Properties

Label 2600.2.cn
Level $2600$
Weight $2$
Character orbit 2600.cn
Rep. character $\chi_{2600}(209,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $360$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.cn (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 1712 360 1352
Cusp forms 1648 360 1288
Eisenstein series 64 0 64

Trace form

\( 360 q + 90 q^{9} - 12 q^{11} + 8 q^{15} + 12 q^{19} + 8 q^{21} + 60 q^{23} - 20 q^{25} - 12 q^{31} - 10 q^{35} + 16 q^{41} + 52 q^{45} + 40 q^{47} - 336 q^{49} + 12 q^{51} + 32 q^{55} + 60 q^{59} + 24 q^{69}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1300, [\chi])\)\(^{\oplus 2}\)