Properties

Label 2601.2.t
Level $2601$
Weight $2$
Character orbit 2601.t
Rep. character $\chi_{2601}(118,\cdot)$
Character field $\Q(\zeta_{34})$
Dimension $2016$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.t (of order \(34\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 289 \)
Character field: \(\Q(\zeta_{34})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 4960 2048 2912
Cusp forms 4832 2016 2816
Eisenstein series 128 32 96

Trace form

\( 2016q + 15q^{2} - 135q^{4} + 51q^{5} - 17q^{7} + 11q^{8} + O(q^{10}) \) \( 2016q + 15q^{2} - 135q^{4} + 51q^{5} - 17q^{7} + 11q^{8} + 17q^{10} + 17q^{11} - 15q^{13} - 68q^{14} - 135q^{16} + 27q^{17} - 31q^{19} + 17q^{20} - 17q^{22} + 17q^{23} + 55q^{25} + 21q^{26} - 17q^{28} + 17q^{29} - 17q^{31} + 33q^{32} - 3q^{34} + q^{35} - 17q^{37} + 172q^{38} + 17q^{41} - 27q^{43} + 85q^{44} + 51q^{46} + 12q^{47} + 103q^{49} + 49q^{50} + 80q^{52} - 2q^{53} - 3q^{55} + 17q^{56} + 102q^{58} - q^{59} - 17q^{61} + 119q^{62} - 107q^{64} + 92q^{67} + 31q^{68} - 49q^{70} + 153q^{71} - 17q^{73} + 204q^{74} - 11q^{76} - 111q^{77} - 136q^{79} + 153q^{80} - 17q^{82} - 39q^{83} + 108q^{85} + 19q^{86} - 255q^{88} - 29q^{89} + 51q^{91} - 153q^{92} - 187q^{94} + 17q^{95} - 17q^{97} - 231q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(289, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(867, [\chi])\)\(^{\oplus 2}\)