Properties

Label 261.2.k.b.199.1
Level $261$
Weight $2$
Character 261.199
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [261,2,Mod(82,261)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("261.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(261, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 199.1
Root \(2.41546 + 1.16323i\) of defining polynomial
Character \(\chi\) \(=\) 261.199
Dual form 261.2.k.b.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.596570 + 2.61374i) q^{2} +(-4.67383 - 2.25080i) q^{4} +(0.692177 - 3.03263i) q^{5} +(2.13550 - 1.02840i) q^{7} +(5.32817 - 6.68131i) q^{8} +(7.51358 + 3.61835i) q^{10} +(-1.62277 - 2.03489i) q^{11} +(-1.43935 - 1.80488i) q^{13} +(1.41401 + 6.19518i) q^{14} +(7.81583 + 9.80074i) q^{16} +4.83107 q^{17} +(-1.47595 - 0.710781i) q^{19} +(-10.0609 + 12.6160i) q^{20} +(6.28677 - 3.02755i) q^{22} +(-0.263303 - 1.15361i) q^{23} +(-4.21288 - 2.02881i) q^{25} +(5.57617 - 2.68534i) q^{26} -12.2957 q^{28} +(-5.05191 - 1.86501i) q^{29} +(-1.28688 + 5.63821i) q^{31} +(-14.8805 + 7.16606i) q^{32} +(-2.88207 + 12.6272i) q^{34} +(-1.64062 - 7.18803i) q^{35} +(4.30094 - 5.39321i) q^{37} +(2.73831 - 3.43373i) q^{38} +(-16.5739 - 20.7830i) q^{40} +7.66791 q^{41} +(-0.419989 - 1.84009i) q^{43} +(3.00442 + 13.1632i) q^{44} +3.17231 q^{46} +(5.79950 + 7.27234i) q^{47} +(-0.861665 + 1.08049i) q^{49} +(7.81608 - 9.80105i) q^{50} +(2.66483 + 11.6754i) q^{52} +(-1.15113 + 5.04343i) q^{53} +(-7.29430 + 3.51275i) q^{55} +(4.50723 - 19.7475i) q^{56} +(7.88847 - 12.0918i) q^{58} +4.90494 q^{59} +(10.3934 - 5.00522i) q^{61} +(-13.9691 - 6.72717i) q^{62} +(-4.27413 - 18.7262i) q^{64} +(-6.46982 + 3.11570i) q^{65} +(-4.34830 + 5.45260i) q^{67} +(-22.5796 - 10.8738i) q^{68} +19.7664 q^{70} +(-2.32918 - 2.92070i) q^{71} +(-0.532592 - 2.33344i) q^{73} +(11.5306 + 14.4590i) q^{74} +(5.29852 + 6.64413i) q^{76} +(-5.55812 - 2.67665i) q^{77} +(2.34395 - 2.93923i) q^{79} +(35.1319 - 16.9187i) q^{80} +(-4.57445 + 20.0420i) q^{82} +(-9.54570 - 4.59697i) q^{83} +(3.34396 - 14.6508i) q^{85} +5.06009 q^{86} -22.2421 q^{88} +(-1.26895 + 5.55963i) q^{89} +(-4.92988 - 2.37411i) q^{91} +(-1.36590 + 5.98440i) q^{92} +(-22.4678 + 10.8199i) q^{94} +(-3.17715 + 3.98402i) q^{95} +(-15.1300 - 7.28624i) q^{97} +(-2.31009 - 2.89676i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 6 q^{4} + 7 q^{5} - 4 q^{7} + 3 q^{8} + 6 q^{10} + 6 q^{11} - 11 q^{13} + 2 q^{14} + 18 q^{16} + 32 q^{17} + 2 q^{19} - 51 q^{20} + 20 q^{22} + 6 q^{23} + 4 q^{25} + 3 q^{26} - 48 q^{28}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.596570 + 2.61374i −0.421839 + 1.84820i 0.0997685 + 0.995011i \(0.468190\pi\)
−0.521607 + 0.853186i \(0.674667\pi\)
\(3\) 0 0
\(4\) −4.67383 2.25080i −2.33691 1.12540i
\(5\) 0.692177 3.03263i 0.309551 1.35623i −0.545684 0.837991i \(-0.683730\pi\)
0.855235 0.518241i \(-0.173413\pi\)
\(6\) 0 0
\(7\) 2.13550 1.02840i 0.807145 0.388701i 0.0156510 0.999878i \(-0.495018\pi\)
0.791494 + 0.611177i \(0.209304\pi\)
\(8\) 5.32817 6.68131i 1.88379 2.36220i
\(9\) 0 0
\(10\) 7.51358 + 3.61835i 2.37600 + 1.14422i
\(11\) −1.62277 2.03489i −0.489283 0.613542i 0.474491 0.880260i \(-0.342632\pi\)
−0.963774 + 0.266719i \(0.914061\pi\)
\(12\) 0 0
\(13\) −1.43935 1.80488i −0.399203 0.500584i 0.541084 0.840969i \(-0.318014\pi\)
−0.940286 + 0.340384i \(0.889443\pi\)
\(14\) 1.41401 + 6.19518i 0.377910 + 1.65573i
\(15\) 0 0
\(16\) 7.81583 + 9.80074i 1.95396 + 2.45019i
\(17\) 4.83107 1.17171 0.585854 0.810417i \(-0.300759\pi\)
0.585854 + 0.810417i \(0.300759\pi\)
\(18\) 0 0
\(19\) −1.47595 0.710781i −0.338606 0.163064i 0.256851 0.966451i \(-0.417315\pi\)
−0.595458 + 0.803387i \(0.703029\pi\)
\(20\) −10.0609 + 12.6160i −2.24970 + 2.82103i
\(21\) 0 0
\(22\) 6.28677 3.02755i 1.34034 0.645476i
\(23\) −0.263303 1.15361i −0.0549025 0.240544i 0.940030 0.341093i \(-0.110797\pi\)
−0.994932 + 0.100549i \(0.967940\pi\)
\(24\) 0 0
\(25\) −4.21288 2.02881i −0.842575 0.405763i
\(26\) 5.57617 2.68534i 1.09358 0.526639i
\(27\) 0 0
\(28\) −12.2957 −2.32367
\(29\) −5.05191 1.86501i −0.938115 0.346323i
\(30\) 0 0
\(31\) −1.28688 + 5.63821i −0.231131 + 1.01265i 0.717572 + 0.696484i \(0.245253\pi\)
−0.948703 + 0.316168i \(0.897604\pi\)
\(32\) −14.8805 + 7.16606i −2.63052 + 1.26679i
\(33\) 0 0
\(34\) −2.88207 + 12.6272i −0.494272 + 2.16555i
\(35\) −1.64062 7.18803i −0.277316 1.21500i
\(36\) 0 0
\(37\) 4.30094 5.39321i 0.707070 0.886637i −0.290460 0.956887i \(-0.593808\pi\)
0.997529 + 0.0702498i \(0.0223796\pi\)
\(38\) 2.73831 3.43373i 0.444212 0.557024i
\(39\) 0 0
\(40\) −16.5739 20.7830i −2.62056 3.28608i
\(41\) 7.66791 1.19753 0.598763 0.800926i \(-0.295659\pi\)
0.598763 + 0.800926i \(0.295659\pi\)
\(42\) 0 0
\(43\) −0.419989 1.84009i −0.0640478 0.280612i 0.932755 0.360510i \(-0.117397\pi\)
−0.996803 + 0.0798987i \(0.974540\pi\)
\(44\) 3.00442 + 13.1632i 0.452934 + 1.98443i
\(45\) 0 0
\(46\) 3.17231 0.467732
\(47\) 5.79950 + 7.27234i 0.845944 + 1.06078i 0.997382 + 0.0723132i \(0.0230381\pi\)
−0.151438 + 0.988467i \(0.548390\pi\)
\(48\) 0 0
\(49\) −0.861665 + 1.08049i −0.123095 + 0.154356i
\(50\) 7.81608 9.80105i 1.10536 1.38608i
\(51\) 0 0
\(52\) 2.66483 + 11.6754i 0.369545 + 1.61908i
\(53\) −1.15113 + 5.04343i −0.158120 + 0.692768i 0.832259 + 0.554387i \(0.187047\pi\)
−0.990379 + 0.138381i \(0.955810\pi\)
\(54\) 0 0
\(55\) −7.29430 + 3.51275i −0.983563 + 0.473659i
\(56\) 4.50723 19.7475i 0.602304 2.63887i
\(57\) 0 0
\(58\) 7.88847 12.0918i 1.03581 1.58773i
\(59\) 4.90494 0.638569 0.319285 0.947659i \(-0.396557\pi\)
0.319285 + 0.947659i \(0.396557\pi\)
\(60\) 0 0
\(61\) 10.3934 5.00522i 1.33074 0.640852i 0.372828 0.927901i \(-0.378388\pi\)
0.957916 + 0.287048i \(0.0926740\pi\)
\(62\) −13.9691 6.72717i −1.77408 0.854352i
\(63\) 0 0
\(64\) −4.27413 18.7262i −0.534266 2.34077i
\(65\) −6.46982 + 3.11570i −0.802482 + 0.386455i
\(66\) 0 0
\(67\) −4.34830 + 5.45260i −0.531229 + 0.666141i −0.972951 0.231012i \(-0.925796\pi\)
0.441722 + 0.897152i \(0.354368\pi\)
\(68\) −22.5796 10.8738i −2.73818 1.31864i
\(69\) 0 0
\(70\) 19.7664 2.36254
