Properties

Label 2600.2.d.m.1249.3
Level $2600$
Weight $2$
Character 2600.1249
Analytic conductor $20.761$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2600,2,Mod(1249,2600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2600.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,4,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.3
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2600.1249
Dual form 2600.2.d.m.1249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051i q^{3} -3.46410i q^{7} +2.46410 q^{9} +2.73205 q^{11} +1.00000i q^{13} -7.46410i q^{17} +2.73205 q^{19} +2.53590 q^{21} -0.732051i q^{23} +4.00000i q^{27} -9.46410 q^{29} -0.196152 q^{31} +2.00000i q^{33} -0.732051 q^{39} +0.535898 q^{41} -7.26795i q^{43} -4.53590i q^{47} -5.00000 q^{49} +5.46410 q^{51} -0.535898i q^{53} +2.00000i q^{57} -5.66025 q^{59} -12.3923 q^{61} -8.53590i q^{63} +12.9282i q^{67} +0.535898 q^{69} +9.26795 q^{71} -2.92820i q^{73} -9.46410i q^{77} +6.53590 q^{79} +4.46410 q^{81} -10.3923i q^{83} -6.92820i q^{87} +12.9282 q^{89} +3.46410 q^{91} -0.143594i q^{93} -15.8564i q^{97} +6.73205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 4 q^{11} + 4 q^{19} + 24 q^{21} - 24 q^{29} + 20 q^{31} + 4 q^{39} + 16 q^{41} - 20 q^{49} + 8 q^{51} + 12 q^{59} - 8 q^{61} + 16 q^{69} + 44 q^{71} + 40 q^{79} + 4 q^{81} + 24 q^{89} + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.732051i 0.422650i 0.977416 + 0.211325i \(0.0677778\pi\)
−0.977416 + 0.211325i \(0.932222\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 3.46410i − 1.30931i −0.755929 0.654654i \(-0.772814\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 0 0
\(9\) 2.46410 0.821367
\(10\) 0 0
\(11\) 2.73205 0.823744 0.411872 0.911242i \(-0.364875\pi\)
0.411872 + 0.911242i \(0.364875\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 7.46410i − 1.81031i −0.425081 0.905155i \(-0.639754\pi\)
0.425081 0.905155i \(-0.360246\pi\)
\(18\) 0 0
\(19\) 2.73205 0.626775 0.313388 0.949625i \(-0.398536\pi\)
0.313388 + 0.949625i \(0.398536\pi\)
\(20\) 0 0
\(21\) 2.53590 0.553378
\(22\) 0 0
\(23\) − 0.732051i − 0.152643i −0.997083 0.0763216i \(-0.975682\pi\)
0.997083 0.0763216i \(-0.0243176\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −9.46410 −1.75744 −0.878720 0.477338i \(-0.841602\pi\)
−0.878720 + 0.477338i \(0.841602\pi\)
\(30\) 0 0
\(31\) −0.196152 −0.0352300 −0.0176150 0.999845i \(-0.505607\pi\)
−0.0176150 + 0.999845i \(0.505607\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) −0.732051 −0.117222
\(40\) 0 0
\(41\) 0.535898 0.0836933 0.0418466 0.999124i \(-0.486676\pi\)
0.0418466 + 0.999124i \(0.486676\pi\)
\(42\) 0 0
\(43\) − 7.26795i − 1.10835i −0.832400 0.554176i \(-0.813033\pi\)
0.832400 0.554176i \(-0.186967\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 4.53590i − 0.661629i −0.943696 0.330814i \(-0.892677\pi\)
0.943696 0.330814i \(-0.107323\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 5.46410 0.765127
\(52\) 0 0
\(53\) − 0.535898i − 0.0736113i −0.999322 0.0368057i \(-0.988282\pi\)
0.999322 0.0368057i \(-0.0117182\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.00000i 0.264906i
\(58\) 0 0
\(59\) −5.66025 −0.736902 −0.368451 0.929647i \(-0.620112\pi\)
−0.368451 + 0.929647i \(0.620112\pi\)
\(60\) 0 0
\(61\) −12.3923 −1.58667 −0.793336 0.608784i \(-0.791658\pi\)
−0.793336 + 0.608784i \(0.791658\pi\)
\(62\) 0 0
\(63\) − 8.53590i − 1.07542i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.9282i 1.57943i 0.613473 + 0.789716i \(0.289772\pi\)
−0.613473 + 0.789716i \(0.710228\pi\)
\(68\) 0 0
\(69\) 0.535898 0.0645146
\(70\) 0 0
\(71\) 9.26795 1.09990 0.549952 0.835197i \(-0.314646\pi\)
0.549952 + 0.835197i \(0.314646\pi\)
\(72\) 0 0
\(73\) − 2.92820i − 0.342720i −0.985208 0.171360i \(-0.945184\pi\)
0.985208 0.171360i \(-0.0548162\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 9.46410i − 1.07853i
\(78\) 0 0
\(79\) 6.53590 0.735346 0.367673 0.929955i \(-0.380155\pi\)
0.367673 + 0.929955i \(0.380155\pi\)
\(80\) 0 0
\(81\) 4.46410 0.496011
\(82\) 0 0
