Properties

Label 2601.2.w
Level $2601$
Weight $2$
Character orbit 2601.w
Rep. character $\chi_{2601}(65,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $4096$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.w (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 153 \)
Character field: \(\Q(\zeta_{48})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 5184 4544 640
Cusp forms 4608 4096 512
Eisenstein series 576 448 128

Trace form

\( 4096q + 24q^{2} + 16q^{3} + 8q^{4} + 24q^{5} + 16q^{6} + 8q^{7} + 16q^{9} + O(q^{10}) \) \( 4096q + 24q^{2} + 16q^{3} + 8q^{4} + 24q^{5} + 16q^{6} + 8q^{7} + 16q^{9} + 32q^{10} + 24q^{11} - 32q^{12} + 8q^{13} + 24q^{14} + 40q^{15} - 160q^{18} + 32q^{19} + 24q^{20} - 32q^{21} + 8q^{22} + 24q^{23} + 40q^{24} + 8q^{25} + 16q^{27} + 32q^{28} + 24q^{29} + 16q^{30} + 8q^{31} + 24q^{32} + 32q^{36} + 32q^{37} + 8q^{40} + 24q^{41} - 32q^{42} - 16q^{43} - 16q^{45} + 32q^{46} - 96q^{47} - 40q^{48} + 8q^{49} - 112q^{52} + 32q^{55} - 216q^{56} + 32q^{57} + 8q^{58} + 24q^{59} - 256q^{60} + 8q^{61} + 88q^{63} + 96q^{64} - 24q^{65} + 96q^{66} - 608q^{69} - 8q^{70} + 88q^{72} + 32q^{73} + 24q^{74} + 112q^{75} + 8q^{76} + 24q^{77} - 192q^{78} + 8q^{79} + 72q^{81} - 160q^{82} + 24q^{83} - 816q^{86} - 32q^{87} + 8q^{88} - 64q^{90} + 128q^{91} + 24q^{92} - 48q^{93} + 8q^{94} - 216q^{95} - 88q^{96} + 8q^{97} - 88q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)