Properties

Label 2601.2.bj
Level $2601$
Weight $2$
Character orbit 2601.bj
Rep. character $\chi_{2601}(44,\cdot)$
Character field $\Q(\zeta_{272})$
Dimension $13056$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.bj (of order \(272\) and degree \(128\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 867 \)
Character field: \(\Q(\zeta_{272})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 39680 13056 26624
Cusp forms 38656 13056 25600
Eisenstein series 1024 0 1024

Trace form

\( 13056q + O(q^{10}) \) \( 13056q + 16q^{25} + 96q^{28} + 64q^{31} + 32q^{34} + 64q^{37} + 64q^{40} - 32q^{43} - 32q^{46} - 64q^{49} - 64q^{55} - 64q^{58} - 32q^{61} - 64q^{64} + 64q^{70} + 32q^{73} + 128q^{76} + 64q^{79} + 16q^{82} + 32q^{85} + 64q^{88} - 128q^{91} - 64q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(867, [\chi])\)\(^{\oplus 2}\)