Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2600,2,Mod(1249,2600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2600.1249");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2600.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(20.7611045255\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 520) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1249.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2600.1249 |
Dual form | 2600.2.d.c.1249.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).
\(n\) | \(1301\) | \(1601\) | \(1951\) | \(1977\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 2.00000i | 1.15470i | 0.816497 | + | 0.577350i | \(0.195913\pi\) | ||||
−0.816497 | + | 0.577350i | \(0.804087\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 2.00000 | 0.603023 | 0.301511 | − | 0.953463i | \(-0.402509\pi\) | ||||
0.301511 | + | 0.953463i | \(0.402509\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000i | 0.277350i | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 2.00000i | − 0.485071i | −0.970143 | − | 0.242536i | \(-0.922021\pi\) | ||||
0.970143 | − | 0.242536i | \(-0.0779791\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −2.00000 | −0.458831 | −0.229416 | − | 0.973329i | \(-0.573682\pi\) | ||||
−0.229416 | + | 0.973329i | \(0.573682\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 2.00000i | 0.417029i | 0.978019 | + | 0.208514i | \(0.0668628\pi\) | ||||
−0.978019 | + | 0.208514i | \(0.933137\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 4.00000i | 0.769800i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 2.00000 | 0.359211 | 0.179605 | − | 0.983739i | \(-0.442518\pi\) | ||||
0.179605 | + | 0.983739i | \(0.442518\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 4.00000i | 0.696311i | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 6.00000i | 0.986394i | 0.869918 | + | 0.493197i | \(0.164172\pi\) | ||||
−0.869918 | + | 0.493197i | \(0.835828\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −2.00000 | −0.320256 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 2.00000 | 0.312348 | 0.156174 | − | 0.987730i | \(-0.450084\pi\) | ||||
0.156174 | + | 0.987730i | \(0.450084\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 6.00000i | 0.914991i | 0.889212 | + | 0.457496i | \(0.151253\pi\) | ||||
−0.889212 | + | 0.457496i | \(0.848747\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 8.00000i | 1.16692i | 0.812142 | + | 0.583460i | \(0.198301\pi\) | ||||
−0.812142 | + | 0.583460i | \(0.801699\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.00000 | 1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 4.00000 | 0.560112 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 2.00000i | − 0.274721i | −0.990521 | − | 0.137361i | \(-0.956138\pi\) | ||||
0.990521 | − | 0.137361i | \(-0.0438619\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | − 4.00000i | − 0.529813i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −6.00000 | −0.781133 | −0.390567 | − | 0.920575i | \(-0.627721\pi\) | ||||
−0.390567 | + | 0.920575i | \(0.627721\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −14.0000 | −1.79252 | −0.896258 | − | 0.443533i | \(-0.853725\pi\) | ||||
−0.896258 | + | 0.443533i | \(0.853725\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −4.00000 | −0.481543 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 10.0000 | 1.18678 | 0.593391 | − | 0.804914i | \(-0.297789\pi\) | ||||
0.593391 | + | 0.804914i | \(0.297789\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 2.00000i | − 0.234082i | −0.993127 | − | 0.117041i | \(-0.962659\pi\) | ||||
0.993127 | − | 0.117041i | \(-0.0373409\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 4.00000 | 0.450035 | 0.225018 | − | 0.974355i | \(-0.427756\pi\) | ||||
0.225018 | + | 0.974355i | \(0.427756\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −11.0000 | −1.22222 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000i | 1.31717i | 0.752506 | + | 0.658586i | \(0.228845\pi\) | ||||
−0.752506 | + | 0.658586i | \(0.771155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 12.0000i | 1.28654i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 4.00000i | 0.414781i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | −2.00000 | −0.201008 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −10.0000 | −0.995037 | −0.497519 | − | 0.867453i | \(-0.665755\pi\) | ||||
−0.497519 | + | 0.867453i | \(0.665755\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 2.00000i | 0.197066i | 0.995134 | + | 0.0985329i | \(0.0314150\pi\) | ||||
−0.995134 | + | 0.0985329i | \(0.968585\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 2.00000i | 0.193347i | 0.995316 | + | 0.0966736i | \(0.0308203\pi\) | ||||
−0.995316 | + | 0.0966736i | \(0.969180\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 10.0000 | 0.957826 | 0.478913 | − | 0.877862i | \(-0.341031\pi\) | ||||