\(83\) − 10.3923i − 1.14070i −0.821401 0.570352i \(-0.806807\pi\)
0.821401 0.570352i \(-0.193193\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 6.92820i − 0.742781i
\(88\) 0 0
\(89\) 12.9282 1.37039 0.685193 0.728361i \(-0.259718\pi\)
0.685193 + 0.728361i \(0.259718\pi\)
\(90\) 0 0
\(91\) 3.46410 0.363137
\(92\) 0 0
\(93\) − 0.143594i − 0.0148900i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 15.8564i − 1.60997i −0.593292 0.804987i \(-0.702172\pi\)
0.593292 0.804987i \(-0.297828\pi\)
\(98\) 0 0
\(99\) 6.73205 0.676597
\(100\) 0 0
\(101\) 4.92820 0.490375 0.245187 0.969476i \(-0.421151\pi\)
0.245187 + 0.969476i \(0.421151\pi\)
\(102\) 0 0
\(103\) − 6.19615i − 0.610525i −0.952268 0.305263i \(-0.901256\pi\)
0.952268 0.305263i \(-0.0987442\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 20.0526i 1.93855i 0.245972 + 0.969277i \(0.420893\pi\)
−0.245972 + 0.969277i \(0.579107\pi\)
\(108\) 0 0
\(109\) −15.8564 −1.51877 −0.759384 0.650643i \(-0.774500\pi\)
−0.759384 + 0.650643i \(0.774500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 18.3923i − 1.73020i −0.501597 0.865101i \(-0.667254\pi\)
0.501597 0.865101i \(-0.332746\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.46410i 0.227806i
\(118\) 0 0
\(119\) −25.8564 −2.37025
\(120\) 0 0
\(121\) −3.53590 −0.321445
\(122\) 0 0
\(123\) 0.392305i 0.0353729i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.80385i 0.160066i 0.996792 + 0.0800328i \(0.0255025\pi\)
−0.996792 + 0.0800328i \(0.974497\pi\)
\(128\) 0 0
\(129\) 5.32051 0.468445
\(130\) 0 0
\(131\) −2.92820 −0.255838 −0.127919 0.991785i \(-0.540830\pi\)
−0.127919 + 0.991785i \(0.540830\pi\)
\(132\) 0 0
\(133\) − 9.46410i − 0.820642i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 8.92820i − 0.762788i −0.924413 0.381394i \(-0.875444\pi\)
0.924413 0.381394i \(-0.124556\pi\)
\(138\) 0 0
\(139\) 13.4641 1.14201 0.571005 0.820947i \(-0.306554\pi\)
0.571005 + 0.820947i \(0.306554\pi\)
\(140\) 0 0
\(141\) 3.32051 0.279637
\(142\) 0 0
\(143\) 2.73205i 0.228466i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 3.66025i − 0.301893i
\(148\) 0 0
\(149\) 7.85641 0.643622 0.321811 0.946804i \(-0.395708\pi\)
0.321811 + 0.946804i \(0.395708\pi\)
\(150\) 0 0
\(151\) 11.8038 0.960583 0.480292 0.877109i \(-0.340531\pi\)
0.480292 + 0.877109i \(0.340531\pi\)
\(152\) 0 0
\(153\) − 18.3923i − 1.48693i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.85641i 0.627009i 0.949587 + 0.313505i \(0.101503\pi\)
−0.949587 + 0.313505i \(0.898497\pi\)
\(158\) 0 0
\(159\) 0.392305 0.0311118
\(160\) 0 0
\(161\) −2.53590 −0.199857
\(162\) 0 0
\(163\) − 8.92820i − 0.699311i −0.936878 0.349655i \(-0.886299\pi\)
0.936878 0.349655i \(-0.113701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.3205i 1.64983i 0.565256 + 0.824915i \(0.308777\pi\)
−0.565256 + 0.824915i \(0.691223\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 6.73205 0.514813
\(172\) 0 0
\(173\) − 2.39230i − 0.181884i −0.995856 0.0909418i \(-0.971012\pi\)
0.995856 0.0909418i \(-0.0289877\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 4.14359i − 0.311452i
\(178\) 0 0
\(179\) 21.8564 1.63362 0.816812 0.576904i \(-0.195739\pi\)
0.816812 + 0.576904i \(0.195739\pi\)
\(180\) 0 0
\(181\) 6.53590 0.485810 0.242905 0.970050i \(-0.421900\pi\)
0.242905 + 0.970050i \(0.421900\pi\)
\(182\) 0 0
\(183\) − 9.07180i − 0.670607i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 20.3923i − 1.49123i
\(188\) 0 0
\(189\) 13.8564 1.00791
\(190\) 0 0
\(191\) 18.9282 1.36960 0.684798 0.728733i \(-0.259890\pi\)
0.684798 + 0.728733i \(0.259890\pi\)
\(192\) 0 0
\(193\) − 2.00000i − 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 8.92820i − 0.636108i −0.948073 0.318054i \(-0.896971\pi\)
0.948073 0.318054i \(-0.103029\pi\)
\(198\) 0 0
\(199\) 6.92820 0.491127 0.245564 0.969380i \(-0.421027\pi\)
0.245564 + 0.969380i \(0.421027\pi\)
\(200\) 0 0
\(201\) −9.46410 −0.667546
\(202\) 0 0
\(203\) 32.7846i 2.30103i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.80385i − 0.125376i
\(208\) 0 0
\(209\) 7.46410 0.516303
\(210\) 0 0
