Properties

Label 2600.2.cj
Level $2600$
Weight $2$
Character orbit 2600.cj
Rep. character $\chi_{2600}(389,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $1664$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.cj (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2600 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 1696 1696 0
Cusp forms 1664 1664 0
Eisenstein series 32 32 0

Trace form

\( 1664 q - 6 q^{4} - 420 q^{9} - 8 q^{10} - 10 q^{12} - 18 q^{14} - 18 q^{16} - 20 q^{17} - 60 q^{22} - 20 q^{23} - 12 q^{25} - 2 q^{26} + 8 q^{30} + 22 q^{36} - 10 q^{38} + 6 q^{39} + 38 q^{40} - 70 q^{42}+ \cdots - 156 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.