0.478913 | + | 0.877862i | \(0.341031\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −12.0000 | −1.13899 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 2.00000i | 0.188144i | 0.995565 | + | 0.0940721i | \(0.0299884\pi\) | ||||
−0.995565 | + | 0.0940721i | \(0.970012\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | − 1.00000i | − 0.0924500i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −7.00000 | −0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 4.00000i | 0.360668i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 10.0000i | 0.887357i | 0.896186 | + | 0.443678i | \(0.146327\pi\) | ||||
−0.896186 | + | 0.443678i | \(0.853673\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −12.0000 | −1.05654 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −4.00000 | −0.349482 | −0.174741 | − | 0.984614i | \(-0.555909\pi\) | ||||
−0.174741 | + | 0.984614i | \(0.555909\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 10.0000i | − 0.854358i | −0.904167 | − | 0.427179i | \(-0.859507\pi\) | ||||
0.904167 | − | 0.427179i | \(-0.140493\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 16.0000 | 1.35710 | 0.678551 | − | 0.734553i | \(-0.262608\pi\) | ||||
0.678551 | + | 0.734553i | \(0.262608\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | −16.0000 | −1.34744 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 2.00000i | 0.167248i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 14.0000i | 1.15470i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −10.0000 | −0.813788 | −0.406894 | − | 0.913475i | \(-0.633388\pi\) | ||||
−0.406894 | + | 0.913475i | \(0.633388\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 2.00000i | 0.161690i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 6.00000i | − 0.478852i | −0.970915 | − | 0.239426i | \(-0.923041\pi\) | ||||
0.970915 | − | 0.239426i | \(-0.0769593\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 4.00000 | 0.317221 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000i | 1.25322i | 0.779334 | + | 0.626608i | \(0.215557\pi\) | ||||
−0.779334 | + | 0.626608i | \(0.784443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 8.00000i | 0.619059i | 0.950890 | + | 0.309529i | \(0.100171\pi\) | ||||
−0.950890 | + | 0.309529i | \(0.899829\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −1.00000 | −0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 2.00000 | 0.152944 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 22.0000i | 1.67263i | 0.548250 | + | 0.836315i | \(0.315294\pi\) | ||||
−0.548250 | + | 0.836315i | \(0.684706\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | − 12.0000i | − 0.901975i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 4.00000 | 0.298974 | 0.149487 | − | 0.988764i | \(-0.452238\pi\) | ||||
0.149487 | + | 0.988764i | \(0.452238\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −14.0000 | −1.04061 | −0.520306 | − | 0.853980i | \(-0.674182\pi\) | ||||
−0.520306 | + | 0.853980i | \(0.674182\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | − 28.0000i | − 2.06982i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 4.00000i | − 0.292509i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −24.0000 | −1.73658 | −0.868290 | − | 0.496058i | \(-0.834780\pi\) | ||||
−0.868290 | + | 0.496058i | \(0.834780\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 14.0000i | − 1.00774i | −0.863779 | − | 0.503871i | \(-0.831909\pi\) | ||||
0.863779 | − | 0.503871i | \(-0.168091\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 22.0000i | − 1.56744i | −0.621117 | − | 0.783718i | \(-0.713321\pi\) | ||||
0.621117 | − | 0.783718i | \(-0.286679\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | − 2.00000i | − 0.139010i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −4.00000 | −0.276686 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 20.0000 | 1.37686 | 0.688428 | − | 0.725304i | \(-0.258301\pi\) | ||||
0.688428 | + | 0.725304i | \(0.258301\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 20.0000i | 1.37038i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 4.00000 | 0.270295 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 2.00000 | 0.134535 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 16.0000i | − 1.07144i | −0.844396 | − | 0.535720i | \(-0.820040\pi\) | ||||
0.844396 | − | 0.535720i | \(-0.179960\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 24.0000i | − 1.59294i | −0.604681 | − | 0.796468i | \(-0.706699\pi\) | ||||
0.604681 | − | 0.796468i | \(-0.293301\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −22.0000 | −1.45380 | −0.726900 | − | 0.686743i | \(-0.759040\pi\) | ||||
−0.726900 | + | 0.686743i | \(0.759040\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 18.0000i | 1.17922i | 0.807688 | + | 0.589610i | \(0.200718\pi\) | ||||
−0.807688 | + | 0.589610i | \(0.799282\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 8.00000i | 0.519656i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −6.00000 | −0.388108 | −0.194054 | − | 0.980991i | \(-0.562164\pi\) | ||||