\(211\) 2.92820 0.201586 0.100793 0.994907i \(-0.467862\pi\)
0.100793 + 0.994907i \(0.467862\pi\)
\(212\) 0 0
\(213\) 6.78461i 0.464874i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.679492i 0.0461269i
\(218\) 0 0
\(219\) 2.14359 0.144851
\(220\) 0 0
\(221\) 7.46410 0.502090
\(222\) 0 0
\(223\) 25.3205i 1.69559i 0.530327 + 0.847793i \(0.322069\pi\)
−0.530327 + 0.847793i \(0.677931\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 18.0000i − 1.19470i −0.801980 0.597351i \(-0.796220\pi\)
0.801980 0.597351i \(-0.203780\pi\)
\(228\) 0 0
\(229\) −19.4641 −1.28622 −0.643112 0.765772i \(-0.722357\pi\)
−0.643112 + 0.765772i \(0.722357\pi\)
\(230\) 0 0
\(231\) 6.92820 0.455842
\(232\) 0 0
\(233\) 18.0000i 1.17922i 0.807688 + 0.589610i \(0.200718\pi\)
−0.807688 + 0.589610i \(0.799282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.78461i 0.310794i
\(238\) 0 0
\(239\) −25.2679 −1.63445 −0.817224 0.576320i \(-0.804488\pi\)
−0.817224 + 0.576320i \(0.804488\pi\)
\(240\) 0 0
\(241\) 20.2487 1.30433 0.652167 0.758075i \(-0.273860\pi\)
0.652167 + 0.758075i \(0.273860\pi\)
\(242\) 0 0
\(243\) 15.2679i 0.979439i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.73205i 0.173836i
\(248\) 0 0
\(249\) 7.60770 0.482118
\(250\) 0 0
\(251\) 23.3205 1.47198 0.735989 0.676994i \(-0.236718\pi\)
0.735989 + 0.676994i \(0.236718\pi\)
\(252\) 0 0
\(253\) − 2.00000i − 0.125739i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 6.00000i − 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −23.3205 −1.44350
\(262\) 0 0
\(263\) − 11.6603i − 0.719002i −0.933145 0.359501i \(-0.882947\pi\)
0.933145 0.359501i \(-0.117053\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 9.46410i 0.579194i
\(268\) 0 0
\(269\) 0.143594 0.00875505 0.00437753 0.999990i \(-0.498607\pi\)
0.00437753 + 0.999990i \(0.498607\pi\)
\(270\) 0 0
\(271\) −23.1244 −1.40470 −0.702352 0.711830i \(-0.747867\pi\)
−0.702352 + 0.711830i \(0.747867\pi\)
\(272\) 0 0
\(273\) 2.53590i 0.153480i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 21.3205i 1.28103i 0.767948 + 0.640513i \(0.221278\pi\)
−0.767948 + 0.640513i \(0.778722\pi\)
\(278\) 0 0
\(279\) −0.483340 −0.0289368
\(280\) 0 0
\(281\) −4.53590 −0.270589 −0.135295 0.990805i \(-0.543198\pi\)
−0.135295 + 0.990805i \(0.543198\pi\)
\(282\) 0 0
\(283\) − 24.0526i − 1.42978i −0.699239 0.714888i \(-0.746478\pi\)
0.699239 0.714888i \(-0.253522\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 1.85641i − 0.109580i
\(288\) 0 0
\(289\) −38.7128 −2.27722
\(290\) 0 0
\(291\) 11.6077 0.680455
\(292\) 0 0
\(293\) 6.92820i 0.404750i 0.979308 + 0.202375i \(0.0648660\pi\)
−0.979308 + 0.202375i \(0.935134\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 10.9282i 0.634119i
\(298\) 0 0
\(299\) 0.732051 0.0423356
\(300\) 0 0
\(301\) −25.1769 −1.45117
\(302\) 0 0
\(303\) 3.60770i 0.207257i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 16.5359i 0.943754i 0.881665 + 0.471877i \(0.156423\pi\)
−0.881665 + 0.471877i \(0.843577\pi\)
\(308\) 0 0
\(309\) 4.53590 0.258038
\(310\) 0 0
\(311\) 31.3205 1.77602 0.888012 0.459821i \(-0.152086\pi\)
0.888012 + 0.459821i \(0.152086\pi\)
\(312\) 0 0
\(313\) 10.3923i 0.587408i 0.955896 + 0.293704i \(0.0948880\pi\)
−0.955896 + 0.293704i \(0.905112\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.85641i 0.104266i 0.998640 + 0.0521331i \(0.0166020\pi\)
−0.998640 + 0.0521331i \(0.983398\pi\)
\(318\) 0 0
\(319\) −25.8564 −1.44768
\(320\) 0 0
\(321\) −14.6795 −0.819329
\(322\) 0 0
\(323\) − 20.3923i − 1.13466i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 11.6077i − 0.641907i
\(328\) 0 0
\(329\) −15.7128 −0.866275
\(330\) 0 0
\(331\) −8.58846 −0.472064 −0.236032 0.971745i \(-0.575847\pi\)
−0.236032 + 0.971745i \(0.575847\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 22.3923i − 1.21979i −0.792484 0.609893i \(-0.791212\pi\)
0.792484 0.609893i \(-0.208788\pi\)
\(338\) 0 0
\(339\) 13.4641 0.731270
\(340\) 0 0
\(341\) −0.535898 −0.0290205
\(342\) 0 0
\(343\) − 6.92820i − 0.374088i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.19615i − 0.117896i −0.998261 0.0589478i \(-0.981225\pi\)
