Properties

Label 260.2.z.a.49.7
Level $260$
Weight $2$
Character 260.49
Analytic conductor $2.076$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.z (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 7x^{14} + 21x^{12} - 22x^{10} - 26x^{8} - 198x^{6} + 1701x^{4} - 5103x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.7
Root \(-1.42836 + 0.979681i\) of defining polynomial
Character \(\chi\) \(=\) 260.49
Dual form 260.2.z.a.69.7

$q$-expansion

\(f(q)\) \(=\) \(q+(1.69686 - 0.979681i) q^{3} +(2.16188 - 0.571200i) q^{5} +(-1.42836 + 2.47400i) q^{7} +(0.419550 - 0.726682i) q^{9} +O(q^{10})\) \(q+(1.69686 - 0.979681i) q^{3} +(2.16188 - 0.571200i) q^{5} +(-1.42836 + 2.47400i) q^{7} +(0.419550 - 0.726682i) q^{9} +(4.84746 - 2.79868i) q^{11} +(-2.08253 + 2.94331i) q^{13} +(3.10881 - 3.08720i) q^{15} +(-3.40111 - 1.96363i) q^{17} +(-7.09546 - 4.09657i) q^{19} +5.59737i q^{21} +(-0.309177 + 0.178504i) q^{23} +(4.34746 - 2.46973i) q^{25} +4.23399i q^{27} +(1.90890 + 3.30631i) q^{29} -8.47182i q^{31} +(5.48363 - 9.49793i) q^{33} +(-1.67481 + 6.16438i) q^{35} +(3.77939 + 6.54609i) q^{37} +(-0.650247 + 7.03459i) q^{39} +(-6.85811 + 3.95953i) q^{41} +(2.89741 + 1.67282i) q^{43} +(0.491937 - 1.81065i) q^{45} -8.64753 q^{47} +(-0.580450 - 1.00537i) q^{49} -7.69492 q^{51} +0.581615i q^{53} +(8.88103 - 8.81929i) q^{55} -16.0533 q^{57} +(-0.510653 - 0.294826i) q^{59} +(-2.90890 + 5.03836i) q^{61} +(1.19854 + 2.07593i) q^{63} +(-2.82096 + 7.55263i) q^{65} +(-6.09997 - 10.5655i) q^{67} +(-0.349753 + 0.605790i) q^{69} +(2.11676 + 1.22211i) q^{71} -4.16506 q^{73} +(4.95747 - 8.44991i) q^{75} +15.9902i q^{77} +9.85582 q^{79} +(5.40661 + 9.36452i) q^{81} +6.09174 q^{83} +(-8.47441 - 2.30242i) q^{85} +(6.47825 + 3.74022i) q^{87} +(0.510653 - 0.294826i) q^{89} +(-4.30714 - 9.35629i) q^{91} +(-8.29968 - 14.3755i) q^{93} +(-17.6795 - 4.80336i) q^{95} +(-2.35841 + 4.08489i) q^{97} -4.69675i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 10 q^{9} - 6 q^{11} + 6 q^{15} - 18 q^{19} - 14 q^{25} + 12 q^{29} + 18 q^{39} - 48 q^{41} + 45 q^{45} - 6 q^{49} + 44 q^{51} + 2 q^{55} - 30 q^{59} - 28 q^{61} - 15 q^{65} - 34 q^{69} - 18 q^{71} - 42 q^{75} - 16 q^{79} - 44 q^{81} - 45 q^{85} + 30 q^{89} - 10 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.69686 0.979681i 0.979681 0.565619i 0.0775072 0.996992i \(-0.475304\pi\)
0.902174 + 0.431373i \(0.141971\pi\)
\(4\) 0 0
\(5\) 2.16188 0.571200i 0.966823 0.255448i
