Properties

Label 2601.2.n
Level $2601$
Weight $2$
Character orbit 2601.n
Rep. character $\chi_{2601}(616,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1024$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.n (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 153 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 1296 1136 160
Cusp forms 1152 1024 128
Eisenstein series 144 112 32

Trace form

\( 1024q + 6q^{3} + 488q^{4} + 2q^{5} + 10q^{6} + 2q^{7} + O(q^{10}) \) \( 1024q + 6q^{3} + 488q^{4} + 2q^{5} + 10q^{6} + 2q^{7} + 16q^{10} + 24q^{12} + 4q^{13} - 432q^{16} - 64q^{18} - 18q^{20} + 4q^{22} + 8q^{23} + 2q^{24} + 10q^{29} + 56q^{30} + 2q^{31} - 20q^{33} + 8q^{37} + 88q^{38} - 34q^{39} + 20q^{40} - 32q^{41} - 20q^{44} - 20q^{45} + 40q^{46} + 64q^{47} - 62q^{48} - 88q^{50} - 68q^{52} + 46q^{54} + 16q^{55} - 12q^{56} - 72q^{57} + 10q^{58} + 2q^{61} + 28q^{62} - 64q^{63} - 632q^{64} - 8q^{65} + 4q^{67} + 8q^{69} + 84q^{71} - 92q^{72} + 44q^{73} + 14q^{74} - 46q^{75} + 56q^{78} - 10q^{79} - 204q^{80} - 52q^{81} + 52q^{82} + 164q^{84} - 44q^{86} - 16q^{88} - 128q^{89} + 66q^{90} - 44q^{91} - 136q^{92} - 4q^{95} + 2q^{96} + 44q^{97} - 240q^{98} - 6q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)