\(71\) −2.32918 2.92070i −0.276423 0.346623i 0.624169 0.781289i \(-0.285438\pi\)
−0.900592 + 0.434666i \(0.856866\pi\)
\(72\) 0 0
\(73\) −0.532592 2.33344i −0.0623351 0.273108i 0.934150 0.356881i \(-0.116160\pi\)
−0.996485 + 0.0837733i \(0.973303\pi\)
\(74\) 11.5306 + 14.4590i 1.34041 + 1.68082i
\(75\) 0 0
\(76\) 5.29852 + 6.64413i 0.607782 + 0.762134i
\(77\) −5.55812 2.67665i −0.633406 0.305032i
\(78\) 0 0
\(79\) 2.34395 2.93923i 0.263716 0.330689i −0.632290 0.774732i \(-0.717885\pi\)
0.896005 + 0.444043i \(0.146456\pi\)
\(80\) 35.1319 16.9187i 3.92787 1.89156i
\(81\) 0 0
\(82\) −4.57445 + 20.0420i −0.505163 + 2.21326i
\(83\) −9.54570 4.59697i −1.04778 0.504583i −0.170895 0.985289i \(-0.554666\pi\)
−0.876882 + 0.480707i \(0.840380\pi\)
\(84\) 0 0
\(85\) 3.34396 14.6508i 0.362703 1.58911i
\(86\) 5.06009 0.545643
\(87\) 0 0
\(88\) −22.2421 −2.37101
\(89\) −1.26895 + 5.55963i −0.134508 + 0.589320i 0.862079 + 0.506774i \(0.169162\pi\)
−0.996587 + 0.0825457i \(0.973695\pi\)
\(90\) 0 0
\(91\) −4.92988 2.37411i −0.516792 0.248874i
\(92\) −1.36590 + 5.98440i −0.142405 + 0.623917i
\(93\) 0 0
\(94\) −22.4678 + 10.8199i −2.31738 + 1.11599i
\(95\) −3.17715 + 3.98402i −0.325969 + 0.408752i
\(96\) 0 0
\(97\) −15.1300 7.28624i −1.53622 0.739806i −0.541337 0.840806i \(-0.682082\pi\)
−0.994886 + 0.101000i \(0.967796\pi\)
\(98\) −2.31009 2.89676i −0.233354 0.292617i
\(99\) 0 0
\(100\) 15.1238 + 18.9646i 1.51238 + 1.89646i
\(101\) 1.01964 + 4.46734i 0.101458 + 0.444517i 0.999984 + 0.00559720i \(0.00178165\pi\)
−0.898526 + 0.438920i \(0.855361\pi\)
\(102\) 0 0
\(103\) 6.56608 + 8.23361i 0.646975 + 0.811281i 0.991856 0.127365i \(-0.0406521\pi\)
−0.344881 + 0.938647i \(0.612081\pi\)
\(104\) −19.7281 −1.93449
\(105\) 0 0
\(106\) −12.4955 6.01751i −1.21367 0.584473i
\(107\) −8.57509 + 10.7528i −0.828985 + 1.03951i 0.169556 + 0.985520i \(0.445767\pi\)
−0.998541 + 0.0539937i \(0.982805\pi\)
\(108\) 0 0
\(109\) 4.82225 2.32227i 0.461888 0.222434i −0.188444 0.982084i \(-0.560344\pi\)
0.650332 + 0.759650i \(0.274630\pi\)
\(110\) −4.82987 21.1610i −0.460510 2.01763i
\(111\) 0 0
\(112\) 26.7699 + 12.8917i 2.52952 + 1.21815i
\(113\) −9.72860 + 4.68504i −0.915189 + 0.440732i −0.831351 0.555747i \(-0.812432\pi\)
−0.0838381 + 0.996479i \(0.526718\pi\)
\(114\) 0 0
\(115\) −3.68071 −0.343228
\(116\) 19.4140 + 20.0875i 1.80254 + 1.86508i
\(117\) 0 0
\(118\) −2.92614 + 12.8203i −0.269373 + 1.18020i
\(119\) 10.3168 4.96830i 0.945738 0.455443i
\(120\) 0 0
\(121\) 0.940341 4.11990i 0.0854856 0.374537i
\(122\) 6.88194 + 30.1518i 0.623062 + 2.72981i
\(123\) 0 0
\(124\) 18.7051 23.4555i 1.67977 2.10637i
\(125\) 0.628496 0.788109i 0.0562144 0.0704906i
\(126\) 0 0
\(127\) 10.5127 + 13.1825i 0.932851 + 1.16976i 0.985248 + 0.171132i \(0.0547423\pi\)
−0.0523973 + 0.998626i \(0.516686\pi\)
\(128\) 18.4631 1.63192
\(129\) 0 0
\(130\) −4.28394 18.7692i −0.375727 1.64617i
\(131\) 1.01316 + 4.43896i 0.0885206 + 0.387834i 0.999708 0.0241577i \(-0.00769039\pi\)
−0.911188 + 0.411992i \(0.864833\pi\)
\(132\) 0 0
\(133\) −3.88287 −0.336688
\(134\) −11.6576 14.6182i −1.00707 1.26282i
\(135\) 0 0
\(136\) 25.7408 32.2779i 2.20725 2.76781i
\(137\) 13.7225 17.2075i 1.17239 1.47014i 0.319861 0.947465i \(-0.396364\pi\)
0.852534 0.522672i \(-0.175065\pi\)
\(138\) 0 0
\(139\) 1.80101 + 7.89075i 0.152760 + 0.669284i 0.992076 + 0.125641i \(0.0400986\pi\)
−0.839316 + 0.543644i \(0.817044\pi\)
\(140\) −8.51081 + 37.2883i −0.719295 + 3.15144i
\(141\) 0 0
\(142\) 9.02347 4.34548i 0.757233 0.364664i
\(143\) −1.33701 + 5.85781i −0.111806 + 0.489855i
\(144\) 0 0
\(145\) −9.15269 + 14.0296i −0.760089 + 1.16510i
\(146\) 6.41673 0.531053
\(147\) 0 0
\(148\) −32.2408 + 15.5264i −2.65018 + 1.27626i
\(149\) 0.670037 + 0.322673i 0.0548916 + 0.0264344i 0.461128 0.887334i \(-0.347445\pi\)
−0.406237 + 0.913768i \(0.633159\pi\)
\(150\) 0 0
\(151\) 3.84695 + 16.8546i 0.313060 + 1.37161i 0.849465 + 0.527646i \(0.176925\pi\)
−0.536404 + 0.843961i \(0.680218\pi\)
\(152\) −12.6131 + 6.07413i −1.02305 + 0.492677i
\(153\) 0 0
\(154\) 10.3119 12.9307i 0.830955 1.04198i
\(155\) 16.2078 + 7.80528i 1.30184 + 0.626935i
\(156\) 0 0
\(157\) −0.399286 −0.0318665 −0.0159332 0.999873i \(-0.505072\pi\)
−0.0159332 + 0.999873i \(0.505072\pi\)
\(158\) 6.28405 + 7.87995i 0.499932 + 0.626895i
\(159\) 0 0
\(160\) 11.4321 + 50.0872i 0.903784 + 3.95974i
\(161\) −1.74866 2.19275i −0.137814 0.172813i
\(162\) 0 0
\(163\) 6.18092 + 7.75063i 0.484127 + 0.607076i 0.962567 0.271044i \(-0.0873690\pi\)
−0.478440 + 0.878120i \(0.658798\pi\)
\(164\) −35.8385 17.2589i −2.79852 1.34769i
\(165\) 0 0
\(166\) 17.7100 22.2076i 1.37456 1.72364i
\(167\) −10.5584 + 5.08467i −0.817036 + 0.393464i −0.795237 0.606298i \(-0.792654\pi\)
−0.0217990 + 0.999762i \(0.506939\pi\)
\(168\) 0 0
\(169\) 1.70689 7.47836i 0.131299 0.575259i
\(170\) 36.2987 + 17.4805i 2.78398 + 1.34069i
\(171\) 0 0
\(172\) −2.17872 + 9.54559i −0.166126 + 0.727844i
\(173\) −8.14339 −0.619131 −0.309565 0.950878i \(-0.600184\pi\)
−0.309565 + 0.950878i \(0.600184\pi\)
\(174\) 0 0
\(175\) −11.0831 −0.837800
\(176\) 7.26012 31.8087i 0.547252 2.39767i
\(177\) 0 0
\(178\) −13.7744 6.63342i −1.03244 0.497196i
\(179\) 2.39845 10.5083i 0.179268 0.785426i −0.802700 0.596383i \(-0.796604\pi\)
0.981969 0.189044i \(-0.0605387\pi\)
\(180\) 0 0
\(181\) −18.5712 + 8.94342i −1.38039 + 0.664759i −0.969082 0.246738i \(-0.920641\pi\)
−0.411305 + 0.911498i \(0.634927\pi\)
\(182\) 9.14632 11.4691i 0.677971 0.850148i
\(183\) 0 0
\(184\) −9.11053 4.38740i −0.671637 0.323443i
\(185\) −13.3786 16.7762i −0.983612 1.23341i
\(186\) 0 0
\(187\) −7.83972 9.83069i −0.573297 0.718891i
\(188\) −10.7373 47.0431i −0.783097 3.43097i
\(189\) 0 0
\(190\) −8.51782 10.6810i −0.617948 0.774882i
\(191\) 24.4869 1.77181 0.885906 0.463865i \(-0.153538\pi\)
0.885906 + 0.463865i \(0.153538\pi\)
\(192\) 0 0
\(193\) 14.2742 + 6.87409i 1.02748 + 0.494808i 0.870175 0.492743i \(-0.164006\pi\)
0.157303 + 0.987550i \(0.449720\pi\)
\(194\) 28.0705 35.1993i 2.01535 2.52716i
\(195\) 0 0
\(196\) 6.45924 3.11061i 0.461374 0.222186i
\(197\) 2.83725 + 12.4308i 0.202146 + 0.885660i 0.969627 + 0.244588i \(0.0786527\pi\)
