Properties

Label 2600.2.k
Level $2600$
Weight $2$
Character orbit 2600.k
Rep. character $\chi_{2600}(2001,\cdot)$
Character field $\Q$
Dimension $66$
Newform subspaces $6$
Sturm bound $840$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(840\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 444 66 378
Cusp forms 396 66 330
Eisenstein series 48 0 48

Trace form

\( 66 q - 2 q^{3} + 64 q^{9} + 2 q^{13} + 2 q^{17} - 12 q^{23} - 2 q^{27} - 20 q^{29} - 4 q^{39} + 30 q^{43} - 44 q^{49} - 2 q^{51} - 8 q^{53} - 4 q^{61} - 36 q^{69} - 36 q^{79} + 82 q^{81} + 16 q^{87} - 22 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2600.2.k.a 2600.k 13.b $4$ $20.761$ \(\Q(i, \sqrt{17})\) None 104.2.f.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta _{3})q^{3}+(-\beta _{1}+\beta _{2})q^{7}+(2-\beta _{3})q^{9}+\cdots\)
2600.2.k.b 2600.k 13.b $6$ $20.761$ 6.0.350464.1 None 520.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(\beta _{3}-\beta _{4}+\beta _{5})q^{7}+(-\beta _{1}+\cdots)q^{9}+\cdots\)
2600.2.k.c 2600.k 13.b $8$ $20.761$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 520.2.k.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}+(-\beta _{2}-\beta _{4}+\beta _{5})q^{7}+(2+\cdots)q^{9}+\cdots\)
2600.2.k.d 2600.k 13.b $14$ $20.761$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 2600.2.k.d \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}-\beta _{7}q^{7}+(1-\beta _{1})q^{9}+(-\beta _{7}+\cdots)q^{11}+\cdots\)
2600.2.k.e 2600.k 13.b $14$ $20.761$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 2600.2.k.d \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+\beta _{7}q^{7}+(1-\beta _{1})q^{9}+(-\beta _{7}+\cdots)q^{11}+\cdots\)
2600.2.k.f 2600.k 13.b $20$ $20.761$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 520.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{12}q^{3}+\beta _{9}q^{7}+(1+\beta _{1})q^{9}+\beta _{18}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1300, [\chi])\)\(^{\oplus 2}\)