.692891 + 0.721042i \(0.256337\pi\)
\(678\) 0 0
\(679\) −5.14208 −0.197335
\(680\) −8.04205 + 10.0844i −0.308398 + 0.386719i
\(681\) 0 0
\(682\) 13.8844 60.8315i 0.531661 2.32936i
\(683\) 17.9645 22.5268i 0.687393 0.861964i −0.308619 0.951186i \(-0.599867\pi\)
0.996012 + 0.0892221i \(0.0284381\pi\)
\(684\) 0 0
\(685\) 5.48748 6.88109i 0.209666 0.262913i
\(686\) 32.4958 15.6492i 1.24070 0.597487i
\(687\) 0 0
\(688\) 8.49337 + 10.6503i 0.323807 + 0.406041i
\(689\) −72.5438 34.9353i −2.76370 1.33093i
\(690\) 0 0
\(691\) 5.64168 + 24.7178i 0.214620 + 0.940310i 0.961382 + 0.275219i \(0.0887503\pi\)
−0.746762 + 0.665092i \(0.768393\pi\)
\(692\) 6.70349 3.22823i 0.254828 0.122719i
\(693\) 0 0
\(694\) −0.434987 1.90580i −0.0165119 0.0723432i
\(695\) 13.8566 0.525609
\(696\) 0 0
\(697\) −20.9463 −0.793399
\(698\) 0.368506 + 1.61453i 0.0139482 + 0.0611109i
\(699\) 0 0
\(700\) −2.54267 + 1.22448i −0.0961038 + 0.0462811i
\(701\) 2.93968 + 12.8796i 0.111030 + 0.486455i 0.999615 + 0.0277426i \(0.00883188\pi\)
−0.888585 + 0.458712i \(0.848311\pi\)
\(702\) 0 0
\(703\) −27.9089 13.4402i −1.05260 0.506907i
\(704\) 27.6127 + 34.6252i 1.04069 + 1.30499i
\(705\) 0 0
\(706\) 37.9948 18.2973i 1.42995 0.688629i
\(707\) 0.0355889 0.0446270i 0.00133846 0.00167837i
\(708\) 0 0
\(709\) −22.2400 + 27.8881i −0.835240 + 1.04736i 0.162915 + 0.986640i \(0.447911\pi\)
−0.998155 + 0.0607181i \(0.980661\pi\)
\(710\) −11.4402 + 50.1228i −0.429343 + 1.88107i
\(711\) 0 0
\(712\) −15.3713 + 19.2751i −0.576065 + 0.722363i
\(713\) −8.23153 −0.308273
\(714\) 0 0
\(715\) 45.7341 22.0244i 1.71036 0.823665i
\(716\) 23.4236 + 29.3723i 0.875381 + 1.09769i
\(717\) 0 0
\(718\) 34.7839 + 16.7510i 1.29812 + 0.625143i
\(719\) 0.450188 1.97240i 0.0167892 0.0735583i −0.965839 0.259142i \(-0.916560\pi\)
0.982629 + 0.185583i \(0.0594175\pi\)
\(720\) 0 0
\(721\) −14.3488 + 6.91002i −0.534377 + 0.257342i
\(722\) −25.2004 12.1359i −0.937863 0.451651i
\(723\) 0 0
\(724\) 4.24478 0.157756
\(725\) −2.94205 + 2.72380i −0.109265 + 0.101159i
\(726\) 0 0
\(727\) 2.34647 + 10.2806i 0.0870258 + 0.381285i 0.999620 0.0275826i \(-0.00878092\pi\)
−0.912594 + 0.408868i \(0.865924\pi\)
\(728\) −12.9509 6.23681i −0.479991 0.231152i
\(729\) 0 0
\(730\) 0.355044 + 1.55555i 0.0131408 + 0.0575734i
\(731\) −5.30270 + 23.2326i −0.196127 + 0.859291i
\(732\) 0 0
\(733\) −11.8578 14.8692i −0.437979 0.549208i 0.513030 0.858370i \(-0.328523\pi\)
−0.951009 + 0.309162i \(0.899951\pi\)