−0.767481 + 0.641072i \(0.778490\pi\)
\(198\) 0 0
\(199\) 7.32020 + 3.52522i 0.518915 + 0.249896i 0.674961 0.737853i \(-0.264160\pi\)
−0.156046 + 0.987750i \(0.549875\pi\)
\(200\) −36.0020 + 17.3377i −2.54573 + 1.22596i
\(201\) 0 0
\(202\) −12.2848 −0.864354
\(203\) −12.7064 + 1.21267i −0.891811 + 0.0851129i
\(204\) 0 0
\(205\) 5.30756 23.2539i 0.370696 1.62412i
\(206\) −25.4377 + 12.2501i −1.77233 + 0.853507i
\(207\) 0 0
\(208\) 6.43951 28.2133i 0.446499 1.95624i
\(209\) 0.948769 + 4.15683i 0.0656277 + 0.287534i
\(210\) 0 0
\(211\) −13.0904 + 16.4149i −0.901183 + 1.13005i 0.0897871 + 0.995961i \(0.471381\pi\)
−0.990970 + 0.134086i \(0.957190\pi\)
\(212\) 16.7319 20.9811i 1.14915 1.44099i
\(213\) 0 0
\(214\) −22.9895 28.8279i −1.57153 1.97063i
\(215\) −5.87102 −0.400401
\(216\) 0 0
\(217\) 3.05021 + 13.3639i 0.207062 + 0.907198i
\(218\) 3.19302 + 13.9895i 0.216259 + 0.947491i
\(219\) 0 0
\(220\) 41.9988 2.83156
\(221\) −6.95359 8.71952i −0.467749 0.586538i
\(222\) 0 0
\(223\) 13.2224 16.5803i 0.885436 1.11030i −0.107799 0.994173i \(-0.534380\pi\)
0.993234 0.116128i \(-0.0370484\pi\)
\(224\) −24.4077 + 30.6063i −1.63081 + 2.04497i
\(225\) 0 0
\(226\) −6.44172 28.2230i −0.428497 1.87737i
\(227\) 2.38193 10.4359i 0.158094 0.692656i −0.832293 0.554335i \(-0.812972\pi\)
0.990388 0.138320i \(-0.0441704\pi\)
\(228\) 0 0
\(229\) 12.6188 6.07690i 0.833875 0.401573i 0.0323077 0.999478i \(-0.489714\pi\)
0.801567 + 0.597905i \(0.204000\pi\)
\(230\) 2.19580 9.62044i 0.144787 0.634353i
\(231\) 0 0
\(232\) −39.3781 + 23.8163i −2.58530 + 1.56361i
\(233\) 12.3851 0.811377 0.405688 0.914011i \(-0.367032\pi\)
0.405688 + 0.914011i \(0.367032\pi\)
\(234\) 0 0
\(235\) 26.0686 12.5540i 1.70053 0.818931i
\(236\) −22.9249 11.0400i −1.49228 0.718645i
\(237\) 0 0
\(238\) 6.83118 + 29.9294i 0.442800 + 1.94003i
\(239\) 8.02168 3.86304i 0.518879 0.249879i −0.156066 0.987747i \(-0.549881\pi\)
0.674946 + 0.737867i \(0.264167\pi\)
\(240\) 0 0
\(241\) −16.3041 + 20.4447i −1.05024 + 1.31696i −0.103619 + 0.994617i \(0.533042\pi\)
−0.946623 + 0.322344i \(0.895529\pi\)
\(242\) 10.2074 + 4.91562i 0.656156 + 0.315988i
\(243\) 0 0
\(244\) −59.8429 −3.83105
\(245\) 2.68031 + 3.36100i 0.171239 + 0.214726i
\(246\) 0 0
\(247\) 0.841529 + 3.68698i 0.0535452 + 0.234597i
\(248\) 30.8139 + 38.6394i 1.95668 + 2.45360i
\(249\) 0 0
\(250\) 1.68497 + 2.11289i 0.106567 + 0.133631i
\(251\) 3.49262 + 1.68196i 0.220452 + 0.106164i 0.540851 0.841119i \(-0.318102\pi\)
−0.320398 + 0.947283i \(0.603817\pi\)
\(252\) 0 0
\(253\) −1.92018 + 2.40783i −0.120721 + 0.151379i
\(254\) −40.7273 + 19.6132i −2.55546 + 1.23064i
\(255\) 0 0
\(256\) −2.46628 + 10.8055i −0.154142 + 0.675341i
\(257\) −1.45625 0.701292i −0.0908383 0.0437454i 0.387913 0.921696i \(-0.373196\pi\)
−0.478751 + 0.877951i \(0.658910\pi\)
\(258\) 0 0
\(259\) 3.63827 15.9403i 0.226071 0.990483i
\(260\) 37.2516 2.31025
\(261\) 0 0
\(262\) −12.2067 −0.754135
\(263\) −5.04283 + 22.0941i −0.310954 + 1.36238i 0.541994 + 0.840382i \(0.317669\pi\)
−0.852948 + 0.521996i \(0.825188\pi\)
\(264\) 0 0
\(265\) 14.4980 + 6.98189i 0.890608 + 0.428894i
\(266\) 2.31640 10.1488i 0.142028 0.622265i
\(267\) 0 0
\(268\) 32.5959 15.6973i 1.99111 0.958868i
\(269\) 3.25476 4.08133i 0.198446 0.248843i −0.672645 0.739966i \(-0.734842\pi\)
0.871091 + 0.491122i \(0.163413\pi\)
\(270\) 0 0
\(271\) −1.35089 0.650556i −0.0820610 0.0395185i 0.392403 0.919793i \(-0.371644\pi\)
−0.474464 + 0.880275i \(0.657358\pi\)
\(272\) 37.7589 + 47.3481i 2.28947 + 2.87090i
\(273\) 0 0
\(274\) 36.7896 + 46.1327i 2.22254 + 2.78698i
\(275\) 2.70811 + 11.8650i 0.163305 + 0.715488i
\(276\) 0 0
\(277\) 1.35995 + 1.70532i 0.0817112 + 0.102463i 0.821007 0.570918i \(-0.193413\pi\)
−0.739296 + 0.673381i \(0.764841\pi\)
\(278\) −21.6988 −1.30141
\(279\) 0 0
\(280\) −56.7669 27.3375i −3.39247 1.63373i
\(281\) 10.7411 13.4689i 0.640761 0.803489i −0.350337 0.936624i \(-0.613933\pi\)
0.991098 + 0.133135i \(0.0425044\pi\)
\(282\) 0 0
\(283\) 10.2985 4.95949i 0.612182 0.294811i −0.101986 0.994786i \(-0.532520\pi\)
0.714168 + 0.699975i \(0.246805\pi\)
\(284\) 4.31228 + 18.8933i 0.255887 + 1.12111i
\(285\) 0 0
\(286\) −14.5132 6.98919i −0.858184 0.413280i
\(287\) 16.3749 7.88572i 0.966578 0.465479i
\(288\) 0 0
\(289\) 6.33927 0.372898
\(290\) −31.2097 32.2924i −1.83269 1.89628i
\(291\) 0 0
\(292\) −2.76285 + 12.1048i −0.161683 + 0.708382i
\(293\) −4.61704 + 2.22345i −0.269730 + 0.129895i −0.563860 0.825870i \(-0.690684\pi\)
0.294130 + 0.955765i \(0.404970\pi\)
\(294\) 0 0
\(295\) 3.39509 14.8749i 0.197670 0.866048i
\(296\) −13.1176 57.4718i −0.762443 3.34048i
\(297\) 0 0
\(298\) −1.24311 + 1.55881i −0.0720114 + 0.0902994i
\(299\) −1.70314 + 2.13567i −0.0984952 + 0.123509i
\(300\) 0 0
\(301\) −2.78925 3.49761i −0.160770 0.201599i
\(302\) −46.3486 −2.66706
\(303\) 0 0
\(304\) −4.56961 20.0208i −0.262085 1.14827i
\(305\) −7.98485 34.9839i −0.457211 2.00317i
\(306\) 0 0
\(307\) 3.39033 0.193496 0.0967482 0.995309i \(-0.469156\pi\)
0.0967482 + 0.995309i \(0.469156\pi\)
\(308\) 19.9531 + 25.0204i 1.13693 + 1.42567i
\(309\) 0 0
\(310\) −30.0701 + 37.7067i −1.70787 + 2.14160i
\(311\) −10.6731 + 13.3836i −0.605213 + 0.758913i −0.986180 0.165675i \(-0.947020\pi\)
0.380967 + 0.924589i \(0.375591\pi\)
\(312\) 0 0
\(313\) 0.322250 + 1.41187i 0.0182147 + 0.0798036i 0.983218 0.182433i \(-0.0583972\pi\)
−0.965004 + 0.262236i \(0.915540\pi\)
\(314\) 0.238202 1.04363i 0.0134425 0.0588955i
\(315\) 0 0
\(316\) −17.5708 + 8.46167i −0.988437 + 0.476006i
\(317\) −3.89788 + 17.0777i −0.218927 + 0.959182i 0.739346 + 0.673326i \(0.235135\pi\)
−0.958273 + 0.285856i \(0.907722\pi\)
\(318\) 0 0
\(319\) 4.40299 + 13.3065i 0.246520 + 0.745023i
\(320\) −59.7480 −3.34002
\(321\) 0 0
\(322\) 6.77449 3.26242i 0.377528 0.181808i
\(323\) −7.13043 3.43383i −0.396748 0.191064i
\(324\) 0 0
\(325\) 2.40201 + 10.5239i 0.133240 + 0.583762i
\(326\) −23.9455 + 11.5316i −1.32622 + 0.638674i
\(327\) 0 0
\(328\) 40.8559 51.2317i 2.25589 2.82880i
\(329\) 19.8638 + 9.56589i 1.09512 + 0.527384i
\(330\) 0 0