−0.194054 | + | 0.980991i | \(0.562164\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 2.00000 | 0.128831 | 0.0644157 | − | 0.997923i | \(-0.479482\pi\) | ||||
0.0644157 | + | 0.997923i | \(0.479482\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | − 10.0000i | − 0.641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 2.00000i | − 0.127257i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −24.0000 | −1.52094 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 4.00000i | 0.251478i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 6.00000i | 0.374270i | 0.982334 | + | 0.187135i | \(0.0599201\pi\) | ||||
−0.982334 | + | 0.187135i | \(0.940080\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −6.00000 | −0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 30.0000i | 1.84988i | 0.380114 | + | 0.924940i | \(0.375885\pi\) | ||||
−0.380114 | + | 0.924940i | \(0.624115\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 12.0000i | 0.734388i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −14.0000 | −0.853595 | −0.426798 | − | 0.904347i | \(-0.640358\pi\) | ||||
−0.426798 | + | 0.904347i | \(0.640358\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −2.00000 | −0.121491 | −0.0607457 | − | 0.998153i | \(-0.519348\pi\) | ||||
−0.0607457 | + | 0.998153i | \(0.519348\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 14.0000i | − 0.841178i | −0.907251 | − | 0.420589i | \(-0.861823\pi\) | ||||
0.907251 | − | 0.420589i | \(-0.138177\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | −2.00000 | −0.119737 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 26.0000 | 1.55103 | 0.775515 | − | 0.631329i | \(-0.217490\pi\) | ||||
0.775515 | + | 0.631329i | \(0.217490\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 22.0000i | 1.30776i | 0.756596 | + | 0.653882i | \(0.226861\pi\) | ||||
−0.756596 | + | 0.653882i | \(0.773139\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 13.0000 | 0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 4.00000 | 0.234484 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 18.0000i | 1.05157i | 0.850617 | + | 0.525786i | \(0.176229\pi\) | ||||
−0.850617 | + | 0.525786i | \(0.823771\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 8.00000i | 0.464207i | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −2.00000 | −0.115663 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | − 20.0000i | − 1.14897i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 28.0000i | − 1.59804i | −0.601302 | − | 0.799022i | \(-0.705351\pi\) | ||||
0.601302 | − | 0.799022i | \(-0.294649\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −4.00000 | −0.227552 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 28.0000 | 1.58773 | 0.793867 | − | 0.608091i | \(-0.208065\pi\) | ||||
0.793867 | + | 0.608091i | \(0.208065\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 30.0000i | − 1.69570i | −0.530236 | − | 0.847850i | \(-0.677897\pi\) | ||||
0.530236 | − | 0.847850i | \(-0.322103\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6.00000i | 0.336994i | 0.985702 | + | 0.168497i | \(0.0538913\pi\) | ||||
−0.985702 | + | 0.168497i | \(0.946109\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 12.0000 | 0.671871 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −4.00000 | −0.223258 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 4.00000i | 0.222566i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 20.0000i | 1.10600i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 22.0000 | 1.20923 | 0.604615 | − | 0.796518i | \(-0.293327\pi\) | ||||
0.604615 | + | 0.796518i | \(0.293327\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | − 6.00000i | − 0.328798i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 18.0000i | − 0.980522i | −0.871576 | − | 0.490261i | \(-0.836901\pi\) | ||||
0.871576 | − | 0.490261i | \(-0.163099\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −4.00000 | −0.217250 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 4.00000 | 0.216612 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 18.0000i | 0.966291i | 0.875540 | + | 0.483145i | \(0.160506\pi\) | ||||
−0.875540 | + | 0.483145i | \(0.839494\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 26.0000 | 1.39175 | 0.695874 | − | 0.718164i | \(-0.255017\pi\) | ||||
0.695874 | + | 0.718164i | \(0.255017\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | −4.00000 | −0.213504 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 18.0000i | − 0.958043i | −0.877803 | − | 0.479022i | \(-0.840992\pi\) | ||||
0.877803 | − | 0.479022i | \(-0.159008\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −10.0000 | −0.527780 | −0.263890 | − | 0.964553i | \(-0.585006\pi\) | ||||
−0.263890 | + | 0.964553i | \(0.585006\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 14.0000i | − 0.734809i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 10.0000i | − 0.521996i | −0.965339 | − | 0.260998i | \(-0.915948\pi\) | ||||
0.965339 | − | 0.260998i | \(-0.0840516\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −2.00000 | −0.104116 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 30.0000i | 1.55334i | 0.629907 | + | 0.776671i | \(0.283093\pi\) | ||||
