Properties

Label 2601.2.q
Level $2601$
Weight $2$
Character orbit 2601.q
Rep. character $\chi_{2601}(154,\cdot)$
Character field $\Q(\zeta_{17})$
Dimension $2016$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.q (of order \(17\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 289 \)
Character field: \(\Q(\zeta_{17})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 4960 2048 2912
Cusp forms 4832 2016 2816
Eisenstein series 128 32 96

Trace form

\( 2016q + 15q^{2} - 143q^{4} - 13q^{5} - 13q^{7} + 11q^{8} + O(q^{10}) \) \( 2016q + 15q^{2} - 143q^{4} - 13q^{5} - 13q^{7} + 11q^{8} + 21q^{10} + 13q^{11} - 7q^{13} + 98q^{14} - 135q^{16} + 19q^{17} - 11q^{19} + 29q^{20} - 21q^{22} + 21q^{23} - 201q^{25} + 29q^{26} - 13q^{28} + 29q^{29} - 29q^{31} + 13q^{32} - 19q^{34} - 7q^{35} - 29q^{37} + 92q^{38} - 6q^{40} + 5q^{41} - 15q^{43} - 39q^{44} + 31q^{46} - 22q^{47} - 137q^{49} - 3q^{50} - 82q^{52} + 10q^{53} - 11q^{55} + 29q^{56} - 140q^{58} + 11q^{59} - 29q^{61} + 99q^{62} - 115q^{64} + 34q^{65} - 10q^{67} + 23q^{68} - 9q^{70} - 107q^{71} - 5q^{73} - 150q^{74} - 83q^{76} - 131q^{77} + 4q^{79} - 75q^{80} + 3q^{82} - 71q^{83} - 204q^{85} - 5q^{86} + 21q^{88} + 27q^{89} - 101q^{91} - 189q^{92} + 361q^{94} + q^{95} - 5q^{97} + 205q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(289, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(867, [\chi])\)\(^{\oplus 2}\)