0.998261 0.0589478i \(-0.0187746\pi\)
\(348\) 0 0
\(349\) −12.5359 −0.671031 −0.335516 0.942035i \(-0.608911\pi\)
−0.335516 + 0.942035i \(0.608911\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) − 6.92820i − 0.368751i −0.982856 0.184376i \(-0.940974\pi\)
0.982856 0.184376i \(-0.0590263\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 18.9282i − 1.00179i
\(358\) 0 0
\(359\) −11.1244 −0.587121 −0.293561 0.955940i \(-0.594840\pi\)
−0.293561 + 0.955940i \(0.594840\pi\)
\(360\) 0 0
\(361\) −11.5359 −0.607153
\(362\) 0 0
\(363\) − 2.58846i − 0.135859i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.41154i 0.0736819i 0.999321 + 0.0368410i \(0.0117295\pi\)
−0.999321 + 0.0368410i \(0.988271\pi\)
\(368\) 0 0
\(369\) 1.32051 0.0687429
\(370\) 0 0
\(371\) −1.85641 −0.0963798
\(372\) 0 0
\(373\) − 7.85641i − 0.406789i −0.979097 0.203395i \(-0.934803\pi\)
0.979097 0.203395i \(-0.0651974\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 9.46410i − 0.487426i
\(378\) 0 0
\(379\) 20.1962 1.03741 0.518703 0.854954i \(-0.326415\pi\)
0.518703 + 0.854954i \(0.326415\pi\)
\(380\) 0 0
\(381\) −1.32051 −0.0676517
\(382\) 0 0
\(383\) − 1.60770i − 0.0821494i −0.999156 0.0410747i \(-0.986922\pi\)
0.999156 0.0410747i \(-0.0130782\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 17.9090i − 0.910364i
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) −5.46410 −0.276331
\(392\) 0 0
\(393\) − 2.14359i − 0.108130i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.07180i 0.254546i 0.991868 + 0.127273i \(0.0406225\pi\)
−0.991868 + 0.127273i \(0.959378\pi\)
\(398\) 0 0
\(399\) 6.92820 0.346844
\(400\) 0 0
\(401\) −10.7846 −0.538558 −0.269279 0.963062i \(-0.586785\pi\)
−0.269279 + 0.963062i \(0.586785\pi\)
\(402\) 0 0
\(403\) − 0.196152i − 0.00977105i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −33.3205 −1.64759 −0.823797 0.566886i \(-0.808148\pi\)
−0.823797 + 0.566886i \(0.808148\pi\)
\(410\) 0 0
\(411\) 6.53590 0.322392
\(412\) 0 0
\(413\) 19.6077i 0.964832i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 9.85641i 0.482670i
\(418\) 0 0
\(419\) 25.4641 1.24400 0.622001 0.783016i \(-0.286320\pi\)
0.622001 + 0.783016i \(0.286320\pi\)
\(420\) 0 0
\(421\) −19.0718 −0.929503 −0.464751 0.885441i \(-0.653856\pi\)
−0.464751 + 0.885441i \(0.653856\pi\)
\(422\) 0 0
\(423\) − 11.1769i − 0.543440i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 42.9282i 2.07744i
\(428\) 0 0
\(429\) −2.00000 −0.0965609
\(430\) 0 0
\(431\) −22.0526 −1.06223 −0.531117 0.847298i \(-0.678228\pi\)
−0.531117 + 0.847298i \(0.678228\pi\)
\(432\) 0 0
\(433\) 15.0718i 0.724304i 0.932119 + 0.362152i \(0.117958\pi\)
−0.932119 + 0.362152i \(0.882042\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.00000i − 0.0956730i
\(438\) 0 0
\(439\) 13.8564 0.661330 0.330665 0.943748i \(-0.392727\pi\)
0.330665 + 0.943748i \(0.392727\pi\)
\(440\) 0 0
\(441\) −12.3205 −0.586691
\(442\) 0 0
\(443\) 28.4449i 1.35146i 0.737151 + 0.675728i \(0.236171\pi\)
−0.737151 + 0.675728i \(0.763829\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5.75129i 0.272027i
\(448\) 0 0
\(449\) 14.3923 0.679215 0.339607 0.940567i \(-0.389706\pi\)
0.339607 + 0.940567i \(0.389706\pi\)
\(450\) 0 0
\(451\) 1.46410 0.0689419
\(452\) 0 0
\(453\) 8.64102i 0.405990i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.7846i 1.44004i 0.693952 + 0.720022i \(0.255868\pi\)
−0.693952 + 0.720022i \(0.744132\pi\)
\(458\) 0 0
\(459\) 29.8564 1.39358
\(460\) 0 0
\(461\) −12.2487 −0.570479 −0.285240 0.958456i \(-0.592073\pi\)
−0.285240 + 0.958456i \(0.592073\pi\)
\(462\) 0 0
\(463\) 27.8564i 1.29460i 0.762237 + 0.647298i \(0.224101\pi\)
−0.762237 + 0.647298i \(0.775899\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 18.5885i − 0.860171i −0.902788 0.430086i \(-0.858483\pi\)
0.902788 0.430086i \(-0.141517\pi\)
\(468\) 0 0
\(469\) 44.7846 2.06796
\(470\) 0 0
\(471\) −5.75129 −0.265005
\(472\) 0 0
\(473\) − 19.8564i − 0.912999i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 1.32051i − 0.0604619i
