Properties

Label 2600.2.e
Level $2600$
Weight $2$
Character orbit 2600.e
Rep. character $\chi_{2600}(701,\cdot)$
Character field $\Q$
Dimension $260$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 432 272 160
Cusp forms 408 260 148
Eisenstein series 24 12 12

Trace form

\( 260 q + 2 q^{4} - 244 q^{9} - 2 q^{12} + 22 q^{14} - 2 q^{16} + 8 q^{17} + 12 q^{22} + 16 q^{23} + 14 q^{26} - 36 q^{36} - 24 q^{38} + 32 q^{39} - 30 q^{42} - 30 q^{48} - 204 q^{49} + 44 q^{52} - 46 q^{56}+ \cdots - 34 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)