\(6\) 0 0
\(7\) −1.42836 + 2.47400i −0.539871 + 0.935084i 0.459039 + 0.888416i \(0.348194\pi\)
−0.998910 + 0.0466681i \(0.985140\pi\)
\(8\) 0 0
\(9\) 0.419550 0.726682i 0.139850 0.242227i
\(10\) 0 0
\(11\) 4.84746 2.79868i 1.46156 0.843835i 0.462481 0.886629i \(-0.346959\pi\)
0.999084 + 0.0427946i \(0.0136261\pi\)
\(12\) 0 0
\(13\) −2.08253 + 2.94331i −0.577589 + 0.816328i
\(14\) 0 0
\(15\) 3.10881 3.08720i 0.802691 0.797111i
\(16\) 0 0
\(17\) −3.40111 1.96363i −0.824889 0.476250i 0.0272102 0.999630i \(-0.491338\pi\)
−0.852100 + 0.523380i \(0.824671\pi\)
\(18\) 0 0
\(19\) −7.09546 4.09657i −1.62781 0.939816i −0.984745 0.174005i \(-0.944329\pi\)
−0.643065 0.765811i \(-0.722338\pi\)
\(20\) 0 0
\(21\) 5.59737i 1.22145i
\(22\) 0 0
\(23\) −0.309177 + 0.178504i −0.0644679 + 0.0372206i −0.531887 0.846815i \(-0.678517\pi\)
0.467420 + 0.884036i \(0.345184\pi\)
\(24\) 0 0
\(25\) 4.34746 2.46973i 0.869492 0.493946i
\(26\) 0 0
\(27\) 4.23399i 0.814831i
\(28\) 0 0
\(29\) 1.90890 + 3.30631i 0.354473 + 0.613966i 0.987028 0.160550i \(-0.0513268\pi\)
−0.632554 + 0.774516i \(0.717994\pi\)
\(30\) 0 0
\(31\) 8.47182i 1.52158i −0.648996 0.760792i \(-0.724811\pi\)
0.648996 0.760792i \(-0.275189\pi\)
\(32\) 0 0
\(33\) 5.48363 9.49793i 0.954578 1.65338i
\(34\) 0 0
\(35\) −1.67481 + 6.16438i −0.283094 + 1.04197i
\(36\) 0 0
\(37\) 3.77939 + 6.54609i 0.621327 + 1.07617i 0.989239 + 0.146309i \(0.0467395\pi\)
−0.367912 + 0.929861i \(0.619927\pi\)
\(38\) 0 0
\(39\) −0.650247 + 7.03459i −0.104123 + 1.12644i
\(40\) 0 0
\(41\) −6.85811 + 3.95953i −1.07106 + 0.618375i −0.928470 0.371407i \(-0.878876\pi\)
−0.142587 + 0.989782i \(0.545542\pi\)
\(42\) 0 0
\(43\) 2.89741 + 1.67282i 0.441851 + 0.255103i 0.704383 0.709820i \(-0.251224\pi\)
−0.262531 + 0.964923i \(0.584557\pi\)
\(44\) 0 0
\(45\) 0.491937 1.81065i 0.0733336 0.269915i
\(46\) 0 0
\(47\) −8.64753 −1.26137 −0.630686 0.776038i \(-0.717226\pi\)
−0.630686 + 0.776038i \(0.717226\pi\)
\(48\) 0 0
\(49\) −0.580450 1.00537i −0.0829214 0.143624i
\(50\) 0 0
\(51\) −7.69492 −1.07750
\(52\) 0 0
\(53\) 0.581615i 0.0798909i 0.999202 + 0.0399455i \(0.0127184\pi\)
−0.999202 + 0.0399455i \(0.987282\pi\)
\(54\) 0 0
\(55\) 8.88103 8.81929i 1.19752 1.18919i
\(56\) 0 0
\(57\) −16.0533 −2.12631
\(58\) 0 0
\(59\) −0.510653 0.294826i −0.0664813 0.0383830i 0.466391 0.884579i \(-0.345554\pi\)
−0.532872 + 0.846196i \(0.678887\pi\)
\(60\) 0 0