−0.629907 | + | 0.776671i | \(0.716907\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 6.00000i | 0.309016i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 30.0000 | 1.54100 | 0.770498 | − | 0.637442i | \(-0.220007\pi\) | ||||
0.770498 | + | 0.637442i | \(0.220007\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −20.0000 | −1.02463 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 24.0000i | − 1.22634i | −0.789950 | − | 0.613171i | \(-0.789894\pi\) | ||||
0.789950 | − | 0.613171i | \(-0.210106\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | − 6.00000i | − 0.304997i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −6.00000 | −0.304212 | −0.152106 | − | 0.988364i | \(-0.548606\pi\) | ||||
−0.152106 | + | 0.988364i | \(0.548606\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 4.00000 | 0.202289 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | − 8.00000i | − 0.403547i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 30.0000i | 1.50566i | 0.658217 | + | 0.752828i | \(0.271311\pi\) | ||||
−0.658217 | + | 0.752828i | \(0.728689\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 2.00000 | 0.0998752 | 0.0499376 | − | 0.998752i | \(-0.484098\pi\) | ||||
0.0499376 | + | 0.998752i | \(0.484098\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 2.00000i | 0.0996271i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 12.0000i | 0.594818i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 14.0000 | 0.692255 | 0.346128 | − | 0.938187i | \(-0.387496\pi\) | ||||
0.346128 | + | 0.938187i | \(0.387496\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 20.0000 | 0.986527 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 32.0000i | 1.56705i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 8.00000 | 0.390826 | 0.195413 | − | 0.980721i | \(-0.437395\pi\) | ||||
0.195413 | + | 0.980721i | \(0.437395\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 22.0000 | 1.07221 | 0.536107 | − | 0.844150i | \(-0.319894\pi\) | ||||
0.536107 | + | 0.844150i | \(0.319894\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 8.00000i | − 0.388973i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | −4.00000 | −0.193122 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 18.0000 | 0.867029 | 0.433515 | − | 0.901146i | \(-0.357273\pi\) | ||||
0.433515 | + | 0.901146i | \(0.357273\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 38.0000i | − 1.82616i | −0.407777 | − | 0.913082i | \(-0.633696\pi\) | ||||
0.407777 | − | 0.913082i | \(-0.366304\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 4.00000i | − 0.191346i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −7.00000 | −0.333333 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 38.0000i | − 1.80543i | −0.430234 | − | 0.902717i | \(-0.641569\pi\) | ||||
0.430234 | − | 0.902717i | \(-0.358431\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | − 12.0000i | − 0.567581i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −10.0000 | −0.471929 | −0.235965 | − | 0.971762i | \(-0.575825\pi\) | ||||
−0.235965 | + | 0.971762i | \(0.575825\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 4.00000 | 0.188353 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − 20.0000i | − 0.939682i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 26.0000i | − 1.21623i | −0.793849 | − | 0.608114i | \(-0.791926\pi\) | ||||
0.793849 | − | 0.608114i | \(-0.208074\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 8.00000 | 0.373408 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 30.0000 | 1.39724 | 0.698620 | − | 0.715493i | \(-0.253798\pi\) | ||||
0.698620 | + | 0.715493i | \(0.253798\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 4.00000i | − 0.185896i | −0.995671 | − | 0.0929479i | \(-0.970371\pi\) | ||||
0.995671 | − | 0.0929479i | \(-0.0296290\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 6.00000i | 0.277647i | 0.990317 | + | 0.138823i | \(0.0443321\pi\) | ||||
−0.990317 | + | 0.138823i | \(0.955668\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 12.0000 | 0.552931 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 12.0000i | 0.551761i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 2.00000i | 0.0915737i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 14.0000 | 0.639676 | 0.319838 | − | 0.947472i | \(-0.396371\pi\) | ||||
0.319838 | + | 0.947472i | \(0.396371\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −6.00000 | −0.273576 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 4.00000i | − 0.181257i | −0.995885 | − | 0.0906287i | \(-0.971112\pi\) | ||||
0.995885 | − | 0.0906287i | \(-0.0288876\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −32.0000 | −1.44709 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 12.0000i | − 0.540453i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 38.0000 | 1.70111 | 0.850557 | − | 0.525883i | \(-0.176265\pi\) | ||||