\(478\) 0 0
\(479\) −11.1244 −0.508285 −0.254142 0.967167i \(-0.581793\pi\)
−0.254142 + 0.967167i \(0.581793\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 1.85641i − 0.0844694i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 39.8564i 1.80607i 0.429571 + 0.903033i \(0.358665\pi\)
−0.429571 + 0.903033i \(0.641335\pi\)
\(488\) 0 0
\(489\) 6.53590 0.295564
\(490\) 0 0
\(491\) −33.4641 −1.51021 −0.755107 0.655602i \(-0.772415\pi\)
−0.755107 + 0.655602i \(0.772415\pi\)
\(492\) 0 0
\(493\) 70.6410i 3.18151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 32.1051i − 1.44011i
\(498\) 0 0
\(499\) −24.1962 −1.08317 −0.541584 0.840646i \(-0.682175\pi\)
−0.541584 + 0.840646i \(0.682175\pi\)
\(500\) 0 0
\(501\) −15.6077 −0.697300
\(502\) 0 0
\(503\) − 41.1244i − 1.83364i −0.399296 0.916822i \(-0.630745\pi\)
0.399296 0.916822i \(-0.369255\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 0.732051i − 0.0325115i
\(508\) 0 0
\(509\) 3.46410 0.153544 0.0767718 0.997049i \(-0.475539\pi\)
0.0767718 + 0.997049i \(0.475539\pi\)
\(510\) 0 0
\(511\) −10.1436 −0.448726
\(512\) 0 0
\(513\) 10.9282i 0.482492i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 12.3923i − 0.545013i
\(518\) 0 0
\(519\) 1.75129 0.0768730
\(520\) 0 0
\(521\) 8.39230 0.367674 0.183837 0.982957i \(-0.441148\pi\)
0.183837 + 0.982957i \(0.441148\pi\)
\(522\) 0 0
\(523\) 17.5167i 0.765950i 0.923759 + 0.382975i \(0.125100\pi\)
−0.923759 + 0.382975i \(0.874900\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.46410i 0.0637773i
\(528\) 0 0
\(529\) 22.4641 0.976700
\(530\) 0 0
\(531\) −13.9474 −0.605267
\(532\) 0 0
\(533\) 0.535898i 0.0232123i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 16.0000i 0.690451i
\(538\) 0 0
\(539\) −13.6603 −0.588389
\(540\) 0 0
\(541\) 38.3923 1.65061 0.825307 0.564684i \(-0.191002\pi\)
0.825307 + 0.564684i \(0.191002\pi\)
\(542\) 0 0
\(543\) 4.78461i 0.205327i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.33975i 0.356582i 0.983978 + 0.178291i \(0.0570568\pi\)
−0.983978 + 0.178291i \(0.942943\pi\)
\(548\) 0 0
\(549\) −30.5359 −1.30324
\(550\) 0 0
\(551\) −25.8564 −1.10152
\(552\) 0 0
\(553\) − 22.6410i − 0.962794i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 21.8564i − 0.926086i −0.886336 0.463043i \(-0.846758\pi\)
0.886336 0.463043i \(-0.153242\pi\)
\(558\) 0 0
\(559\) 7.26795 0.307401
\(560\) 0 0
\(561\) 14.9282 0.630269
\(562\) 0 0
\(563\) 40.7321i 1.71665i 0.513105 + 0.858326i \(0.328495\pi\)
−0.513105 + 0.858326i \(0.671505\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 15.4641i − 0.649431i
\(568\) 0 0
\(569\) 17.4641 0.732133 0.366067 0.930589i \(-0.380704\pi\)
0.366067 + 0.930589i \(0.380704\pi\)
\(570\) 0 0
\(571\) −27.3205 −1.14333 −0.571664 0.820488i \(-0.693702\pi\)
−0.571664 + 0.820488i \(0.693702\pi\)
\(572\) 0 0
\(573\) 13.8564i 0.578860i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 30.6410i 1.27560i 0.770201 + 0.637801i \(0.220156\pi\)
−0.770201 + 0.637801i \(0.779844\pi\)
\(578\) 0 0
\(579\) 1.46410 0.0608460
\(580\) 0 0
\(581\) −36.0000 −1.49353
\(582\) 0 0
\(583\) − 1.46410i − 0.0606369i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.21539i − 0.0501645i −0.999685 0.0250823i \(-0.992015\pi\)
0.999685 0.0250823i \(-0.00798477\pi\)
\(588\) 0 0
\(589\) −0.535898 −0.0220813
\(590\) 0 0
\(591\) 6.53590 0.268851
\(592\) 0 0
\(593\) 40.6410i 1.66893i 0.551064 + 0.834463i \(0.314222\pi\)
−0.551064 + 0.834463i \(0.685778\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.07180i 0.207575i
\(598\) 0 0
\(599\) 33.4641 1.36731 0.683653 0.729807i \(-0.260390\pi\)
0.683653 + 0.729807i \(0.260390\pi\)
\(600\) 0 0
\(601\) −3.85641 −0.157306 −0.0786531 0.996902i \(-0.525062\pi\)
−0.0786531 + 0.996902i \(0.525062\pi\)
\(602\) 0 0
\(603\) 31.8564i 1.29729i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13.5167i 0.548624i 0.961641 + 0.274312i \(0.0884502\pi\)
−0.961641 + 0.274312i \(0.911550\pi\)
\(608\) 0 0
\(609\) −24.0000 −0.972529
\(610\) 0 0
\(611\) 4.53590 0.183503
\(612\) 0 0