\(331\) 10.4276 0.573155 0.286577 0.958057i \(-0.407482\pi\)
0.286577 + 0.958057i \(0.407482\pi\)
\(332\) 34.2681 + 42.9708i 1.88071 + 2.35833i
\(333\) 0 0
\(334\) −6.99119 30.6304i −0.382541 1.67602i
\(335\) 13.5259 + 16.9609i 0.738999 + 0.926675i
\(336\) 0 0
\(337\) −20.0771 25.1759i −1.09367 1.37142i −0.922418 0.386194i \(-0.873790\pi\)
−0.171254 0.985227i \(-0.554782\pi\)
\(338\) 18.5282 + 8.92273i 1.00780 + 0.485333i
\(339\) 0 0
\(340\) −48.6052 + 60.9489i −2.63598 + 3.30542i
\(341\) 13.5614 6.53084i 0.734393 0.353665i
\(342\) 0 0
\(343\) −4.42089 + 19.3692i −0.238705 + 1.04584i
\(344\) −14.5320 6.99824i −0.783513 0.377320i
\(345\) 0 0
\(346\) 4.85811 21.2848i 0.261173 1.14428i
\(347\) −6.96578 −0.373942 −0.186971 0.982365i \(-0.559867\pi\)
−0.186971 + 0.982365i \(0.559867\pi\)
\(348\) 0 0
\(349\) 13.9714 0.747871 0.373935 0.927455i \(-0.378008\pi\)
0.373935 + 0.927455i \(0.378008\pi\)
\(350\) 6.61182 28.9683i 0.353417 1.54842i
\(351\) 0 0
\(352\) 38.7297 + 18.6513i 2.06430 + 0.994115i
\(353\) 5.75044 25.1943i 0.306065 1.34096i −0.554740 0.832024i \(-0.687182\pi\)
0.860805 0.508935i \(-0.169961\pi\)
\(354\) 0 0
\(355\) −10.4696 + 5.04189i −0.555668 + 0.267596i
\(356\) 18.4444 23.1286i 0.977554 1.22581i
\(357\) 0 0
\(358\) 26.0351 + 12.5379i 1.37600 + 0.662646i
\(359\) 10.9382 + 13.7160i 0.577295 + 0.723905i 0.981649 0.190698i \(-0.0610750\pi\)
−0.404354 + 0.914603i \(0.632504\pi\)
\(360\) 0 0
\(361\) −10.1731 12.7566i −0.535425 0.671402i
\(362\) −12.2968 53.8758i −0.646305 2.83165i
\(363\) 0 0
\(364\) 17.6978 + 22.1923i 0.927616 + 1.16319i
\(365\) −7.44509 −0.389694
\(366\) 0 0
\(367\) −26.8154 12.9136i −1.39975 0.674086i −0.426643 0.904420i \(-0.640304\pi\)
−0.973112 + 0.230334i \(0.926018\pi\)
\(368\) 9.24827 11.5970i 0.482100 0.604534i
\(369\) 0 0
\(370\) 51.8299 24.9600i 2.69451 1.29761i
\(371\) 2.72844 + 11.9541i 0.141654 + 0.620625i
\(372\) 0 0
\(373\) −17.3846 8.37200i −0.900142 0.433485i −0.0742017 0.997243i \(-0.523641\pi\)
−0.825940 + 0.563758i \(0.809355\pi\)
\(374\) 30.3719 14.6263i 1.57049 0.756309i
\(375\) 0 0
\(376\) 79.4894 4.09936
\(377\) 3.90532 + 11.8025i 0.201134 + 0.607859i
\(378\) 0 0
\(379\) 1.91129 8.37391i 0.0981763 0.430139i −0.901822 0.432108i \(-0.857770\pi\)
0.999998 + 0.00196965i \(0.000626959\pi\)
\(380\) 23.8167 11.4695i 1.22177 0.588373i
\(381\) 0 0
\(382\) −14.6082 + 64.0026i −0.747419 + 3.27466i
\(383\) −6.29552 27.5825i −0.321686 1.40940i −0.834552 0.550930i \(-0.814273\pi\)
0.512865 0.858469i \(-0.328584\pi\)
\(384\) 0 0
\(385\) −11.9645 + 15.0030i −0.609767 + 0.764623i
\(386\) −26.4827 + 33.2082i −1.34793 + 1.69025i
\(387\) 0 0
\(388\) 54.3153 + 68.1093i 2.75744 + 3.45772i
\(389\) 27.1843 1.37830 0.689149 0.724619i \(-0.257984\pi\)
0.689149 + 0.724619i \(0.257984\pi\)
\(390\) 0 0
\(391\) −1.27204 5.57316i −0.0643297 0.281847i
\(392\) 2.62802 + 11.5141i 0.132735 + 0.581550i
\(393\) 0 0
\(394\) −34.1836 −1.72215
\(395\) −7.29115 9.14281i −0.366857 0.460025i
\(396\) 0 0
\(397\) 3.09017 3.87495i 0.155091 0.194478i −0.698215 0.715888i \(-0.746022\pi\)
0.853306 + 0.521410i \(0.174594\pi\)
\(398\) −13.5810 + 17.0301i −0.680756 + 0.853641i
\(399\) 0 0
\(400\) −13.0432 57.1462i −0.652162 2.85731i
\(401\) 1.38397 6.06358i 0.0691123 0.302801i −0.928544 0.371222i \(-0.878939\pi\)
0.997657 + 0.0684210i \(0.0217961\pi\)
\(402\) 0 0
\(403\) 12.0286 5.79266i 0.599186 0.288553i
\(404\) 5.28945 23.1746i 0.263160 1.15298i
\(405\) 0 0
\(406\) 4.41061 33.9346i 0.218895 1.68415i
\(407\) −17.9540 −0.889946
\(408\) 0 0
\(409\) −4.17933 + 2.01266i −0.206655 + 0.0995196i −0.534348 0.845264i \(-0.679443\pi\)
0.327694 + 0.944784i \(0.393729\pi\)
\(410\) 57.6135 + 27.7452i 2.84533 + 1.37024i
\(411\) 0 0
\(412\) −12.1566 53.2613i −0.598910 2.62400i
\(413\) 10.4745 5.04427i 0.515418 0.248212i
\(414\) 0 0
\(415\) −20.5482 + 25.7666i −1.00867 + 1.26483i
\(416\) 34.3521 + 16.5431i 1.68425 + 0.811092i
\(417\) 0 0
\(418\) −11.4309 −0.559103
\(419\) −8.52181 10.6860i −0.416318 0.522046i 0.528813 0.848738i \(-0.322637\pi\)
−0.945131 + 0.326693i \(0.894066\pi\)
\(420\) 0 0
\(421\) 2.64867 + 11.6046i 0.129088 + 0.565573i 0.997559 + 0.0698322i \(0.0222464\pi\)
−0.868470 + 0.495741i \(0.834896\pi\)
\(422\) −35.0949 44.0077i −1.70840 2.14226i
\(423\) 0 0
\(424\) 27.5633 + 34.5633i 1.33859 + 1.67854i
\(425\) −20.3527 9.80135i −0.987252 0.475435i
\(426\) 0 0
\(427\) 17.0479 21.3773i 0.825003 1.03452i
\(428\) 64.2809 30.9560i 3.10713 1.49632i
\(429\) 0 0
\(430\) 3.50248 15.3454i 0.168904 0.740019i
\(431\) −20.4808 9.86302i −0.986524 0.475085i −0.130180 0.991490i \(-0.541556\pi\)
−0.856344 + 0.516405i \(0.827270\pi\)
\(432\) 0 0
\(433\) 1.22623 5.37245i 0.0589287 0.258184i −0.936879 0.349653i \(-0.886299\pi\)
0.995808 + 0.0914698i \(0.0291565\pi\)
\(434\) −36.7494 −1.76403
\(435\) 0 0
\(436\) −27.7653 −1.32972
\(437\) −0.431339 + 1.88982i −0.0206337 + 0.0904023i
\(438\) 0 0
\(439\) −18.2571 8.79215i −0.871363 0.419626i −0.0559006 0.998436i \(-0.517803\pi\)
−0.815462 + 0.578810i \(0.803517\pi\)
\(440\) −15.3955 + 67.4520i −0.733950 + 3.21565i
\(441\) 0 0
\(442\) 26.9389 12.9731i 1.28135 0.617067i
\(443\) −21.1350 + 26.5024i −1.00415 + 1.25917i −0.0385212 + 0.999258i \(0.512265\pi\)
−0.965633 + 0.259911i \(0.916307\pi\)
\(444\) 0 0
\(445\) 15.9820 + 7.69650i 0.757617 + 0.364849i
\(446\) 35.4487 + 44.4512i 1.67854 + 2.10483i
\(447\) 0 0
\(448\) −28.3855 35.5943i −1.34109 1.68167i
\(449\) 7.17733 + 31.4459i 0.338719 + 1.48403i 0.801737 + 0.597677i \(0.203909\pi\)
−0.463018 + 0.886349i \(0.653234\pi\)
\(450\) 0 0
\(451\) −12.4432 15.6033i −0.585930 0.734733i
\(452\) 56.0148 2.63472
\(453\) 0 0
\(454\) 25.8558 + 12.4515i 1.21347 + 0.584378i
\(455\) −10.6121 + 13.3072i −0.497504 + 0.623851i
\(456\) 0 0
\(457\) 23.5438 11.3381i 1.10133 0.530375i 0.207257 0.978287i \(-0.433546\pi\)
0.894078 + 0.447912i \(0.147832\pi\)
\(458\) 8.35546 + 36.6076i 0.390425 + 1.71056i
\(459\) 0 0
\(460\) 17.2030 + 8.28453i 0.802095 + 0.386268i
\(461\) −11.2947 + 5.43923i −0.526046 + 0.253330i −0.678006 0.735056i \(-0.737156\pi\)
0.151960 + 0.988387i \(0.451441\pi\)
\(462\) 0 0
