Properties

Label 2601.2.e
Level $2601$
Weight $2$
Character orbit 2601.e
Rep. character $\chi_{2601}(868,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $512$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 648 572 76
Cusp forms 576 512 64
Eisenstein series 72 60 12

Trace form

\( 512q + 2q^{3} - 240q^{4} + 2q^{5} - 2q^{6} + 2q^{7} + 12q^{8} + 6q^{9} + O(q^{10}) \) \( 512q + 2q^{3} - 240q^{4} + 2q^{5} - 2q^{6} + 2q^{7} + 12q^{8} + 6q^{9} + 8q^{11} - 4q^{12} + 2q^{13} + 4q^{14} - 12q^{15} - 208q^{16} - 46q^{18} - 4q^{19} - 10q^{20} + 16q^{21} + 8q^{23} + 18q^{24} - 198q^{25} + 8q^{26} - 16q^{27} - 16q^{28} - 6q^{29} + 6q^{30} + 2q^{31} - 12q^{32} + 24q^{33} - 44q^{35} - 58q^{36} + 8q^{37} - 36q^{38} + 6q^{39} + 12q^{41} + 10q^{42} + 8q^{43} - 60q^{44} + 24q^{46} + 4q^{47} - 50q^{48} - 170q^{49} - 24q^{50} - 26q^{52} - 38q^{54} - 12q^{55} + 24q^{56} + 56q^{57} - 6q^{58} - 24q^{59} + 142q^{60} + 2q^{61} - 108q^{62} + 44q^{63} + 324q^{64} - 20q^{65} + 16q^{66} + 8q^{67} + 4q^{69} - 4q^{71} + 46q^{72} - 28q^{73} + 46q^{74} - 50q^{75} + 8q^{76} - 12q^{77} + 96q^{78} + 14q^{79} + 148q^{80} - 26q^{81} + 36q^{82} - 26q^{83} - 36q^{84} - 44q^{86} - 22q^{87} + 24q^{88} + 56q^{89} - 10q^{90} - 44q^{91} - 4q^{92} - 6q^{93} - 6q^{94} + 64q^{95} - 6q^{96} - 4q^{97} - 76q^{98} + 26q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)