\(613\) − 0.143594i − 0.00579969i −0.999996 0.00289984i \(-0.999077\pi\)
0.999996 0.00289984i \(-0.000923050\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 45.7128i 1.84033i 0.391533 + 0.920164i \(0.371945\pi\)
−0.391533 + 0.920164i \(0.628055\pi\)
\(618\) 0 0
\(619\) 18.3397 0.737137 0.368568 0.929601i \(-0.379848\pi\)
0.368568 + 0.929601i \(0.379848\pi\)
\(620\) 0 0
\(621\) 2.92820 0.117505
\(622\) 0 0
\(623\) − 44.7846i − 1.79426i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5.46410i 0.218215i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −7.80385 −0.310666 −0.155333 0.987862i \(-0.549645\pi\)
−0.155333 + 0.987862i \(0.549645\pi\)
\(632\) 0 0
\(633\) 2.14359i 0.0852002i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 5.00000i − 0.198107i
\(638\) 0 0
\(639\) 22.8372 0.903424
\(640\) 0 0
\(641\) −0.928203 −0.0366618 −0.0183309 0.999832i \(-0.505835\pi\)
−0.0183309 + 0.999832i \(0.505835\pi\)
\(642\) 0 0
\(643\) − 9.60770i − 0.378891i −0.981891 0.189445i \(-0.939331\pi\)
0.981891 0.189445i \(-0.0606690\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 0.339746i − 0.0133568i −0.999978 0.00667840i \(-0.997874\pi\)
0.999978 0.00667840i \(-0.00212582\pi\)
\(648\) 0 0
\(649\) −15.4641 −0.607019
\(650\) 0 0
\(651\) −0.497423 −0.0194955
\(652\) 0 0
\(653\) − 33.7128i − 1.31928i −0.751580 0.659642i \(-0.770708\pi\)
0.751580 0.659642i \(-0.229292\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 7.21539i − 0.281499i
\(658\) 0 0
\(659\) −39.3205 −1.53171 −0.765855 0.643014i \(-0.777684\pi\)
−0.765855 + 0.643014i \(0.777684\pi\)
\(660\) 0 0
\(661\) 20.9282 0.814013 0.407006 0.913425i \(-0.366573\pi\)
0.407006 + 0.913425i \(0.366573\pi\)
\(662\) 0 0
\(663\) 5.46410i 0.212208i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.92820i 0.268261i
\(668\) 0 0
\(669\) −18.5359 −0.716639
\(670\) 0 0
\(671\) −33.8564 −1.30701
\(672\) 0 0
\(673\) 28.5359i 1.09998i 0.835172 + 0.549989i \(0.185368\pi\)
−0.835172 + 0.549989i \(0.814632\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 9.60770i − 0.369254i −0.982809 0.184627i \(-0.940892\pi\)
0.982809 0.184627i \(-0.0591077\pi\)
\(678\) 0 0
\(679\) −54.9282 −2.10795
\(680\) 0 0
\(681\) 13.1769 0.504940
\(682\) 0 0
\(683\) 24.9282i 0.953851i 0.878944 + 0.476926i \(0.158249\pi\)
−0.878944 + 0.476926i \(0.841751\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 14.2487i − 0.543622i
\(688\) 0 0
\(689\) 0.535898 0.0204161
\(690\) 0 0
\(691\) 43.9090 1.67038 0.835188 0.549965i \(-0.185359\pi\)
0.835188 + 0.549965i \(0.185359\pi\)
\(692\) 0 0
\(693\) − 23.3205i − 0.885873i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 4.00000i − 0.151511i
\(698\) 0 0
\(699\) −13.1769 −0.498397
\(700\) 0 0
\(701\) 29.7128 1.12224 0.561119 0.827735i \(-0.310371\pi\)
0.561119 + 0.827735i \(0.310371\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 17.0718i − 0.642051i
\(708\) 0 0
\(709\) −5.60770 −0.210601 −0.105301 0.994440i \(-0.533581\pi\)
−0.105301 + 0.994440i \(0.533581\pi\)
\(710\) 0 0
\(711\) 16.1051 0.603989
\(712\) 0 0
\(713\) 0.143594i 0.00537762i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 18.4974i − 0.690799i
\(718\) 0 0
\(719\) 34.6410 1.29189 0.645946 0.763383i \(-0.276463\pi\)
0.645946 + 0.763383i \(0.276463\pi\)
\(720\) 0 0
\(721\) −21.4641 −0.799365
\(722\) 0 0
\(723\) 14.8231i 0.551276i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 34.9808i 1.29736i 0.761059 + 0.648682i \(0.224680\pi\)
−0.761059 + 0.648682i \(0.775320\pi\)
\(728\) 0 0
\(729\) 2.21539 0.0820515
\(730\) 0 0
\(731\) −54.2487 −2.00646
\(732\) 0 0
\(733\) − 15.8564i − 0.585670i −0.956163 0.292835i \(-0.905401\pi\)
0.956163 0.292835i \(-0.0945986\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 35.3205i 1.30105i
\(738\) 0 0
\(739\) −1.26795 −0.0466423 −0.0233211 0.999728i \(-0.507424\pi\)
−0.0233211 + 0.999728i \(0.507424\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) 25.3205i 0.928919i 0.885594 + 0.464460i \(0.153751\pi\)
−0.885594 + 0.464460i \(0.846249\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 25.6077i − 0.936937i
