Properties

Label 2601.2.h
Level $2601$
Weight $2$
Character orbit 2601.h
Rep. character $\chi_{2601}(1444,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $512$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 153 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 648 568 80
Cusp forms 576 512 64
Eisenstein series 72 56 16

Trace form

\( 512q + 4q^{2} - 240q^{4} - 12q^{8} - 10q^{9} + O(q^{10}) \) \( 512q + 4q^{2} - 240q^{4} - 12q^{8} - 10q^{9} + 2q^{13} - 208q^{16} - 34q^{18} + 20q^{19} + 48q^{21} + 202q^{25} - 8q^{26} - 46q^{30} + 16q^{32} - 20q^{33} - 52q^{35} + 14q^{36} - 36q^{38} + 6q^{42} + 8q^{43} - 20q^{47} + 174q^{49} - 96q^{50} - 26q^{52} - 16q^{53} + 28q^{55} + 24q^{59} + 10q^{60} + 276q^{64} + 48q^{66} - 4q^{67} + 68q^{69} + 12q^{70} - 74q^{72} - 4q^{76} + 28q^{77} + 38q^{81} + 62q^{83} - 24q^{84} + 32q^{86} - 62q^{87} + 8q^{89} - 46q^{93} - 6q^{94} + 76q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)