\(463\) −38.0989 −1.77061 −0.885303 0.465014i \(-0.846049\pi\)
−0.885303 + 0.465014i \(0.846049\pi\)
\(464\) −21.2064 64.0890i −0.984482 2.97526i
\(465\) 0 0
\(466\) −7.38860 + 32.3716i −0.342270 + 1.49958i
\(467\) −6.22496 + 2.99778i −0.288057 + 0.138721i −0.572332 0.820022i \(-0.693961\pi\)
0.284276 + 0.958743i \(0.408247\pi\)
\(468\) 0 0
\(469\) −3.67834 + 16.1159i −0.169850 + 0.744161i
\(470\) 17.2611 + 75.6259i 0.796196 + 3.48836i
\(471\) 0 0
\(472\) 26.1344 32.7714i 1.20293 1.50843i
\(473\) −3.06284 + 3.84068i −0.140829 + 0.176595i
\(474\) 0 0
\(475\) 4.77596 + 5.98886i 0.219136 + 0.274788i
\(476\) −59.4015 −2.72266
\(477\) 0 0
\(478\) 5.31150 + 23.2712i 0.242942 + 1.06440i
\(479\) −3.38908 14.8485i −0.154851 0.678446i −0.991434 0.130607i \(-0.958308\pi\)
0.836583 0.547840i \(-0.184550\pi\)
\(480\) 0 0
\(481\) −15.9246 −0.726101
\(482\) −43.7108 54.8116i −1.99097 2.49660i
\(483\) 0 0
\(484\) −13.6681 + 17.1392i −0.621275 + 0.779054i
\(485\) −32.5691 + 40.8404i −1.47889 + 1.85447i
\(486\) 0 0
\(487\) 7.04525 + 30.8672i 0.319251 + 1.39873i 0.838871 + 0.544331i \(0.183216\pi\)
−0.519620 + 0.854397i \(0.673927\pi\)
\(488\) 21.9366 96.1104i 0.993022 4.35071i
\(489\) 0 0
\(490\) −10.3838 + 5.00057i −0.469092 + 0.225903i
\(491\) 2.38715 10.4588i 0.107731 0.471998i −0.892067 0.451902i \(-0.850746\pi\)
0.999798 0.0200962i \(-0.00639726\pi\)
\(492\) 0 0
\(493\) −24.4061 9.00999i −1.09920 0.405789i
\(494\) −10.1388 −0.456168
\(495\) 0 0
\(496\) −65.3167 + 31.4549i −2.93281 + 1.41237i
\(497\) −7.97763 3.84182i −0.357846 0.172329i
\(498\) 0 0
\(499\) 2.17395 + 9.52472i 0.0973196 + 0.426385i 0.999992 0.00394299i \(-0.00125509\pi\)
−0.902673 + 0.430328i \(0.858398\pi\)
\(500\) −4.71135 + 2.26887i −0.210698 + 0.101467i
\(501\) 0 0
\(502\) −6.47980 + 8.12541i −0.289208 + 0.362655i
\(503\) −21.8843 10.5389i −0.975771 0.469907i −0.123123 0.992391i \(-0.539291\pi\)
−0.852649 + 0.522485i \(0.825005\pi\)
\(504\) 0 0
\(505\) 14.2536 0.634275
\(506\) −5.14793 6.45530i −0.228853 0.286973i
\(507\) 0 0
\(508\) −19.4634 85.2747i −0.863548 3.78345i
\(509\) 2.52048 + 3.16058i 0.111718 + 0.140090i 0.834547 0.550937i \(-0.185730\pi\)
−0.722828 + 0.691028i \(0.757158\pi\)
\(510\) 0 0
\(511\) −3.53707 4.43534i −0.156471 0.196208i
\(512\) 6.49796 + 3.12925i 0.287172 + 0.138295i
\(513\) 0 0
\(514\) 2.70175 3.38789i 0.119169 0.149433i
\(515\) 29.5144 14.2134i 1.30056 0.626316i
\(516\) 0 0
\(517\) 5.38715 23.6027i 0.236927 1.03804i
\(518\) 39.4934 + 19.0190i 1.73524 + 0.835649i
\(519\) 0 0
\(520\) −13.6553 + 59.8278i −0.598825 + 2.62362i
\(521\) 20.3240 0.890412 0.445206 0.895428i \(-0.353130\pi\)
0.445206 + 0.895428i \(0.353130\pi\)
\(522\) 0 0
\(523\) 0.181906 0.00795418 0.00397709 0.999992i \(-0.498734\pi\)
0.00397709 + 0.999992i \(0.498734\pi\)
\(524\) 5.25585 23.0274i 0.229603 1.00596i
\(525\) 0 0
\(526\) −54.7398 26.3613i −2.38677 1.14941i
\(527\) −6.21703 + 27.2386i −0.270818 + 1.18653i
\(528\) 0 0
\(529\) 19.4608 9.37183i 0.846122 0.407471i
\(530\) −26.8980 + 33.7290i −1.16837 + 1.46509i
\(531\) 0 0
\(532\) 18.1479 + 8.73955i 0.786810 + 0.378908i
\(533\) −11.0368 13.8397i −0.478056 0.599463i
\(534\) 0 0
\(535\) 26.6738 + 33.4479i 1.15321 + 1.44608i
\(536\) 13.2620 + 58.1047i 0.572832 + 2.50974i
\(537\) 0 0
\(538\) 8.72587 + 10.9419i 0.376199 + 0.471739i
\(539\) 3.59696 0.154932
\(540\) 0 0
\(541\) 24.3124 + 11.7082i 1.04527 + 0.503376i 0.876059 0.482203i \(-0.160163\pi\)
0.169212 + 0.985580i \(0.445878\pi\)
\(542\) 2.50629 3.14279i 0.107654 0.134994i
\(543\) 0 0
\(544\) −71.8887 + 34.6198i −3.08220 + 1.48431i
\(545\) −3.70474 16.2315i −0.158694 0.695282i
\(546\) 0 0
\(547\) −7.87494 3.79237i −0.336708 0.162150i 0.257887 0.966175i \(-0.416974\pi\)
−0.594596 + 0.804025i \(0.702688\pi\)
\(548\) −102.867 + 49.5383i −4.39427 + 2.11617i
\(549\) 0 0
\(550\) −32.6277 −1.39125
\(551\) 6.13075 + 6.34346i 0.261179 + 0.270240i
\(552\) 0 0
\(553\) 1.98281 8.68727i 0.0843177 0.369420i
\(554\) −5.26857 + 2.53721i −0.223840 + 0.107796i
\(555\) 0 0
\(556\) 9.34285 40.9337i 0.396225 1.73598i
\(557\) −6.30376 27.6186i −0.267099 1.17024i −0.913371 0.407129i \(-0.866530\pi\)
0.646272 0.763107i \(-0.276327\pi\)
\(558\) 0 0
\(559\) −2.71664 + 3.40656i −0.114902 + 0.144082i
\(560\) 57.6252 72.2597i 2.43511 3.05353i
\(561\) 0 0
\(562\) 28.7965 + 36.1097i 1.21471 + 1.52319i
\(563\) 1.24481 0.0524623 0.0262312 0.999656i \(-0.491649\pi\)
0.0262312 + 0.999656i \(0.491649\pi\)
\(564\) 0 0
\(565\) 7.47408 + 32.7461i 0.314437 + 1.37764i
\(566\) 6.81907 + 29.8763i 0.286627 + 1.25579i
\(567\) 0 0
\(568\) −31.9243 −1.33951
\(569\) 5.14541 + 6.45214i 0.215707 + 0.270488i 0.877899 0.478847i \(-0.158945\pi\)
−0.662192 + 0.749334i \(0.730374\pi\)
\(570\) 0 0
\(571\) 17.3342 21.7364i 0.725415 0.909642i −0.273216 0.961953i \(-0.588087\pi\)
0.998631 + 0.0523110i \(0.0166587\pi\)
\(572\) 19.4337 24.3691i 0.812563 1.01892i
\(573\) 0 0
\(574\) 10.8425 + 47.5041i 0.452557 + 1.98278i
\(575\) −1.23119 + 5.39420i −0.0513442 + 0.224954i
\(576\) 0 0
\(577\) −6.48400 + 3.12253i −0.269932 + 0.129993i −0.563954 0.825806i \(-0.690721\pi\)
0.294022 + 0.955799i \(0.405006\pi\)
\(578\) −3.78182 + 16.5692i −0.157303 + 0.689190i
\(579\) 0 0
\(580\) 74.3559 44.9712i 3.08746 1.86733i
\(581\) −25.1124 −1.04184
\(582\) 0 0
\(583\) 12.1308 5.84190i 0.502407 0.241947i
\(584\) −18.4281 8.87453i −0.762562 0.367231i
\(585\) 0 0
\(586\) −3.05714 13.3942i −0.126289 0.553310i
\(587\) 7.62256 3.67083i 0.314617 0.151511i −0.269911 0.962885i \(-0.586994\pi\)
0.584527 + 0.811374i \(0.301280\pi\)
\(588\) 0 0
\(589\) 5.90691 7.40703i 0.243390 0.305201i
\(590\) 36.8537 + 17.7478i 1.51724 + 0.730666i
\(591\) 0 0
\(592\) 86.4728 3.55401
\(593\) 17.9522 + 22.5114i 0.737210 + 0.924433i 0.999174 0.0406452i \(-0.0129413\pi\)
−0.261963 + 0.965078i \(0.584370\pi\)
\(594\) 0 0
\(595\) −7.92596 34.7259i −0.324933 1.42362i
\(596\) −2.40537 3.01623i −0.0985277 0.123550i
\(597\) 0 0
\(598\) −4.56606 5.72565i −0.186720 0.234139i
\(599\) −2.23432 1.07599i −0.0912920 0.0439639i 0.387681 0.921794i \(-0.373276\pi\)
−0.478973 + 0.877830i \(0.658991\pi\)
\(600\) 0 0
