Properties

Label 261.2.a
Level $261$
Weight $2$
Character orbit 261.a
Rep. character $\chi_{261}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $5$
Sturm bound $60$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(60\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(261))\).

Total New Old
Modular forms 34 11 23
Cusp forms 27 11 16
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(29\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(5\)\(2\)\(3\)\(4\)\(2\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(11\)\(2\)\(9\)\(9\)\(2\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(9\)\(5\)\(4\)\(7\)\(5\)\(2\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(9\)\(2\)\(7\)\(7\)\(2\)\(5\)\(2\)\(0\)\(2\)
Plus space\(+\)\(14\)\(4\)\(10\)\(11\)\(4\)\(7\)\(3\)\(0\)\(3\)
Minus space\(-\)\(20\)\(7\)\(13\)\(16\)\(7\)\(9\)\(4\)\(0\)\(4\)

Trace form

\( 11 q - q^{2} + 5 q^{4} + 3 q^{8} - 4 q^{10} + 2 q^{11} - 4 q^{13} + 4 q^{14} - 7 q^{16} - 6 q^{17} + 24 q^{20} - 6 q^{22} + 7 q^{25} - 8 q^{26} + 4 q^{28} - 3 q^{29} + 6 q^{31} - 5 q^{32} + 22 q^{34} + 4 q^{35}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(261))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 29
261.2.a.a 261.a 1.a $2$ $2.084$ \(\Q(\sqrt{5}) \) None 261.2.a.a \(-1\) \(0\) \(-4\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}-2q^{5}+(-1+\cdots)q^{7}+\cdots\)
261.2.a.b 261.a 1.a $2$ $2.084$ \(\Q(\sqrt{5}) \) None 87.2.a.a \(-1\) \(0\) \(-2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}+(-2+2\beta )q^{5}+\cdots\)
261.2.a.c 261.a 1.a $2$ $2.084$ \(\Q(\sqrt{5}) \) None 261.2.a.a \(1\) \(0\) \(4\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+\beta )q^{4}+2q^{5}+(-1+\cdots)q^{7}+\cdots\)
261.2.a.d 261.a 1.a $2$ $2.084$ \(\Q(\sqrt{2}) \) None 29.2.a.a \(2\) \(0\) \(2\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(1+2\beta )q^{4}+q^{5}-2\beta q^{7}+\cdots\)
261.2.a.e 261.a 1.a $3$ $2.084$ 3.3.229.1 None 87.2.a.b \(-2\) \(0\) \(0\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{2}+(2+\beta _{1})q^{4}+2\beta _{1}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(261))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(261)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 2}\)