\(734\) 5.18998 + 6.50802i 0.191566 + 0.240216i
\(735\) 0 0
\(736\) 4.65083 5.83195i 0.171432 0.214969i
\(737\) −29.1754 −1.07469
\(738\) 0 0
\(739\) 9.57638 41.9569i 0.352273 1.54341i −0.419646 0.907688i \(-0.637846\pi\)
0.771919 0.635721i \(-0.219297\pi\)
\(740\) −8.21938 + 36.0115i −0.302151 + 1.32381i
\(741\) 0 0
\(742\) 39.5349 1.45137
\(743\) 2.07331 2.59985i 0.0760625 0.0953794i −0.742344 0.670019i \(-0.766286\pi\)
0.818407 + 0.574639i \(0.194858\pi\)
\(744\) 0 0
\(745\) 12.8279 + 16.0856i 0.469976 + 0.589331i
\(746\) −11.3323 14.2103i −0.414905 0.520275i
\(747\) 0 0
\(748\) −6.68810 + 29.3025i −0.244541 + 1.07140i
\(749\) −1.88534 8.26021i −0.0688888 0.301821i
\(750\) 0 0
\(751\) −18.4506 8.88532i −0.673271 0.324230i 0.0658243 0.997831i \(-0.479032\pi\)
−0.739095 + 0.673601i \(0.764747\pi\)
\(752\) 0.162501 + 0.711965i 0.00592582 + 0.0259627i
\(753\) 0 0
\(754\) −70.4204 10.6935i −2.56456 0.389433i
\(755\) 28.6190 1.04155
\(756\) 0 0
\(757\) 7.59189 + 3.65606i 0.275932 + 0.132882i 0.566732 0.823902i \(-0.308207\pi\)
−0.290801 + 0.956784i \(0.593922\pi\)
\(758\) 17.6390 8.49448i 0.640676 0.308533i
\(759\) 0 0
\(760\) −5.29586 + 23.2027i −0.192101 + 0.841650i
\(761\) −23.5526 11.3423i −0.853780 0.411159i −0.0448010 0.998996i \(-0.514265\pi\)
−0.808979 + 0.587837i \(0.799980\pi\)
\(762\) 0 0
\(763\) −12.4811 15.6508i −0.451845 0.566596i
\(764\) −29.3512 + 14.1348i −1.06189 + 0.511378i
\(765\) 0 0
\(766\) −78.5817 −2.83927
\(767\) −13.3985 + 16.8012i −0.483794 + 0.606658i
\(768\) 0 0
\(769\) −9.15495 + 40.1104i −0.330136 + 1.44642i 0.488730 + 0.872435i \(0.337460\pi\)
−0.818866 + 0.573985i \(0.805397\pi\)
\(770\) −15.5399 + 19.4865i −0.560020 + 0.702243i
\(771\) 0 0
\(772\) −10.7720 + 13.5077i −0.387693 + 0.486151i
\(773\) 31.4140 15.1282i 1.12988 0.544122i 0.226950 0.973906i \(-0.427125\pi\)
0.902932 + 0.429784i \(0.141410\pi\)
\(774\) 0 0
\(775\) 3.76541 + 4.72167i 0.135258 + 0.169608i
\(776\) 6.03796 + 2.90773i 0.216750 + 0.104381i
\(777\) 0 0
\(778\) 5.53294 + 24.2414i 0.198365 + 0.869096i
\(779\) −34.8214 + 16.7691i −1.24761 + 0.600816i
\(780\) 0 0
\(781\) 7.64294 + 33.4859i 0.273486 + 1.19822i
\(782\) 6.79343 0.242932
\(783\) 0 0
\(784\) 9.03096 0.322534
\(785\) 6.53518 + 28.6325i 0.233251 + 1.02194i
\(786\) 0 0
\(787\) −14.3756 + 6.92292i −0.512434 + 0.246775i −0.672187 0.740382i \(-0.734645\pi\)
0.159752 + 0.987157i \(0.448930\pi\)
\(788\) −1.57648 6.90700i −0.0561597 0.246052i
\(789\) 0 0
