Properties

Label 2601.2.bk
Level $2601$
Weight $2$
Character orbit 2601.bk
Rep. character $\chi_{2601}(25,\cdot)$
Character field $\Q(\zeta_{408})$
Dimension $38912$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.bk (of order \(408\) and degree \(128\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2601 \)
Character field: \(\Q(\zeta_{408})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 39424 39424 0
Cusp forms 38912 38912 0
Eisenstein series 512 512 0

Trace form

\( 38912q - 64q^{2} - 128q^{3} - 68q^{4} - 64q^{5} - 128q^{6} - 64q^{7} - 240q^{8} - 116q^{9} + O(q^{10}) \) \( 38912q - 64q^{2} - 128q^{3} - 68q^{4} - 64q^{5} - 128q^{6} - 64q^{7} - 240q^{8} - 116q^{9} - 256q^{10} - 68q^{11} - 92q^{12} - 68q^{13} - 64q^{14} - 132q^{15} - 1252q^{16} - 256q^{17} - 120q^{18} - 256q^{19} - 32q^{20} - 136q^{21} - 64q^{22} - 76q^{23} + 516q^{24} - 64q^{25} - 240q^{26} - 104q^{27} - 224q^{28} - 64q^{29} - 136q^{30} - 64q^{31} - 96q^{32} - 120q^{33} - 88q^{34} - 368q^{35} - 92q^{36} - 256q^{37} - 380q^{39} - 80q^{40} - 88q^{41} - 184q^{42} - 52q^{43} - 288q^{44} - 132q^{45} - 304q^{46} - 68q^{47} - 112q^{48} - 64q^{49} - 116q^{50} - 96q^{51} + 4q^{52} - 288q^{53} - 224q^{54} - 272q^{55} + 8q^{56} - 200q^{57} - 64q^{58} - 124q^{59} - 128q^{60} - 64q^{61} - 1072q^{62} - 220q^{63} - 272q^{64} - 16q^{65} - 312q^{66} - 60q^{67} - 80q^{68} - 120q^{69} - 56q^{70} - 320q^{71} - 136q^{72} - 256q^{73} - 120q^{74} - 120q^{75} - 336q^{76} - 76q^{77} - 64q^{78} - 64q^{79} - 264q^{80} - 136q^{81} - 136q^{82} - 112q^{83} - 128q^{84} - 16q^{85} + 20q^{86} - 84q^{87} - 68q^{88} - 272q^{89} - 336q^{90} - 248q^{91} - 144q^{92} - 132q^{93} - 48q^{94} - 40q^{95} - 316q^{96} - 100q^{97} - 272q^{98} - 180q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.