Properties

Label 2601.2.d
Level $2601$
Weight $2$
Character orbit 2601.d
Rep. character $\chi_{2601}(577,\cdot)$
Character field $\Q$
Dimension $106$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 342 120 222
Cusp forms 270 106 164
Eisenstein series 72 14 58

Trace form

\( 106q - 2q^{2} + 106q^{4} - 6q^{8} + O(q^{10}) \) \( 106q - 2q^{2} + 106q^{4} - 6q^{8} - 2q^{13} + 90q^{16} - 10q^{19} - 56q^{25} + 12q^{26} + 36q^{32} + 8q^{35} + 8q^{38} - 14q^{43} - 18q^{47} - 68q^{49} + 20q^{50} - 20q^{52} + 2q^{53} - 6q^{55} - 30q^{59} + 62q^{64} - 22q^{67} - 16q^{70} + 12q^{76} + 62q^{77} + 12q^{83} + 6q^{86} - 34q^{89} + 16q^{94} - 16q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(289, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(867, [\chi])\)\(^{\oplus 2}\)