0.850557 | + | 0.525883i | \(0.176265\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | −16.0000 | −0.714827 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 10.0000i | − 0.445878i | −0.974832 | − | 0.222939i | \(-0.928435\pi\) | ||||
0.974832 | − | 0.222939i | \(-0.0715651\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | − 2.00000i | − 0.0888231i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | − 8.00000i | − 0.353209i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 16.0000i | 0.703679i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | −44.0000 | −1.93139 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 38.0000 | 1.66481 | 0.832405 | − | 0.554168i | \(-0.186963\pi\) | ||||
0.832405 | + | 0.554168i | \(0.186963\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 34.0000i | 1.48672i | 0.668894 | + | 0.743358i | \(0.266768\pi\) | ||||
−0.668894 | + | 0.743358i | \(0.733232\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 4.00000i | − 0.174243i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 19.0000 | 0.826087 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 6.00000 | 0.260378 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 2.00000i | 0.0866296i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 8.00000i | 0.345225i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 14.0000 | 0.603023 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 22.0000 | 0.945854 | 0.472927 | − | 0.881102i | \(-0.343197\pi\) | ||||
0.472927 | + | 0.881102i | \(0.343197\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − 28.0000i | − 1.20160i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 22.0000i | − 0.940652i | −0.882493 | − | 0.470326i | \(-0.844136\pi\) | ||||
0.882493 | − | 0.470326i | \(-0.155864\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 14.0000 | 0.597505 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −12.0000 | −0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 14.0000i | 0.593199i | 0.955002 | + | 0.296600i | \(0.0958526\pi\) | ||||
−0.955002 | + | 0.296600i | \(0.904147\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −6.00000 | −0.253773 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 8.00000 | 0.337760 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 6.00000i | 0.252870i | 0.991975 | + | 0.126435i | \(0.0403535\pi\) | ||||
−0.991975 | + | 0.126435i | \(0.959647\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 10.0000 | 0.419222 | 0.209611 | − | 0.977785i | \(-0.432780\pi\) | ||||
0.209611 | + | 0.977785i | \(0.432780\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 32.0000 | 1.33916 | 0.669579 | − | 0.742741i | \(-0.266474\pi\) | ||||
0.669579 | + | 0.742741i | \(0.266474\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | − 48.0000i | − 2.00523i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 22.0000i | − 0.915872i | −0.888985 | − | 0.457936i | \(-0.848589\pi\) | ||||
0.888985 | − | 0.457936i | \(-0.151411\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 28.0000 | 1.16364 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 4.00000i | − 0.165663i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 40.0000i | 1.65098i | 0.564419 | + | 0.825488i | \(0.309100\pi\) | ||||
−0.564419 | + | 0.825488i | \(0.690900\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −4.00000 | −0.164817 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 44.0000 | 1.80992 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 30.0000i | − 1.23195i | −0.787765 | − | 0.615976i | \(-0.788762\pi\) | ||||
0.787765 | − | 0.615976i | \(-0.211238\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −36.0000 | −1.47092 | −0.735460 | − | 0.677568i | \(-0.763034\pi\) | ||||
−0.735460 | + | 0.677568i | \(0.763034\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 18.0000i | − 0.730597i | −0.930890 | − | 0.365299i | \(-0.880967\pi\) | ||||
0.930890 | − | 0.365299i | \(-0.119033\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −8.00000 | −0.323645 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 26.0000i | − 1.05013i | −0.851062 | − | 0.525065i | \(-0.824041\pi\) | ||||
0.851062 | − | 0.525065i | \(-0.175959\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 6.00000i | 0.241551i | 0.992680 | + | 0.120775i | \(0.0385381\pi\) | ||||
−0.992680 | + | 0.120775i | \(0.961462\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −30.0000 | −1.20580 | −0.602901 | − | 0.797816i | \(-0.705989\pi\) | ||||
−0.602901 | + | 0.797816i | \(0.705989\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −8.00000 | −0.321029 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | − 8.00000i | − 0.319489i | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 12.0000 | 0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −34.0000 | −1.35352 | −0.676759 | − | 0.736204i | \(-0.736616\pi\) | ||||
