Properties

Label 2600.2.eo
Level $2600$
Weight $2$
Character orbit 2600.eo
Rep. character $\chi_{2600}(619,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $3328$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.eo (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2600 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 3392 3392 0
Cusp forms 3328 3328 0
Eisenstein series 64 64 0

Trace form

\( 3328 q - 10 q^{2} - 40 q^{3} - 14 q^{6} - 10 q^{8} + 792 q^{9} - 12 q^{11} - 12 q^{14} - 36 q^{16} - 12 q^{19} - 10 q^{20} + 80 q^{22} - 28 q^{24} - 16 q^{26} - 40 q^{27} + 30 q^{28} - 20 q^{33} + 2 q^{34}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.