Properties

Label 2601.2.bg
Level $2601$
Weight $2$
Character orbit 2601.bg
Rep. character $\chi_{2601}(4,\cdot)$
Character field $\Q(\zeta_{204})$
Dimension $19456$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.bg (of order \(204\) and degree \(64\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2601 \)
Character field: \(\Q(\zeta_{204})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 19712 19712 0
Cusp forms 19456 19456 0
Eisenstein series 256 256 0

Trace form

\( 19456q - 34q^{2} - 62q^{3} - 634q^{4} - 32q^{5} - 58q^{6} - 32q^{7} - 136q^{8} - 68q^{9} + O(q^{10}) \) \( 19456q - 34q^{2} - 62q^{3} - 634q^{4} - 32q^{5} - 58q^{6} - 32q^{7} - 136q^{8} - 68q^{9} - 120q^{10} - 34q^{11} - 44q^{12} - 30q^{13} - 34q^{14} - 68q^{15} + 558q^{16} - 128q^{17} - 52q^{18} - 136q^{19} - 52q^{20} - 36q^{21} - 30q^{22} - 26q^{23} - 406q^{24} - 34q^{25} - 136q^{26} - 68q^{27} - 136q^{28} - 24q^{29} - 52q^{30} - 32q^{31} - 34q^{32} + 132q^{33} - 54q^{34} - 8q^{35} - 68q^{36} - 128q^{37} - 452q^{38} + 34q^{39} - 14q^{40} - 66q^{41} - 68q^{42} - 34q^{43} - 156q^{44} - 88q^{45} - 96q^{46} + 30q^{47} - 130q^{48} - 34q^{49} - 42q^{50} - 380q^{51} - 70q^{52} - 136q^{53} - 464q^{54} - 120q^{55} - 46q^{56} - 140q^{57} - 24q^{58} - 34q^{59} - 68q^{60} - 32q^{61} + 300q^{62} - 132q^{63} + 1024q^{64} - 42q^{65} + 952q^{66} - 30q^{67} + 26q^{68} - 92q^{69} - 34q^{70} - 52q^{71} - 184q^{72} - 92q^{73} - 20q^{74} - 114q^{75} + 102q^{76} - 34q^{77} - 12q^{78} - 44q^{79} - 340q^{80} - 104q^{81} - 84q^{82} - 34q^{83} + 16q^{84} - 56q^{85} - 86q^{86} - 68q^{87} - 50q^{88} - 264q^{89} - 2q^{90} - 180q^{91} - 170q^{92} - 68q^{93} - 34q^{94} - 38q^{95} - 644q^{96} + 10q^{97} - 312q^{98} - 74q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.