−0.676759 | + | 0.736204i | \(0.736616\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 40.0000i | 1.58986i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 7.00000i | 0.277350i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | −10.0000 | −0.395594 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.0000 | −1.18493 | −0.592464 | − | 0.805597i | \(-0.701845\pi\) | ||||
−0.592464 | + | 0.805597i | \(0.701845\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 20.0000i | − 0.788723i | −0.918955 | − | 0.394362i | \(-0.870966\pi\) | ||||
0.918955 | − | 0.394362i | \(-0.129034\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 6.00000i | − 0.235884i | −0.993020 | − | 0.117942i | \(-0.962370\pi\) | ||||
0.993020 | − | 0.117942i | \(-0.0376297\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −12.0000 | −0.471041 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 6.00000i | 0.234798i | 0.993085 | + | 0.117399i | \(0.0374557\pi\) | ||||
−0.993085 | + | 0.117399i | \(0.962544\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 2.00000i | 0.0780274i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 16.0000 | 0.623272 | 0.311636 | − | 0.950202i | \(-0.399123\pi\) | ||||
0.311636 | + | 0.950202i | \(0.399123\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −10.0000 | −0.388955 | −0.194477 | − | 0.980907i | \(-0.562301\pi\) | ||||
−0.194477 | + | 0.980907i | \(0.562301\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 4.00000i | 0.155347i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 12.0000i | 0.464642i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 32.0000 | 1.23719 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −28.0000 | −1.08093 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 2.00000i | 0.0770943i | 0.999257 | + | 0.0385472i | \(0.0122730\pi\) | ||||
−0.999257 | + | 0.0385472i | \(0.987727\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 2.00000i | 0.0768662i | 0.999261 | + | 0.0384331i | \(0.0122367\pi\) | ||||
−0.999261 | + | 0.0384331i | \(0.987763\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 48.0000 | 1.83936 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 24.0000i | 0.918334i | 0.888350 | + | 0.459167i | \(0.151852\pi\) | ||||
−0.888350 | + | 0.459167i | \(0.848148\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | − 44.0000i | − 1.67870i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 2.00000 | 0.0761939 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 14.0000 | 0.532585 | 0.266293 | − | 0.963892i | \(-0.414201\pi\) | ||||
0.266293 | + | 0.963892i | \(0.414201\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 4.00000i | − 0.151511i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | −36.0000 | −1.36165 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −50.0000 | −1.88847 | −0.944237 | − | 0.329267i | \(-0.893198\pi\) | ||||
−0.944237 | + | 0.329267i | \(0.893198\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 12.0000i | − 0.452589i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 26.0000 | 0.976450 | 0.488225 | − | 0.872718i | \(-0.337644\pi\) | ||||
0.488225 | + | 0.872718i | \(0.337644\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −4.00000 | −0.150012 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 4.00000i | 0.149801i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | − 12.0000i | − 0.448148i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −48.0000 | −1.79010 | −0.895049 | − | 0.445968i | \(-0.852860\pi\) | ||||
−0.895049 | + | 0.445968i | \(0.852860\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 4.00000i | 0.148762i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 6.00000i | − 0.222528i | −0.993791 | − | 0.111264i | \(-0.964510\pi\) | ||||
0.993791 | − | 0.111264i | \(-0.0354899\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 12.0000 | 0.443836 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 2.00000i | − 0.0738717i | −0.999318 | − | 0.0369358i | \(-0.988240\pi\) | ||||
0.999318 | − | 0.0369358i | \(-0.0117597\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 18.0000 | 0.662141 | 0.331070 | − | 0.943606i | \(-0.392590\pi\) | ||||
0.331070 | + | 0.943606i | \(0.392590\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 4.00000 | 0.146944 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 32.0000i | − 1.17397i | −0.809599 | − | 0.586983i | \(-0.800316\pi\) | ||||
0.809599 | − | 0.586983i | \(-0.199684\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | − 12.0000i | − 0.439057i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −12.0000 | −0.437886 | −0.218943 | − | 0.975738i | \(-0.570261\pi\) | ||||
−0.218943 | + | 0.975738i | \(0.570261\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 46.0000i | − 1.67190i | −0.548807 | − | 0.835949i | \(-0.684918\pi\) | ||||
0.548807 | − | 0.835949i | \(-0.315082\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | −8.00000 | −0.290382 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 26.0000 | 0.942499 | 0.471250 | − | 0.882000i | \(-0.343803\pi\) | ||||
0.471250 | + | 0.882000i | \(0.343803\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 6.00000i | − 0.216647i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −10.0000 | −0.360609 | −0.180305 | − | 0.983611i | \(-0.557708\pi\) | ||||