\(748\) 0 0
\(749\) 69.4641 2.53816
\(750\) 0 0
\(751\) 45.4641 1.65901 0.829504 0.558500i \(-0.188623\pi\)
0.829504 + 0.558500i \(0.188623\pi\)
\(752\) 0 0
\(753\) 17.0718i 0.622131i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 23.4641i 0.852817i 0.904531 + 0.426409i \(0.140221\pi\)
−0.904531 + 0.426409i \(0.859779\pi\)
\(758\) 0 0
\(759\) 1.46410 0.0531435
\(760\) 0 0
\(761\) −14.0000 −0.507500 −0.253750 0.967270i \(-0.581664\pi\)
−0.253750 + 0.967270i \(0.581664\pi\)
\(762\) 0 0
\(763\) 54.9282i 1.98853i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 5.66025i − 0.204380i
\(768\) 0 0
\(769\) −15.0718 −0.543503 −0.271751 0.962367i \(-0.587603\pi\)
−0.271751 + 0.962367i \(0.587603\pi\)
\(770\) 0 0
\(771\) 4.39230 0.158185
\(772\) 0 0
\(773\) 5.07180i 0.182420i 0.995832 + 0.0912099i \(0.0290734\pi\)
−0.995832 + 0.0912099i \(0.970927\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.46410 0.0524569
\(780\) 0 0
\(781\) 25.3205 0.906039
\(782\) 0 0
\(783\) − 37.8564i − 1.35288i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 18.3923i − 0.655615i −0.944745 0.327807i \(-0.893690\pi\)
0.944745 0.327807i \(-0.106310\pi\)
\(788\) 0 0
\(789\) 8.53590 0.303886
\(790\) 0 0
\(791\) −63.7128 −2.26537
\(792\) 0 0
\(793\) − 12.3923i − 0.440064i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 46.7846i − 1.65720i −0.559844 0.828598i \(-0.689139\pi\)
0.559844 0.828598i \(-0.310861\pi\)
\(798\) 0 0
\(799\) −33.8564 −1.19775
\(800\) 0 0
\(801\) 31.8564 1.12559
\(802\) 0 0
\(803\) − 8.00000i − 0.282314i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.105118i 0.00370032i
\(808\) 0 0
\(809\) −8.67949 −0.305155 −0.152577 0.988292i \(-0.548757\pi\)
−0.152577 + 0.988292i \(0.548757\pi\)
\(810\) 0 0
\(811\) 35.9090 1.26093 0.630467 0.776216i \(-0.282863\pi\)
0.630467 + 0.776216i \(0.282863\pi\)
\(812\) 0 0
\(813\) − 16.9282i − 0.593698i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 19.8564i − 0.694688i
\(818\) 0 0
\(819\) 8.53590 0.298268
\(820\) 0 0
\(821\) −12.9282 −0.451197 −0.225599 0.974220i \(-0.572434\pi\)
−0.225599 + 0.974220i \(0.572434\pi\)
\(822\) 0 0
\(823\) 26.5885i 0.926815i 0.886145 + 0.463408i \(0.153373\pi\)
−0.886145 + 0.463408i \(0.846627\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3.46410i − 0.120459i −0.998185 0.0602293i \(-0.980817\pi\)
0.998185 0.0602293i \(-0.0191832\pi\)
\(828\) 0 0
\(829\) −44.3923 −1.54181 −0.770904 0.636951i \(-0.780195\pi\)
−0.770904 + 0.636951i \(0.780195\pi\)
\(830\) 0 0
\(831\) −15.6077 −0.541425
\(832\) 0 0
\(833\) 37.3205i 1.29308i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 0.784610i − 0.0271201i
\(838\) 0 0
\(839\) −34.4449 −1.18917 −0.594584 0.804033i \(-0.702683\pi\)
−0.594584 + 0.804033i \(0.702683\pi\)
\(840\) 0 0
\(841\) 60.5692 2.08859
\(842\) 0 0
\(843\) − 3.32051i − 0.114364i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 12.2487i 0.420871i
\(848\) 0 0
\(849\) 17.6077 0.604295
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 7.71281i − 0.264082i −0.991244 0.132041i \(-0.957847\pi\)
0.991244 0.132041i \(-0.0421530\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.14359i 0.141542i 0.997493 + 0.0707712i \(0.0225460\pi\)
−0.997493 + 0.0707712i \(0.977454\pi\)
\(858\) 0 0
\(859\) 12.3923 0.422820 0.211410 0.977397i \(-0.432194\pi\)
0.211410 + 0.977397i \(0.432194\pi\)
\(860\) 0 0
\(861\) 1.35898 0.0463140
\(862\) 0 0
\(863\) − 33.6077i − 1.14402i −0.820247 0.572010i \(-0.806164\pi\)
0.820247 0.572010i \(-0.193836\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 28.3397i − 0.962468i
\(868\) 0 0
\(869\) 17.8564 0.605737
\(870\) 0 0
\(871\) −12.9282 −0.438055
\(872\) 0 0
\(873\) − 39.0718i − 1.32238i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 41.7128i 1.40854i 0.709931 + 0.704271i \(0.248726\pi\)
−0.709931 + 0.704271i \(0.751274\pi\)
\(878\) 0 0
\(879\) −5.07180 −0.171067
\(880\) 0 0
\(881\) 5.46410 0.184090 0.0920451 0.995755i \(-0.470660\pi\)
0.0920451 + 0.995755i \(0.470660\pi\)
\(882\) 0 0
\(883\) 22.5885i 0.760162i 0.924953 + 0.380081i \(0.124104\pi\)