\(601\) −24.7528 + 31.0390i −1.00969 + 1.26611i −0.0460366 + 0.998940i \(0.514659\pi\)
−0.963650 + 0.267167i \(0.913912\pi\)
\(602\) 10.8058 5.20382i 0.440413 0.212092i
\(603\) 0 0
\(604\) 19.9563 87.4341i 0.812009 3.55764i
\(605\) −11.8433 5.70341i −0.481497 0.231877i
\(606\) 0 0
\(607\) −7.86688 + 34.4671i −0.319307 + 1.39898i 0.519465 + 0.854492i \(0.326131\pi\)
−0.838772 + 0.544483i \(0.816726\pi\)
\(608\) 27.0564 1.09728
\(609\) 0 0
\(610\) 96.2026 3.89513
\(611\) 4.77824 20.9348i 0.193307 0.846933i
\(612\) 0 0
\(613\) −7.29240 3.51183i −0.294537 0.141842i 0.280780 0.959772i \(-0.409407\pi\)
−0.575317 + 0.817931i \(0.695121\pi\)
\(614\) −2.02257 + 8.86146i −0.0816243 + 0.357619i
\(615\) 0 0
\(616\) −47.4981 + 22.8739i −1.91375 + 0.921615i
\(617\) −17.0599 + 21.3924i −0.686805 + 0.861227i −0.995961 0.0897847i \(-0.971382\pi\)
0.309156 + 0.951011i \(0.399954\pi\)
\(618\) 0 0
\(619\) −24.4911 11.7943i −0.984382 0.474053i −0.128772 0.991674i \(-0.541103\pi\)
−0.855610 + 0.517621i \(0.826818\pi\)
\(620\) −58.1845 72.9611i −2.33675 2.93019i
\(621\) 0 0
\(622\) −28.6140 35.8809i −1.14732 1.43869i
\(623\) 3.00770 + 13.1776i 0.120501 + 0.527950i
\(624\) 0 0
\(625\) −16.5320 20.7305i −0.661280 0.829219i
\(626\) −3.88251 −0.155176
\(627\) 0 0
\(628\) 1.86619 + 0.898710i 0.0744691 + 0.0358624i
\(629\) 20.7781 26.0550i 0.828479 1.03888i
\(630\) 0 0
\(631\) −17.7488 + 8.54737i −0.706568 + 0.340265i −0.752421 0.658683i \(-0.771114\pi\)
0.0458525 + 0.998948i \(0.485400\pi\)
\(632\) −7.14890 31.3214i −0.284368 1.24590i
\(633\) 0 0
\(634\) −42.3115 20.3761i −1.68040 0.809240i
\(635\) 47.2543 22.7565i 1.87523 0.903062i
\(636\) 0 0
\(637\) 3.19040 0.126408
\(638\) −37.4066 + 3.57002i −1.48094 + 0.141338i
\(639\) 0 0
\(640\) 12.7797 55.9917i 0.505164 2.21327i
\(641\) 0.252515 0.121605i 0.00997374 0.00480310i −0.428890 0.903357i \(-0.641095\pi\)
0.438864 + 0.898554i \(0.355381\pi\)
\(642\) 0 0
\(643\) 10.4808 45.9192i 0.413321 1.81088i −0.154817 0.987943i \(-0.549479\pi\)
0.568137 0.822934i \(-0.307664\pi\)
\(644\) 3.23750 + 14.1844i 0.127575 + 0.558944i
\(645\) 0 0
\(646\) 13.2290 16.5886i 0.520487 0.652670i
\(647\) 0.681877 0.855046i 0.0268073 0.0336153i −0.768247 0.640153i \(-0.778871\pi\)
0.795054 + 0.606538i \(0.207442\pi\)
\(648\) 0 0
\(649\) −7.95959 9.98101i −0.312441 0.391789i
\(650\) −28.9398 −1.13511
\(651\) 0 0
\(652\) −11.4435 50.1371i −0.448161 1.96352i
\(653\) −6.63281 29.0602i −0.259562 1.13722i −0.921721 0.387852i \(-0.873217\pi\)
0.662160 0.749363i \(-0.269640\pi\)
\(654\) 0 0
\(655\) 14.1630 0.553395
\(656\) 59.9311 + 75.1513i 2.33992 + 2.93416i
\(657\) 0 0
\(658\) −36.8529 + 46.2121i −1.43668 + 1.80153i
\(659\) 20.7854 26.0640i 0.809683 1.01531i −0.189756 0.981831i \(-0.560770\pi\)
0.999439 0.0334791i \(-0.0106587\pi\)
\(660\) 0 0
\(661\) −0.544903 2.38738i −0.0211943 0.0928581i 0.963225 0.268698i \(-0.0865932\pi\)
−0.984419 + 0.175839i \(0.943736\pi\)
\(662\) −6.22082 + 27.2552i −0.241779 + 1.05930i
\(663\) 0 0
\(664\) −81.5748 + 39.2844i −3.16572 + 1.52453i
\(665\) −2.68764 + 11.7753i −0.104222 + 0.456627i
\(666\) 0 0
\(667\) −0.821302 + 6.31898i −0.0318009 + 0.244672i
\(668\) 60.7929 2.35215
\(669\) 0 0
\(670\) −52.4007 + 25.2348i −2.02442 + 0.974907i
\(671\) −27.0512 13.0272i −1.04430 0.502908i
\(672\) 0 0
\(673\) −2.49804 10.9446i −0.0962924 0.421884i 0.903688 0.428192i \(-0.140849\pi\)
−0.999980 + 0.00630766i \(0.997992\pi\)
\(674\) 77.7809 37.4573i 2.99601 1.44280i
\(675\) 0 0
\(676\) −24.8100 + 31.1107i −0.954229 + 1.19657i
\(677\) −4.61715 2.22350i −0.177451 0.0854561i 0.343049 0.939318i \(-0.388540\pi\)
−0.520500 + 0.853861i \(0.674255\pi\)
\(678\) 0 0
\(679\) −39.8035 −1.52752
\(680\) −80.0697 100.404i −3.07053 3.85032i
\(681\) 0 0
\(682\) 8.97961 + 39.3422i 0.343847 + 1.50649i
\(683\) −18.4315 23.1123i −0.705260 0.884368i 0.292144 0.956374i \(-0.405631\pi\)
−0.997404 + 0.0720063i \(0.977060\pi\)
\(684\) 0 0
\(685\) −42.6855 53.5260i −1.63093 2.04512i
\(686\) −47.9887 23.1101i −1.83222 0.882349i
\(687\) 0 0
\(688\) 14.7517 18.4981i 0.562404 0.705232i
\(689\) 10.7597 5.18158i 0.409911 0.197403i
\(690\) 0 0
\(691\) −9.83685 + 43.0981i −0.374211 + 1.63953i 0.340599 + 0.940209i \(0.389370\pi\)
−0.714810 + 0.699319i \(0.753487\pi\)
\(692\) 38.0608 + 18.3291i 1.44685 + 0.696769i
\(693\) 0 0
\(694\) 4.15557 18.2068i 0.157743 0.691119i
\(695\) 25.1763 0.954992
\(696\) 0 0
\(697\) 37.0443 1.40315
\(698\) −8.33491 + 36.5176i −0.315481 + 1.38221i
\(699\) 0 0
\(700\) 51.8003 + 24.9457i 1.95787 + 0.942859i
\(701\) −5.71682 + 25.0470i −0.215921 + 0.946013i 0.744535 + 0.667583i \(0.232671\pi\)
−0.960457 + 0.278430i \(0.910186\pi\)
\(702\) 0 0
\(703\) −10.1814 + 4.90308i −0.383997 + 0.184923i
\(704\) −31.1698 + 39.0857i −1.17475 + 1.47310i
\(705\) 0 0
\(706\) 62.4210 + 30.0604i 2.34925 + 1.13134i
\(707\) 6.77168 + 8.49142i 0.254675 + 0.319353i
\(708\) 0 0
\(709\) 11.3053 + 14.1764i 0.424579 + 0.532405i 0.947406 0.320033i \(-0.103694\pi\)
−0.522827 + 0.852439i \(0.675123\pi\)
\(710\) −6.93236 30.3727i −0.260167 1.13987i
\(711\) 0 0
\(712\) 30.3844 + 38.1009i 1.13871 + 1.42789i
\(713\) 6.84312 0.256277
\(714\) 0 0
\(715\) 16.8391 + 8.10929i 0.629747 + 0.303270i
\(716\) −34.8619 + 43.7155i −1.30285 + 1.63372i
\(717\) 0 0
\(718\) −42.3756 + 20.4070i −1.58144 + 0.761583i
\(719\) 1.22528 + 5.36832i 0.0456954 + 0.200205i 0.992623 0.121243i \(-0.0386879\pi\)
−0.946928 + 0.321447i \(0.895831\pi\)
\(720\) 0 0
\(721\) 22.4894 + 10.8303i 0.837548 + 0.403342i
\(722\) 39.4116 18.9796i 1.46675 0.706348i
\(723\) 0 0
\(724\) 106.928 3.97396
\(725\) 17.4993 + 18.1064i 0.649908 + 0.672456i
\(726\) 0 0
\(727\) 6.13737 26.8896i 0.227622 0.997279i −0.723950 0.689853i \(-0.757675\pi\)
0.951572 0.307426i \(-0.0994677\pi\)
\(728\) −42.1293 + 20.2884i −1.56142 + 0.751939i
\(729\) 0 0
\(730\) 4.44152 19.4596i 0.164388 0.720231i
\(731\) −2.02900 8.88963i −0.0750453 0.328795i
\(732\) 0 0
\(733\) −26.6783 + 33.4535i −0.985384 + 1.23563i −0.0135639 + 0.999908i \(0.504318\pi\)
−0.971820 + 0.235724i \(0.924254\pi\)
\(734\) 49.7502 62.3848i 1.83631 2.30267i
\(735\) 0 0
