Properties

Label 2601.2.bn
Level $2601$
Weight $2$
Character orbit 2601.bn
Rep. character $\chi_{2601}(5,\cdot)$
Character field $\Q(\zeta_{816})$
Dimension $77824$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.bn (of order \(816\) and degree \(256\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2601 \)
Character field: \(\Q(\zeta_{816})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 78848 78848 0
Cusp forms 77824 77824 0
Eisenstein series 1024 1024 0

Trace form

\( 77824q - 384q^{2} - 256q^{3} - 128q^{4} - 384q^{5} - 256q^{6} - 128q^{7} - 256q^{9} + O(q^{10}) \) \( 77824q - 384q^{2} - 256q^{3} - 128q^{4} - 384q^{5} - 256q^{6} - 128q^{7} - 256q^{9} - 512q^{10} - 384q^{11} - 304q^{12} - 128q^{13} - 384q^{14} - 232q^{15} - 136q^{16} - 240q^{18} - 512q^{19} - 384q^{20} - 304q^{21} - 128q^{22} - 384q^{23} - 232q^{24} - 128q^{25} - 256q^{27} - 512q^{28} - 384q^{29} - 256q^{30} - 128q^{31} - 384q^{32} - 272q^{33} - 80q^{34} - 240q^{36} - 512q^{37} - 408q^{38} - 272q^{39} - 128q^{40} - 384q^{41} - 304q^{42} - 152q^{43} - 288q^{45} - 512q^{46} - 504q^{47} - 312q^{48} - 128q^{49} - 408q^{50} - 288q^{51} - 120q^{52} - 272q^{54} - 512q^{55} - 624q^{56} - 240q^{57} - 128q^{58} - 384q^{59} - 528q^{60} - 128q^{61} - 184q^{63} - 448q^{64} - 432q^{65} - 176q^{66} - 136q^{67} - 384q^{68} - 240q^{69} - 144q^{70} - 184q^{72} - 512q^{73} - 384q^{74} - 160q^{75} - 128q^{76} - 384q^{77} - 464q^{78} - 128q^{79} - 200q^{81} - 704q^{82} - 384q^{83} - 272q^{84} - 128q^{85} - 360q^{86} - 304q^{87} - 128q^{88} - 336q^{90} - 416q^{91} - 384q^{92} - 320q^{93} - 128q^{94} - 624q^{95} - 360q^{96} - 128q^{97} - 360q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.