−0.180305 | + | 0.983611i | \(0.557708\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | −12.0000 | −0.432169 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 42.0000i | 1.51064i | 0.655359 | + | 0.755318i | \(0.272517\pi\) | ||||
−0.655359 | + | 0.755318i | \(0.727483\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −4.00000 | −0.143315 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 20.0000 | 0.715656 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 24.0000i | 0.857690i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 44.0000i | − 1.56843i | −0.620489 | − | 0.784215i | \(-0.713066\pi\) | ||||
0.620489 | − | 0.784215i | \(-0.286934\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −60.0000 | −2.13606 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 14.0000i | − 0.497155i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 2.00000i | 0.0708436i | 0.999372 | + | 0.0354218i | \(0.0112775\pi\) | ||||
−0.999372 | + | 0.0354218i | \(0.988723\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 16.0000 | 0.566039 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −6.00000 | −0.212000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 4.00000i | − 0.141157i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | − 28.0000i | − 0.985647i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 50.0000 | 1.75791 | 0.878953 | − | 0.476908i | \(-0.158243\pi\) | ||||
0.878953 | + | 0.476908i | \(0.158243\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −42.0000 | −1.47482 | −0.737410 | − | 0.675446i | \(-0.763951\pi\) | ||||
−0.737410 | + | 0.675446i | \(0.763951\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | − 4.00000i | − 0.140286i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 12.0000i | − 0.419827i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 30.0000 | 1.04701 | 0.523504 | − | 0.852023i | \(-0.324625\pi\) | ||||
0.523504 | + | 0.852023i | \(0.324625\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 26.0000i | 0.906303i | 0.891434 | + | 0.453152i | \(0.149700\pi\) | ||||
−0.891434 | + | 0.453152i | \(0.850300\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 12.0000i | 0.417281i | 0.977992 | + | 0.208640i | \(0.0669038\pi\) | ||||
−0.977992 | + | 0.208640i | \(0.933096\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 14.0000 | 0.486240 | 0.243120 | − | 0.969996i | \(-0.421829\pi\) | ||||
0.243120 | + | 0.969996i | \(0.421829\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 28.0000 | 0.971309 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 14.0000i | − 0.485071i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 8.00000i | 0.276520i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −34.0000 | −1.17381 | −0.586905 | − | 0.809656i | \(-0.699654\pi\) | ||||
−0.586905 | + | 0.809656i | \(0.699654\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 52.0000i | 1.79098i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | −44.0000 | −1.51008 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −12.0000 | −0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 46.0000i | − 1.57501i | −0.616308 | − | 0.787505i | \(-0.711372\pi\) | ||||
0.616308 | − | 0.787505i | \(-0.288628\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 18.0000i | − 0.614868i | −0.951569 | − | 0.307434i | \(-0.900530\pi\) | ||||
0.951569 | − | 0.307434i | \(-0.0994704\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −40.0000 | −1.36478 | −0.682391 | − | 0.730987i | \(-0.739060\pi\) | ||||
−0.682391 | + | 0.730987i | \(0.739060\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 8.00000i | 0.272323i | 0.990687 | + | 0.136162i | \(0.0434766\pi\) | ||||
−0.990687 | + | 0.136162i | \(0.956523\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 26.0000i | 0.883006i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 8.00000 | 0.271381 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 2.00000i | 0.0676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 46.0000i | − 1.55331i | −0.629926 | − | 0.776655i | \(-0.716915\pi\) | ||||
0.629926 | − | 0.776655i | \(-0.283085\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −36.0000 | −1.21425 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −26.0000 | −0.875962 | −0.437981 | − | 0.898984i | \(-0.644306\pi\) | ||||
−0.437981 | + | 0.898984i | \(0.644306\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 26.0000i | − 0.874970i | −0.899226 | − | 0.437485i | \(-0.855869\pi\) | ||||
0.899226 | − | 0.437485i | \(-0.144131\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 22.0000i | 0.738688i | 0.929293 | + | 0.369344i | \(0.120418\pi\) | ||||
−0.929293 | + | 0.369344i | \(0.879582\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | −22.0000 | −0.737028 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 16.0000i | − 0.535420i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | − 4.00000i | − 0.133556i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 12.0000 | 0.400222 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −4.00000 | −0.133259 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 18.0000i | − 0.597680i | −0.954303 | − | 0.298840i | \(-0.903400\pi\) | ||||