−0.924953 + 0.380081i \(0.875896\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 12.4449i − 0.417858i −0.977931 0.208929i \(-0.933002\pi\)
0.977931 0.208929i \(-0.0669977\pi\)
\(888\) 0 0
\(889\) 6.24871 0.209575
\(890\) 0 0
\(891\) 12.1962 0.408586
\(892\) 0 0
\(893\) − 12.3923i − 0.414693i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.535898i 0.0178931i
\(898\) 0 0
\(899\) 1.85641 0.0619146
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) − 18.4308i − 0.613338i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 36.8372i 1.22316i 0.791183 + 0.611579i \(0.209465\pi\)
−0.791183 + 0.611579i \(0.790535\pi\)
\(908\) 0 0
\(909\) 12.1436 0.402778
\(910\) 0 0
\(911\) −20.7846 −0.688625 −0.344312 0.938855i \(-0.611888\pi\)
−0.344312 + 0.938855i \(0.611888\pi\)
\(912\) 0 0
\(913\) − 28.3923i − 0.939648i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.1436i 0.334971i
\(918\) 0 0
\(919\) −39.3205 −1.29706 −0.648532 0.761187i \(-0.724617\pi\)
−0.648532 + 0.761187i \(0.724617\pi\)
\(920\) 0 0
\(921\) −12.1051 −0.398877
\(922\) 0 0
\(923\) 9.26795i 0.305058i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 15.2679i − 0.501465i
\(928\) 0 0
\(929\) −43.1769 −1.41659 −0.708294 0.705917i \(-0.750535\pi\)
−0.708294 + 0.705917i \(0.750535\pi\)
\(930\) 0 0
\(931\) −13.6603 −0.447697
\(932\) 0 0
\(933\) 22.9282i 0.750636i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 27.0718i 0.884397i 0.896917 + 0.442199i \(0.145801\pi\)
−0.896917 + 0.442199i \(0.854199\pi\)
\(938\) 0 0
\(939\) −7.60770 −0.248268
\(940\) 0 0
\(941\) 22.3923 0.729968 0.364984 0.931014i \(-0.381074\pi\)
0.364984 + 0.931014i \(0.381074\pi\)
\(942\) 0 0
\(943\) − 0.392305i − 0.0127752i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 22.3923i − 0.727652i −0.931467 0.363826i \(-0.881470\pi\)
0.931467 0.363826i \(-0.118530\pi\)
\(948\) 0 0
\(949\) 2.92820 0.0950535
\(950\) 0 0
\(951\) −1.35898 −0.0440681
\(952\) 0 0
\(953\) − 1.21539i − 0.0393704i −0.999806 0.0196852i \(-0.993734\pi\)
0.999806 0.0196852i \(-0.00626639\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 18.9282i − 0.611862i
\(958\) 0 0
\(959\) −30.9282 −0.998724
\(960\) 0 0
\(961\) −30.9615 −0.998759
\(962\) 0 0
\(963\) 49.4115i 1.59226i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 18.0000i 0.578841i 0.957202 + 0.289420i \(0.0934626\pi\)
−0.957202 + 0.289420i \(0.906537\pi\)
\(968\) 0 0
\(969\) 14.9282 0.479563
\(970\) 0 0
\(971\) 43.7128 1.40281 0.701405 0.712762i \(-0.252556\pi\)
0.701405 + 0.712762i \(0.252556\pi\)
\(972\) 0 0
\(973\) − 46.6410i − 1.49524i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.92820i 0.0936815i 0.998902 + 0.0468408i \(0.0149153\pi\)
−0.998902 + 0.0468408i \(0.985085\pi\)
\(978\) 0 0
\(979\) 35.3205 1.12885
\(980\) 0 0
\(981\) −39.0718 −1.24747
\(982\) 0 0
\(983\) − 15.8564i − 0.505741i −0.967500 0.252870i \(-0.918625\pi\)
0.967500 0.252870i \(-0.0813746\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 11.5026i − 0.366131i
\(988\) 0 0
\(989\) −5.32051 −0.169182
\(990\) 0 0
\(991\) −53.8564 −1.71081 −0.855403 0.517964i \(-0.826690\pi\)
−0.855403 + 0.517964i \(0.826690\pi\)
\(992\) 0 0
\(993\) − 6.28719i − 0.199518i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 9.32051i 0.295183i 0.989048 + 0.147592i \(0.0471522\pi\)
−0.989048 + 0.147592i \(0.952848\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.d.m.1249.3 4
5.2 odd 4 520.2.a.e.1.2 2
5.3 odd 4 2600.2.a.v.1.1 2
5.4 even 2 inner 2600.2.d.m.1249.2 4
15.2 even 4 4680.2.a.bd.1.2 2
20.3 even 4 5200.2.a.bn.1.2 2
20.7 even 4 1040.2.a.l.1.1 2
40.27 even 4 4160.2.a.w.1.2 2
40.37 odd 4 4160.2.a.bk.1.1 2
60.47 odd 4 9360.2.a.cr.1.1 2
65.12 odd 4 6760.2.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.a.e.1.2 2 5.2 odd 4
1040.2.a.l.1.1 2 20.7 even 4
2600.2.a.v.1.1 2 5.3 odd 4
2600.2.d.m.1249.2 4 5.4 even 2 inner
2600.2.d.m.1249.3 4 1.1 even 1 trivial
4160.2.a.w.1.2 2 40.27 even 4
4160.2.a.bk.1.1 2 40.37 odd 4
4680.2.a.bd.1.2 2 15.2 even 4
5200.2.a.bn.1.2 2 20.3 even 4
6760.2.a.o.1.2 2 65.12 odd 4
9360.2.a.cr.1.1 2 60.47 odd 4