\(790\) −18.9620 9.13163i −0.674639 0.324889i
\(791\) −10.0248 12.5707i −0.356442 0.446964i
\(792\) 0 0
\(793\) −39.1986 + 18.8770i −1.39198 + 0.670344i
\(794\) −32.9820 + 41.3582i −1.17049 + 1.46775i
\(795\) 0 0
\(796\) 23.2192 29.1160i 0.822983 1.03199i
\(797\) 8.47215 37.1189i 0.300099 1.31482i −0.569879 0.821728i \(-0.693010\pi\)
0.869978 0.493090i \(-0.164133\pi\)
\(798\) 0 0
\(799\) −0.796510 + 0.998792i −0.0281785 + 0.0353347i
\(800\) −5.47271 −0.193490
\(801\) 0 0
\(802\) 38.2234 18.4074i 1.34972 0.649989i
\(803\) 0.664611 + 0.833396i 0.0234536 + 0.0294099i
\(804\) 0 0
\(805\) 2.96247 + 1.42665i 0.104413 + 0.0502828i
\(806\) −23.8743 + 104.600i −0.840936 + 3.68438i
\(807\) 0 0
\(808\) −0.0670249 + 0.0322775i −0.00235793 + 0.00113552i
\(809\) −46.9688 22.6190i −1.65133 0.795240i −0.999314 0.0370382i \(-0.988208\pi\)
−0.652020 0.758202i \(-0.726078\pi\)
\(810\) 0 0
\(811\) 6.35528 0.223164 0.111582 0.993755i \(-0.464408\pi\)
0.111582 + 0.993755i \(0.464408\pi\)
\(812\) 19.5127 5.99534i 0.684760 0.210395i
\(813\) 0 0
\(814\) 9.40804 + 41.2193i 0.329752 + 1.44474i
\(815\) 17.1272 + 8.24802i 0.599940 + 0.288916i
\(816\) 0 0
\(817\) 9.78421 + 42.8674i 0.342306 + 1.49974i
\(818\) −5.58234 + 24.4578i −0.195182 + 0.855148i
\(819\) 0 0
\(820\) 28.7344 + 36.0318i 1.00345 + 1.25828i
\(821\) −0.133281 0.167129i −0.00465153 0.00583283i 0.779500 0.626402i \(-0.215473\pi\)
−0.784152 + 0.620569i \(0.786902\pi\)
\(822\) 0 0
\(823\) 15.8481 19.8729i 0.552430 0.692726i −0.424708 0.905330i \(-0.639623\pi\)
0.977138 + 0.212605i \(0.0681947\pi\)
\(824\) 20.7562 0.723076
\(825\) 0 0
\(826\) 2.34795 10.2870i 0.0816956 0.357932i
\(827\) 8.75101 38.3407i 0.304302 1.33324i −0.559260 0.828993i \(-0.688915\pi\)
0.863562 0.504243i \(-0.168228\pi\)
\(828\) 0 0
\(829\) 2.14332 0.0744405 0.0372203 0.999307i \(-0.488150\pi\)
0.0372203 + 0.999307i \(0.488150\pi\)
\(830\) 14.1308 17.7195i 0.490487 0.615051i
\(831\) 0 0
\(832\) −47.4801 59.5382i −1.64608 2.06411i
\(833\) 9.85006 + 12.3516i 0.341284 + 0.427957i
\(834\) 0 0
\(835\) 6.89301 30.2003i 0.238543 1.04512i
\(836\) 12.3405 + 54.0671i 0.426804 + 1.86995i
\(837\) 0 0
\(838\) −41.7032 20.0832i −1.44061 0.693763i
\(839\) −3.47410 15.2210i −0.119939 0.525488i −0.998825 0.0484563i \(-0.984570\pi\)
0.878886 0.477032i \(-0.158287\pi\)
\(840\) 0 0
\(841\) 23.9968 16.2835i 0.827477 0.561500i
\(842\) 60.3025 2.07816
\(843\) 0 0
\(844\) 20.9796 + 10.1033i 0.722148 + 0.347768i
