Defining parameters
Level: | \( N \) | \(=\) | \( 2601 = 3^{2} \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2601.o (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 51 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Sturm bound: | \(612\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2736 | 720 | 2016 |
Cusp forms | 2160 | 720 | 1440 |
Eisenstein series | 576 | 0 | 576 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(867, [\chi])\)\(^{\oplus 2}\)