\(736\) 12.1849 + 15.2794i 0.449142 + 0.563206i
\(737\) 18.1517 0.668627
\(738\) 0 0
\(739\) −6.66662 29.2084i −0.245236 1.07445i −0.936175 0.351535i \(-0.885660\pi\)
0.690939 0.722913i \(-0.257197\pi\)
\(740\) 24.7693 + 108.521i 0.910538 + 3.98933i
\(741\) 0 0
\(742\) −32.8726 −1.20679
\(743\) −0.969337 1.21551i −0.0355615 0.0445928i 0.763733 0.645533i \(-0.223365\pi\)
−0.799294 + 0.600940i \(0.794793\pi\)
\(744\) 0 0
\(745\) 1.44233 1.80863i 0.0528429 0.0662630i
\(746\) 32.2534 40.4445i 1.18088 1.48078i
\(747\) 0 0
\(748\) 14.5146 + 63.5925i 0.530706 + 2.32517i
\(749\) −7.25389 + 31.7814i −0.265051 + 1.16127i
\(750\) 0 0
\(751\) 37.8839 18.2439i 1.38240 0.665731i 0.412894 0.910779i \(-0.364518\pi\)
0.969511 + 0.245048i \(0.0788037\pi\)
\(752\) −25.9464 + 113.679i −0.946169 + 4.14544i
\(753\) 0 0
\(754\) −33.1785 + 3.16650i −1.20829 + 0.115317i
\(755\) 53.7765 1.95713
\(756\) 0 0
\(757\) 24.4696 11.7839i 0.889362 0.428294i 0.0673267 0.997731i \(-0.478553\pi\)
0.822035 + 0.569437i \(0.192839\pi\)
\(758\) 20.7470 + 9.99124i 0.753566 + 0.362898i
\(759\) 0 0
\(760\) 9.69009 + 42.4551i 0.351497 + 1.54001i
\(761\) −31.5591 + 15.1980i −1.14402 + 0.550929i −0.907231 0.420633i \(-0.861808\pi\)
−0.236785 + 0.971562i \(0.576094\pi\)
\(762\) 0 0
\(763\) 7.90970 9.91846i 0.286351 0.359072i
\(764\) −114.448 55.1151i −4.14057 1.99399i
\(765\) 0 0
\(766\) 75.8493 2.74055
\(767\) −7.05991 8.85285i −0.254919 0.319658i
\(768\) 0 0
\(769\) −4.80403 21.0478i −0.173238 0.759004i −0.984652 0.174532i \(-0.944159\pi\)
0.811414 0.584472i \(-0.198698\pi\)
\(770\) −32.0763 40.2224i −1.15595 1.44952i
\(771\) 0 0
\(772\) −51.2429 64.2566i −1.84427 2.31264i
\(773\) 39.9923 + 19.2593i 1.43842 + 0.692709i 0.980543 0.196304i \(-0.0628941\pi\)
0.457882 + 0.889013i \(0.348608\pi\)
\(774\) 0 0
\(775\) 16.8604 21.1422i 0.605642 0.759451i
\(776\) −129.297 + 62.2662i −4.64149 + 2.23523i
\(777\) 0 0
\(778\) −16.2173 + 71.0528i −0.581420 + 2.54737i
\(779\) −11.3175 5.45020i −0.405490 0.195274i
\(780\) 0 0
\(781\) −2.16357 + 9.47923i −0.0774187 + 0.339194i
\(782\) 15.3257 0.548045
\(783\) 0 0
\(784\) −17.3243 −0.618724
\(785\) −0.276376 + 1.21088i −0.00986430 + 0.0432183i
\(786\) 0 0
\(787\) −18.6719 8.99190i −0.665580 0.320527i 0.0704104 0.997518i \(-0.477569\pi\)
−0.735991 + 0.676991i \(0.763283\pi\)
\(788\) 14.7184 64.4856i 0.524322 2.29720i
\(789\) 0 0
\(790\) 28.2466 13.6029i 1.00497 0.483968i
\(791\) −15.9573 + 20.0099i −0.567378 + 0.711469i
\(792\) 0 0
\(793\) −23.9936 11.5547i −0.852037 0.410319i
\(794\) 8.28462 + 10.3886i 0.294010 + 0.368677i
\(795\) 0 0
\(796\) −26.2788 32.9525i −0.931427 1.16797i
\(797\) −1.09838 4.81233i −0.0389068 0.170462i 0.951742 0.306900i \(-0.0992916\pi\)
−0.990649 + 0.136438i \(0.956435\pi\)
\(798\) 0 0
\(799\) 28.0178 + 35.1332i 0.991199 + 1.24292i
\(800\) 77.2282 2.73043
\(801\) 0 0
\(802\) 15.0230 + 7.23470i 0.530481 + 0.255466i
\(803\) −3.88401 + 4.87039i −0.137064 + 0.171872i
\(804\) 0 0
\(805\) −7.86018 + 3.78526i −0.277035 + 0.133413i
\(806\) 7.96464 + 34.8954i 0.280542 + 1.22914i
\(807\) 0 0
\(808\) 35.2805 + 16.9902i 1.24116 + 0.597713i
\(809\) 1.07371 0.517072i 0.0377497 0.0181793i −0.414914 0.909861i \(-0.636188\pi\)
0.452663 + 0.891681i \(0.350474\pi\)
\(810\) 0 0
\(811\) 46.6639 1.63859 0.819296 0.573370i \(-0.194364\pi\)
0.819296 + 0.573370i \(0.194364\pi\)
\(812\) 62.1168 + 22.9316i 2.17987 + 0.804741i
\(813\) 0 0
\(814\) 10.7108 46.9271i 0.375414 1.64480i
\(815\) 27.7831 13.3796i 0.973198 0.468668i
\(816\) 0 0
\(817\) −0.688019 + 3.01441i −0.0240707 + 0.105461i
\(818\) −2.76731 12.1244i −0.0967569 0.423920i
\(819\) 0 0
\(820\) −77.1464 + 96.7386i −2.69407 + 3.37826i
\(821\) −19.7875 + 24.8127i −0.690588 + 0.865970i −0.996281 0.0861603i \(-0.972540\pi\)
0.305694 + 0.952130i \(0.401112\pi\)
\(822\) 0 0
\(823\) −23.9132 29.9862i −0.833561 1.04525i −0.998263 0.0589096i \(-0.981238\pi\)
0.164702 0.986343i \(-0.447334\pi\)
\(824\) 89.9964 3.13517
\(825\) 0 0
\(826\) 6.93564 + 30.3870i 0.241322 + 1.05730i
\(827\) −3.81065 16.6955i −0.132509 0.580561i −0.996965 0.0778518i \(-0.975194\pi\)
0.864456 0.502709i \(-0.167663\pi\)
\(828\) 0 0
\(829\) 50.9294 1.76885 0.884425 0.466682i \(-0.154551\pi\)
0.884425 + 0.466682i \(0.154551\pi\)
\(830\) −55.0890 69.0794i −1.91217 2.39778i
\(831\) 0 0
\(832\) −27.6466 + 34.6678i −0.958474 + 1.20189i
\(833\) −4.16277 + 5.21994i −0.144231 + 0.180860i
\(834\) 0 0
\(835\) 8.11161 + 35.5393i 0.280714 + 1.22989i
\(836\) 4.92179 21.5638i 0.170224 0.745799i
\(837\) 0 0
\(838\) 33.0144 15.8989i 1.14046 0.549218i
\(839\) 8.56685 37.5338i 0.295760 1.29581i −0.580613 0.814179i \(-0.697187\pi\)
0.876374 0.481632i \(-0.159956\pi\)
\(840\) 0 0
\(841\) 22.0435 + 18.8437i 0.760121 + 0.649782i
\(842\) −31.9116 −1.09974
\(843\) 0 0
\(844\) 98.1290 47.2564i 3.37774 1.62663i
\(845\) −21.4976 10.3527i −0.739540 0.356144i
\(846\) 0 0
\(847\) −2.22883 9.76513i −0.0765834 0.335534i
\(848\) −58.4264 + 28.1367i −2.00637 + 0.966217i
\(849\) 0 0
\(850\) 37.7600 47.3496i 1.29516 1.62408i
\(851\) −7.35409 3.54154i −0.252095 0.121403i
\(852\) 0 0
\(853\) −19.5496 −0.669364 −0.334682 0.942331i \(-0.608629\pi\)
−0.334682 + 0.942331i \(0.608629\pi\)
\(854\) 45.7046 + 57.3118i 1.56398 + 1.96117i
\(855\) 0 0
\(856\) 26.1534 + 114.586i 0.893905 + 3.91646i
\(857\) 3.75869 + 4.71325i 0.128394 + 0.161002i 0.841873 0.539675i \(-0.181453\pi\)
−0.713479 + 0.700677i \(0.752882\pi\)
\(858\) 0 0
\(859\) 9.53742 + 11.9596i 0.325413 + 0.408055i 0.917447 0.397858i \(-0.130246\pi\)
−0.592034 + 0.805913i \(0.701675\pi\)
\(860\) 27.4401 + 13.2145i 0.935701 + 0.450610i
\(861\) 0 0
\(862\) 37.9976 47.6475i 1.29420 1.62288i
\(863\) −4.59289 + 2.21182i −0.156344 + 0.0752913i −0.510419 0.859926i \(-0.670510\pi\)
0.354076 + 0.935217i \(0.384796\pi\)
\(864\) 0 0
\(865\) −5.63667 + 24.6959i −0.191653 + 0.839685i
\(866\) 13.3107 + 6.41009i 0.452315 + 0.217824i
\(867\) 0 0
\(868\) 15.8232 69.3258i 0.537073 2.35307i
\(869\) −9.78469 −0.331923
\(870\) 0 0
\(871\) 16.1000 0.545528
\(872\) 10.1779 44.5924i 0.344668 1.51009i
\(873\) 0 0
\(874\) −4.68218 2.25482i −0.158377 0.0762704i
