Properties

Label 2601.2.s
Level $2601$
Weight $2$
Character orbit 2601.s
Rep. character $\chi_{2601}(688,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $2048$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.s (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 153 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 2592 2272 320
Cusp forms 2304 2048 256
Eisenstein series 288 224 64

Trace form

\( 2048q + 4q^{2} + 8q^{3} + 4q^{5} + 8q^{6} + 4q^{7} + 32q^{8} + 20q^{9} + O(q^{10}) \) \( 2048q + 4q^{2} + 8q^{3} + 4q^{5} + 8q^{6} + 4q^{7} + 32q^{8} + 20q^{9} + 16q^{10} + 44q^{12} + 4q^{14} + 4q^{15} + 864q^{16} - 144q^{18} + 16q^{19} + 36q^{20} + 4q^{22} - 8q^{23} - 28q^{24} + 4q^{25} + 32q^{26} + 32q^{27} + 48q^{28} + 4q^{29} + 4q^{31} - 28q^{32} + 48q^{33} - 352q^{35} + 44q^{36} + 16q^{37} + 28q^{39} - 12q^{40} - 20q^{41} - 48q^{42} + 16q^{43} - 16q^{44} + 4q^{45} - 32q^{46} + 24q^{48} + 4q^{49} + 112q^{50} + 8q^{52} - 16q^{53} - 88q^{54} + 76q^{56} - 64q^{57} + 4q^{58} - 56q^{59} + 8q^{60} + 4q^{61} + 16q^{62} - 84q^{63} + 52q^{65} - 176q^{66} + 8q^{67} + 80q^{69} + 12q^{70} - 48q^{71} + 16q^{73} - 52q^{74} + 16q^{75} + 4q^{76} - 8q^{77} + 72q^{78} + 4q^{79} + 8q^{80} + 136q^{82} - 44q^{83} - 152q^{84} + 104q^{86} + 52q^{87} - 200q^{90} + 24q^{91} - 76q^{92} + 4q^{93} + 20q^{94} + 28q^{95} - 180q^{96} - 32q^{97} - 44q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)