\(845\) −50.5675 + 24.3520i −1.73958 + 0.837736i
\(846\) 0 0
\(847\) −0.396147 + 1.73563i −0.0136118 + 0.0596371i
\(848\) 20.9891 + 10.1078i 0.720768 + 0.347103i
\(849\) 0 0
\(850\) −3.10757 3.89676i −0.106589 0.133658i
\(851\) 5.02531 2.42006i 0.172265 0.0829586i
\(852\) 0 0
\(853\) 36.4571 1.24827 0.624133 0.781318i \(-0.285452\pi\)
0.624133 + 0.781318i \(0.285452\pi\)
\(854\) 13.3192 16.7018i 0.455775 0.571524i
\(855\) 0 0
\(856\) −2.45715 + 10.7655i −0.0839835 + 0.367956i
\(857\) 0.305695 0.383330i 0.0104424 0.0130943i −0.776583 0.630015i \(-0.783049\pi\)
0.787025 + 0.616921i \(0.211620\pi\)
\(858\) 0 0
\(859\) −22.8956 + 28.7102i −0.781189 + 0.979579i 0.218804 + 0.975769i \(0.429784\pi\)
−0.999993 + 0.00381067i \(0.998787\pi\)
\(860\) 47.2390 22.7491i 1.61084 0.775738i
\(861\) 0 0
\(862\) 2.66414 + 3.34073i 0.0907411 + 0.113786i
\(863\) 36.1069 + 17.3882i 1.22909 + 0.591901i 0.931830 0.362894i \(-0.118211\pi\)
0.297264 + 0.954795i \(0.403926\pi\)
\(864\) 0 0
\(865\) 1.41524 + 6.20055i 0.0481194 + 0.210825i
\(866\) −15.4715 + 7.45069i −0.525744 + 0.253185i
\(867\) 0 0
\(868\) −6.84207 29.9771i −0.232235 1.01749i
\(869\) −14.0605 −0.476971
\(870\) 0 0
\(871\) 50.1672 1.69985
\(872\) 5.80544 + 25.4353i 0.196597 + 0.861348i
\(873\) 0 0
\(874\) 11.2935 5.43865i 0.382007 0.183965i
\(875\) 3.06827 + 13.4430i 0.103726 + 0.454455i
\(876\) 0 0
\(877\) −26.3326 12.6811i −0.889189 0.428211i −0.0672167 0.997738i \(-0.521412\pi\)
−0.821972 + 0.569528i \(0.807126\pi\)
\(878\) 3.26591 + 4.09532i 0.110219 + 0.138210i
\(879\) 0 0
\(880\) −13.2322 + 6.37230i −0.446058 + 0.214810i
\(881\) −14.5697 + 18.2698i −0.490864 + 0.615524i −0.964141 0.265389i \(-0.914500\pi\)
0.473277 + 0.880914i \(0.343071\pi\)
\(882\) 0 0
\(883\) −13.7715 + 17.2689i −0.463449 + 0.581146i −0.957553 0.288256i \(-0.906924\pi\)
0.494105 + 0.869402i \(0.335496\pi\)
\(884\) 11.5002 50.3857i 0.386794 1.69466i
\(885\) 0 0
\(886\) −52.4067 + 65.7160i −1.76064 + 2.20777i
\(887\) −16.2336 −0.545072 −0.272536 0.962146i \(-0.587862\pi\)
−0.272536 + 0.962146i \(0.587862\pi\)
\(888\) 0 0
\(889\) 18.3846 8.85355i 0.616599 0.296939i
\(890\) −45.8296 57.4685i −1.53621 1.92635i
\(891\) 0 0
\(892\) −63.1854 30.4285i −2.11560 1.01882i
\(893\) −0.524519 + 2.29807i −0.0175524 + 0.0769019i
\(894\) 0 0
\(895\) −28.9335 + 13.9336i −0.967140 + 0.465750i
\(896\) 15.7818 + 7.60010i 0.527232 + 0.253901i
\(897\) 0 0
\(898\) 68.6992 2.29252
\(899\) −21.7997 37.8543i −0.727059 1.26251i