\(875\) 0.531661 2.32936i 0.0179734 0.0787467i
\(876\) 0 0
\(877\) −50.7911 + 24.4597i −1.71509 + 0.825945i −0.724473 + 0.689303i \(0.757917\pi\)
−0.990621 + 0.136642i \(0.956369\pi\)
\(878\) 33.8721 42.4742i 1.14313 1.43344i
\(879\) 0 0
\(880\) −91.4386 44.0345i −3.08239 1.48440i
\(881\) −5.46459 6.85238i −0.184107 0.230863i 0.681210 0.732088i \(-0.261454\pi\)
−0.865317 + 0.501226i \(0.832883\pi\)
\(882\) 0 0
\(883\) −27.7872 34.8440i −0.935112 1.17259i −0.984776 0.173828i \(-0.944386\pi\)
0.0496640 0.998766i \(-0.484185\pi\)
\(884\) 12.8740 + 56.4046i 0.432999 + 1.89709i
\(885\) 0 0
\(886\) −56.6621 71.0520i −1.90360 2.38704i
\(887\) −50.8916 −1.70877 −0.854386 0.519639i \(-0.826067\pi\)
−0.854386 + 0.519639i \(0.826067\pi\)
\(888\) 0 0
\(889\) 36.0069 + 17.3400i 1.20763 + 0.581565i
\(890\) −29.6511 + 37.1812i −0.993905 + 1.24632i
\(891\) 0 0
\(892\) −99.1180 + 47.7327i −3.31872 + 1.59821i
\(893\) −3.39074 14.8558i −0.113467 0.497130i
\(894\) 0 0
\(895\) −30.2076 14.5472i −1.00973 0.486259i
\(896\) 39.4281 18.9876i 1.31720 0.634330i
\(897\) 0 0
\(898\) −86.4734 −2.88566
\(899\) 17.0165 26.0836i 0.567533 0.869938i
\(900\) 0 0
\(901\) −5.56119 + 24.3652i −0.185270 + 0.811721i
\(902\) 48.2064 23.2150i 1.60510 0.772974i
\(903\) 0 0
\(904\) −20.5333 + 89.9624i −0.682929 + 2.99211i
\(905\) 14.2675 + 62.5100i 0.474268 + 2.07790i
\(906\) 0 0
\(907\) −13.8142 + 17.3225i −0.458695 + 0.575185i −0.956362 0.292183i \(-0.905618\pi\)
0.497668 + 0.867368i \(0.334190\pi\)
\(908\) −34.6218 + 43.4144i −1.14897 + 1.44076i
\(909\) 0 0
\(910\) −28.4507 35.6761i −0.943132 1.18265i
\(911\) −2.98463 −0.0988851 −0.0494425 0.998777i \(-0.515744\pi\)
−0.0494425 + 0.998777i \(0.515744\pi\)
\(912\) 0 0
\(913\) 6.13615 + 26.8842i 0.203077 + 0.889738i
\(914\) 15.5894 + 68.3016i 0.515651 + 2.25921i
\(915\) 0 0
\(916\) −72.6560 −2.40062
\(917\) 6.72867 + 8.43748i 0.222200 + 0.278630i
\(918\) 0 0
\(919\) −2.67826 + 3.35843i −0.0883475 + 0.110784i −0.824041 0.566531i \(-0.808285\pi\)
0.735693 + 0.677315i \(0.236857\pi\)
\(920\) −19.6115 + 24.5920i −0.646570 + 0.810774i
\(921\) 0 0
\(922\) −7.47869 32.7663i −0.246298 1.07910i
\(923\) −1.91902 + 8.40779i −0.0631654 + 0.276746i
\(924\) 0 0
\(925\) −29.0611 + 13.9951i −0.955524 + 0.460156i
\(926\) 22.7287 99.5808i 0.746911 3.27243i
\(927\) 0 0
\(928\) 88.5396 8.45007i 2.90645 0.277387i
\(929\) −33.6586 −1.10430 −0.552152 0.833743i \(-0.686193\pi\)
−0.552152 + 0.833743i \(0.686193\pi\)
\(930\) 0 0
\(931\) 2.03977 0.982301i 0.0668507 0.0321936i
\(932\) −57.8859 27.8764i −1.89612 0.913122i
\(933\) 0 0
\(934\) −4.12181 18.0588i −0.134870 0.590903i
\(935\) −35.2393 + 16.9704i −1.15245 + 0.554990i
\(936\) 0 0
\(937\) 15.0681 18.8947i 0.492252 0.617264i −0.472210 0.881486i \(-0.656544\pi\)
0.964462 + 0.264222i \(0.0851151\pi\)
\(938\) −39.9283 19.2285i −1.30371 0.627832i
\(939\) 0 0
\(940\) −150.096 −4.89561
\(941\) 15.7291 + 19.7237i 0.512755 + 0.642974i 0.969053 0.246853i \(-0.0793964\pi\)
−0.456298 + 0.889827i \(0.650825\pi\)
\(942\) 0 0
\(943\) −2.01899 8.84576i −0.0657473 0.288058i
\(944\) 38.3362 + 48.0721i 1.24774 + 1.56461i
\(945\) 0 0
\(946\) −8.21135 10.2967i −0.266974 0.334775i
\(947\) 43.3634 + 20.8827i 1.40912 + 0.678597i 0.974989 0.222251i \(-0.0713406\pi\)
0.434133 + 0.900849i \(0.357055\pi\)
\(948\) 0 0
\(949\) −3.44500 + 4.31989i −0.111829 + 0.140229i
\(950\) −18.5025 + 8.91035i −0.600302 + 0.289090i
\(951\) 0 0
\(952\) 21.7748 95.4015i 0.705725 3.09198i
\(953\) 9.31899 + 4.48779i 0.301872 + 0.145374i 0.578688 0.815549i \(-0.303565\pi\)
−0.276816 + 0.960923i \(0.589279\pi\)
\(954\) 0 0
\(955\) 16.9493 74.2597i 0.548466 2.40299i
\(956\) −46.1869 −1.49379
\(957\) 0 0
\(958\) 40.8321 1.31922
\(959\) 11.6082 50.8590i 0.374850 1.64232i
\(960\) 0 0
\(961\) −2.20329 1.06105i −0.0710740 0.0342274i
\(962\) 9.50016 41.6229i 0.306298 1.34198i
\(963\) 0 0
\(964\) 122.220 58.8579i 3.93643 1.89568i
\(965\) 30.7268 38.5302i 0.989131 1.24033i
\(966\) 0 0
\(967\) 17.7741 + 8.55958i 0.571578 + 0.275257i 0.697266 0.716812i \(-0.254400\pi\)
−0.125688 + 0.992070i \(0.540114\pi\)
\(968\) −22.5161 28.2342i −0.723693 0.907483i
\(969\) 0 0
\(970\) −87.3166 109.492i −2.80357 3.51556i
\(971\) −1.86443 8.16861i −0.0598325 0.262143i 0.936161 0.351572i \(-0.114353\pi\)
−0.995993 + 0.0894292i \(0.971496\pi\)
\(972\) 0 0
\(973\) 11.9610 + 14.9986i 0.383451 + 0.480832i
\(974\) −84.8821 −2.71980
\(975\) 0 0
\(976\) 130.288 + 62.7435i 4.17042 + 2.00837i
\(977\) −17.2562 + 21.6385i −0.552073 + 0.692278i −0.977070 0.212917i \(-0.931704\pi\)
0.424997 + 0.905195i \(0.360275\pi\)
\(978\) 0 0
\(979\) 13.3724 6.43983i 0.427385 0.205818i
\(980\) −4.96237 21.7416i −0.158517 0.694509i
\(981\) 0 0
\(982\) 25.9125 + 12.4788i 0.826901 + 0.398214i
\(983\) −1.62240 + 0.781309i −0.0517466 + 0.0249199i −0.459578 0.888137i \(-0.651999\pi\)
0.407831 + 0.913057i \(0.366285\pi\)
\(984\) 0 0
\(985\) 39.6619 1.26373
\(986\) 38.1098 58.4163i 1.21366 1.86035i
\(987\) 0 0
\(988\) 4.36548 19.1264i 0.138884 0.608492i
\(989\) −2.01216 + 0.969005i −0.0639830 + 0.0308126i
\(990\) 0 0
\(991\) −3.73734 + 16.3743i −0.118720 + 0.520148i 0.880239 + 0.474531i \(0.157382\pi\)
−0.998959 + 0.0456167i \(0.985475\pi\)
\(992\) −21.2543 93.1212i −0.674825 2.95660i
\(993\) 0 0
\(994\) 14.8008 18.5596i 0.469452 0.588674i
\(995\) 15.7576 19.7594i 0.499548 0.626414i
\(996\) 0 0
\(997\) 16.6174 + 20.8376i 0.526280 + 0.659934i 0.971929 0.235274i \(-0.0755987\pi\)
−0.445650 + 0.895208i \(0.647027\pi\)
\(998\) −26.1921 −0.829096
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.b.199.1 18
3.2 odd 2 87.2.g.b.25.3 yes 18
29.6 even 14 7569.2.a.bk.1.1 9
29.7 even 7 inner 261.2.k.b.181.1 18
29.23 even 7 7569.2.a.bl.1.9 9
87.23 odd 14 2523.2.a.p.1.1 9
87.35 odd 14 2523.2.a.q.1.9 9
87.65 odd 14 87.2.g.b.7.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.7.3 18 87.65 odd 14
87.2.g.b.25.3 yes 18 3.2 odd 2
261.2.k.b.181.1 18 29.7 even 7 inner
261.2.k.b.199.1 18 1.1 even 1 trivial
2523.2.a.p.1.1 9 87.23 odd 14
2523.2.a.q.1.9 9 87.35 odd 14
7569.2.a.bk.1.1 9 29.6 even 14
7569.2.a.bl.1.9 9 29.23 even 7