Properties

Label 2601.2.ba
Level $2601$
Weight $2$
Character orbit 2601.ba
Rep. character $\chi_{2601}(55,\cdot)$
Character field $\Q(\zeta_{68})$
Dimension $4032$
Sturm bound $612$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.ba (of order \(68\) and degree \(32\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 289 \)
Character field: \(\Q(\zeta_{68})\)
Sturm bound: \(612\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2601, [\chi])\).

Total New Old
Modular forms 9920 4096 5824
Cusp forms 9664 4032 5632
Eisenstein series 256 64 192

Trace form

\( 4032q + 34q^{2} + 218q^{4} + 30q^{5} - 34q^{7} + 34q^{8} + O(q^{10}) \) \( 4032q + 34q^{2} + 218q^{4} + 30q^{5} - 34q^{7} + 34q^{8} - 98q^{10} + 34q^{11} - 30q^{13} + 58q^{14} - 270q^{16} + 30q^{17} - 34q^{19} + 22q^{20} - 42q^{22} + 18q^{23} + 102q^{25} + 34q^{26} - 26q^{28} + 38q^{29} - 42q^{31} + 34q^{32} - 42q^{34} + 34q^{35} - 46q^{37} - 104q^{38} - 62q^{40} + 62q^{41} - 34q^{43} + 2q^{44} - 170q^{46} + 30q^{47} - 34q^{49} - 14q^{50} - 2q^{52} + 68q^{53} - 46q^{55} + 10q^{56} - 62q^{58} + 34q^{59} - 30q^{61} + 254q^{62} + 210q^{64} + 50q^{65} - 126q^{67} + 94q^{68} - 34q^{70} + 58q^{71} - 22q^{73} + 6q^{74} - 102q^{76} - 306q^{77} + 68q^{79} + 94q^{80} - 38q^{82} + 170q^{83} - 40q^{85} + 38q^{86} + 186q^{88} + 38q^{89} + 6q^{91} + 158q^{92} - 306q^{94} + 42q^{95} - 62q^{97} - 14q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2601, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2601, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2601, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(289, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(867, [\chi])\)\(^{\oplus 2}\)