\(900\) 0 0
\(901\) 9.06838 + 39.7312i 0.302112 + 1.32364i
\(902\) 47.5272 + 22.8879i 1.58248 + 0.762083i
\(903\) 0 0
\(904\) 4.66294 + 20.4297i 0.155087 + 0.679481i
\(905\) −0.807408 + 3.53749i −0.0268392 + 0.117590i
\(906\) 0 0
\(907\) −2.14813 2.69367i −0.0713274 0.0894418i 0.744888 0.667190i \(-0.232503\pi\)
−0.816215 + 0.577748i \(0.803932\pi\)
\(908\) −5.32127 6.67266i −0.176593 0.221440i
\(909\) 0 0
\(910\) 26.7210 33.5071i 0.885792 1.11075i
\(911\) 18.9945 0.629315 0.314658 0.949205i \(-0.398110\pi\)
0.314658 + 0.949205i \(0.398110\pi\)
\(912\) 0 0
\(913\) 3.36927 14.7617i 0.111506 0.488541i
\(914\) 15.7358 68.9431i 0.520494 2.28043i
\(915\) 0 0
\(916\) −61.4290 −2.02967
\(917\) −8.80559 + 11.0419i −0.290786 + 0.364634i
\(918\) 0 0
\(919\) −10.4366 13.0871i −0.344273 0.431705i 0.579308 0.815109i \(-0.303323\pi\)
−0.923581 + 0.383404i \(0.874752\pi\)
\(920\) −2.67187 3.35042i −0.0880890 0.110460i
\(921\) 0 0
\(922\) −2.76928 + 12.1330i −0.0912014 + 0.399580i
\(923\) −13.1421 57.5792i −0.432577 1.89524i
\(924\) 0 0
\(925\) −3.68693 1.77553i −0.121225 0.0583791i
\(926\) −11.3316 49.6468i −0.372378 1.63150i
\(927\) 0 0
\(928\) 39.1362 + 5.94290i 1.28471 + 0.195085i
\(929\) 57.7025 1.89316 0.946578 0.322474i \(-0.104515\pi\)
0.946578 + 0.322474i \(0.104515\pi\)
\(930\) 0 0
\(931\) 26.2632 + 12.6477i 0.860742 + 0.414512i
\(932\) 25.1728 12.1226i 0.824562 0.397088i
\(933\) 0 0
\(934\) 5.89019 25.8066i 0.192733 0.844417i
\(935\) −23.1477 11.1474i −0.757012 0.364558i
\(936\) 0 0
\(937\) −25.0122 31.3643i −0.817114 1.02463i −0.999145 0.0413357i \(-0.986839\pi\)
0.182031 0.983293i \(-0.441733\pi\)
\(938\) −22.1932 + 10.6877i −0.724633 + 0.348965i
\(939\) 0 0
\(940\) 2.81078 0.0916774
\(941\) −23.2388 + 29.1406i −0.757565 + 0.949956i −0.999795 0.0202626i \(-0.993550\pi\)
0.242230 + 0.970219i \(0.422121\pi\)
\(942\) 0 0
\(943\) 1.54856 6.78468i 0.0504280 0.220940i
\(944\) 3.87660 4.86110i 0.126172 0.158215i
\(945\) 0 0
\(946\) 37.4179 46.9206i 1.21656 1.52552i
\(947\) −24.7428 + 11.9155i −0.804032 + 0.387201i −0.790312 0.612705i \(-0.790082\pi\)
−0.0137198 + 0.999906i \(0.504367\pi\)
\(948\) 0 0
\(949\) −1.14280 1.43303i −0.0370969 0.0465181i
\(950\) −8.28571 3.99019i −0.268824 0.129459i
\(951\) 0 0
\(952\) 1.61893 + 7.09300i 0.0524699 + 0.229886i
\(953\) 2.18295 1.05125i 0.0707126 0.0340534i −0.398193 0.917302i \(-0.630363\pi\)
0.468906 + 0.883248i \(0.344648\pi\)
\(954\) 0 0
\(955\) −6.19660 27.1491i −0.200517 0.878523i