0.954303 | − | 0.298840i | \(-0.0965997\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 10.0000 | 0.331679 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −24.0000 | −0.795155 | −0.397578 | − | 0.917568i | \(-0.630149\pi\) | ||||
−0.397578 | + | 0.917568i | \(0.630149\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 24.0000i | 0.794284i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −4.00000 | −0.131948 | −0.0659739 | − | 0.997821i | \(-0.521015\pi\) | ||||
−0.0659739 | + | 0.997821i | \(0.521015\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 56.0000 | 1.84526 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 10.0000i | 0.329154i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 2.00000i | − 0.0656886i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 6.00000 | 0.196854 | 0.0984268 | − | 0.995144i | \(-0.468619\pi\) | ||||
0.0984268 | + | 0.995144i | \(0.468619\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −14.0000 | −0.458831 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 56.0000i | 1.83336i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 2.00000i | − 0.0653372i | −0.999466 | − | 0.0326686i | \(-0.989599\pi\) | ||||
0.999466 | − | 0.0326686i | \(-0.0104006\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 60.0000 | 1.95803 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 30.0000 | 0.977972 | 0.488986 | − | 0.872292i | \(-0.337367\pi\) | ||||
0.488986 | + | 0.872292i | \(0.337367\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 4.00000i | 0.130258i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 36.0000i | 1.16984i | 0.811090 | + | 0.584921i | \(0.198875\pi\) | ||||
−0.811090 | + | 0.584921i | \(0.801125\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 2.00000 | 0.0649227 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −12.0000 | −0.389127 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 14.0000i | − 0.453504i | −0.973952 | − | 0.226752i | \(-0.927189\pi\) | ||||
0.973952 | − | 0.226752i | \(-0.0728108\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 24.0000i | 0.775810i | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −27.0000 | −0.870968 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 2.00000i | − 0.0644491i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 12.0000i | 0.385894i | 0.981209 | + | 0.192947i | \(0.0618045\pi\) | ||||
−0.981209 | + | 0.192947i | \(0.938195\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | −8.00000 | −0.256997 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −52.0000 | −1.66876 | −0.834380 | − | 0.551190i | \(-0.814174\pi\) | ||||
−0.834380 | + | 0.551190i | \(0.814174\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 38.0000i | − 1.21573i | −0.794041 | − | 0.607864i | \(-0.792027\pi\) | ||||
0.794041 | − | 0.607864i | \(-0.207973\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 12.0000 | 0.383522 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | −10.0000 | −0.319275 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 52.0000i | − 1.65854i | −0.558846 | − | 0.829271i | \(-0.688756\pi\) | ||||
0.558846 | − | 0.829271i | \(-0.311244\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −12.0000 | −0.381578 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −40.0000 | −1.27064 | −0.635321 | − | 0.772248i | \(-0.719132\pi\) | ||||
−0.635321 | + | 0.772248i | \(0.719132\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 44.0000i | 1.39630i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 14.0000i | − 0.443384i | −0.975117 | − | 0.221692i | \(-0.928842\pi\) | ||||
0.975117 | − | 0.221692i | \(-0.0711580\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −24.0000 | −0.759326 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2600.2.d.c.1249.2 | 2 | ||
5.2 | odd | 4 | 520.2.a.b.1.1 | ✓ | 1 | ||
5.3 | odd | 4 | 2600.2.a.c.1.1 | 1 | |||
5.4 | even | 2 | inner | 2600.2.d.c.1249.1 | 2 | ||
15.2 | even | 4 | 4680.2.a.e.1.1 | 1 | |||
20.3 | even | 4 | 5200.2.a.bf.1.1 | 1 | |||
20.7 | even | 4 | 1040.2.a.c.1.1 | 1 | |||
40.27 | even | 4 | 4160.2.a.p.1.1 | 1 | |||
40.37 | odd | 4 | 4160.2.a.a.1.1 | 1 | |||
60.47 | odd | 4 | 9360.2.a.n.1.1 | 1 | |||
65.12 | odd | 4 | 6760.2.a.k.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
520.2.a.b.1.1 | ✓ | 1 | 5.2 | odd | 4 | ||
1040.2.a.c.1.1 | 1 | 20.7 | even | 4 | |||
2600.2.a.c.1.1 | 1 | 5.3 | odd | 4 | |||
2600.2.d.c.1249.1 | 2 | 5.4 | even | 2 | inner | ||
2600.2.d.c.1249.2 | 2 | 1.1 | even | 1 | trivial | ||
4160.2.a.a.1.1 | 1 | 40.37 | odd | 4 | |||
4160.2.a.p.1.1 | 1 | 40.27 | even | 4 | |||
4680.2.a.e.1.1 | 1 | 15.2 | even | 4 | |||
5200.2.a.bf.1.1 | 1 | 20.3 | even | 4 | |||
6760.2.a.k.1.1 | 1 | 65.12 | odd | 4 | |||
9360.2.a.n.1.1 | 1 | 60.47 | odd | 4 |