\(956\) 21.8169 0.705610
\(957\) 0 0
\(958\) 66.8731 2.16057
\(959\) −1.10468 4.83990i −0.0356719 0.156289i
\(960\) 0 0
\(961\) −31.3529 + 15.0988i −1.01138 + 0.487057i
\(962\) −16.1772 70.8768i −0.521573 2.28516i
\(963\) 0 0
\(964\) 58.5807 + 28.2110i 1.88676 + 0.908614i
\(965\) −9.20795 11.5464i −0.296414 0.371692i
\(966\) 0 0
\(967\) −34.1033 + 16.4233i −1.09669 + 0.528137i −0.892615 0.450819i \(-0.851132\pi\)
−0.204072 + 0.978956i \(0.565418\pi\)
\(968\) 1.44663 1.81401i 0.0464964 0.0583046i
\(969\) 0 0
\(970\) −12.4579 + 15.6217i −0.399998 + 0.501582i
\(971\) −2.86612 + 12.5573i −0.0919781 + 0.402982i −0.999868 0.0162255i \(-0.994835\pi\)
0.907890 + 0.419208i \(0.137692\pi\)
\(972\) 0 0
\(973\) 4.87309 6.11067i 0.156224 0.195899i
\(974\) −51.5611 −1.65212
\(975\) 0 0
\(976\) 11.3413 5.46169i 0.363027 0.174824i
\(977\) −0.880437 1.10403i −0.0281677 0.0353212i 0.767548 0.640991i \(-0.221477\pi\)
−0.795716 + 0.605670i \(0.792905\pi\)
\(978\) 0 0
\(979\) −44.2439 21.3067i −1.41404 0.680966i
\(980\) 7.73473 33.8880i 0.247077 1.08251i
\(981\) 0 0
\(982\) 54.4801 26.2362i 1.73853 0.837232i
\(983\) 10.8489 + 5.22454i 0.346025 + 0.166637i 0.598821 0.800883i \(-0.295636\pi\)
−0.252796 + 0.967520i \(0.581350\pi\)
\(984\) 0 0
\(985\) 6.05597 0.192959
\(986\) 17.9911 + 31.2409i 0.572954 + 0.994913i
\(987\) 0 0
\(988\) −21.2195 92.9686i −0.675082 2.95773i
\(989\) −7.13321 3.43517i −0.226823 0.109232i
\(990\) 0 0
\(991\) 9.99125 + 43.7745i 0.317383 + 1.39054i 0.842125 + 0.539283i \(0.181305\pi\)
−0.524742 + 0.851261i \(0.675838\pi\)
\(992\) 13.2682 58.1316i 0.421264 1.84568i
\(993\) 0 0
\(994\) 18.0806 + 22.6723i 0.573481 + 0.719123i
\(995\) 19.8479 + 24.8885i 0.629220 + 0.789017i
\(996\) 0 0
\(997\) 11.3546 14.2383i 0.359605 0.450931i −0.568813 0.822467i \(-0.692597\pi\)
0.928419 + 0.371536i \(0.121169\pi\)
\(998\) −84.0938 −2.66194
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.c.181.1 18
3.2 odd 2 87.2.g.a.7.3 18
29.5 even 14 7569.2.a.bm.1.1 9
29.24 even 7 7569.2.a.bj.1.9 9
29.25 even 7 inner 261.2.k.c.199.1 18
87.5 odd 14 2523.2.a.o.1.9 9
87.53 odd 14 2523.2.a.r.1.1 9
87.83 odd 14 87.2.g.a.25.3 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.7.3 18 3.2 odd 2
87.2.g.a.25.3 yes 18 87.83 odd 14
261.2.k.c.181.1 18 1.1 even 1 trivial
261.2.k.c.199.1 18 29.25 even 7 inner
2523.2.a.o.1.9 9 87.5 odd 14
2523.2.a.r.1.1 9 87.53 odd 14
7569.2.a.bj.1.9 9 29.24 even 7
7569.2.a.bm.1.1 9 29.5 even 14