\(61\) −2.90890 + 5.03836i −0.372446 + 0.645096i −0.989941 0.141479i \(-0.954814\pi\)
0.617495 + 0.786575i \(0.288148\pi\)
\(62\) 0 0
\(63\) 1.19854 + 2.07593i 0.151002 + 0.261543i
\(64\) 0 0
\(65\) −2.82096 + 7.55263i −0.349897 + 0.936788i
\(66\) 0 0
\(67\) −6.09997 10.5655i −0.745230 1.29078i −0.950087 0.311985i \(-0.899006\pi\)
0.204857 0.978792i \(-0.434327\pi\)
\(68\) 0 0
\(69\) −0.349753 + 0.605790i −0.0421053 + 0.0729286i
\(70\) 0 0
\(71\) 2.11676 + 1.22211i 0.251214 + 0.145038i 0.620320 0.784349i \(-0.287003\pi\)
−0.369106 + 0.929387i \(0.620336\pi\)
\(72\) 0 0
\(73\) −4.16506 −0.487483 −0.243741 0.969840i \(-0.578375\pi\)
−0.243741 + 0.969840i \(0.578375\pi\)
\(74\) 0 0
\(75\) 4.95747 8.44991i 0.572440 0.975712i
\(76\) 0 0
\(77\) 15.9902i 1.82225i
\(78\) 0 0
\(79\) 9.85582 1.10887 0.554433 0.832228i \(-0.312935\pi\)
0.554433 + 0.832228i \(0.312935\pi\)
\(80\) 0 0
\(81\) 5.40661 + 9.36452i 0.600734 + 1.04050i
\(82\) 0 0
\(83\) 6.09174 0.668655 0.334327 0.942457i \(-0.391491\pi\)
0.334327 + 0.942457i \(0.391491\pi\)
\(84\) 0 0
\(85\) −8.47441 2.30242i −0.919179 0.249733i
\(86\) 0 0
\(87\) 6.47825 + 3.74022i 0.694542 + 0.400994i
\(88\) 0 0
\(89\) 0.510653 0.294826i 0.0541291 0.0312515i −0.472691 0.881228i \(-0.656717\pi\)
0.526820 + 0.849977i \(0.323384\pi\)
\(90\) 0 0
\(91\) −4.30714 9.35629i −0.451511 0.980806i
\(92\) 0 0
\(93\) −8.29968 14.3755i −0.860637 1.49067i
\(94\) 0 0
\(95\) −17.6795 4.80336i −1.81388 0.492815i
\(96\) 0 0
\(97\) −2.35841 + 4.08489i −0.239460 + 0.414758i −0.960560 0.278074i \(-0.910304\pi\)
0.721099 + 0.692832i \(0.243637\pi\)
\(98\) 0 0
\(99\) 4.69675i 0.472041i
\(100\) 0 0
\(101\) −1.26701 2.19453i −0.126072 0.218364i 0.796079 0.605192i \(-0.206904\pi\)
−0.922152 + 0.386829i \(0.873570\pi\)
\(102\) 0 0
\(103\) 0.930087i 0.0916442i −0.998950 0.0458221i \(-0.985409\pi\)
0.998950 0.0458221i \(-0.0145907\pi\)
\(104\) 0 0
\(105\) 3.19721 + 12.1008i 0.312016 + 1.18092i
\(106\) 0 0
\(107\) 0.511085 0.295075i 0.0494084 0.0285260i −0.475092 0.879936i \(-0.657585\pi\)
0.524501 + 0.851410i \(0.324252\pi\)
\(108\) 0 0
\(109\) 4.88056i 0.467473i −0.972300 0.233737i \(-0.924905\pi\)
0.972300 0.233737i \(-0.0750953\pi\)
\(110\) 0 0
\(111\) 12.8262 + 7.40518i 1.21740 + 0.702869i
\(112\) 0 0
\(113\) 6.79482 + 3.92299i 0.639203 + 0.369044i 0.784307 0.620372i \(-0.213018\pi\)
−0.145104 + 0.989416i \(0.546352\pi\)
\(114\) 0 0
\(115\) −0.566443 + 0.562505i −0.0528211 + 0.0524539i
\(116\) 0 0
\(117\) 1.26513 + 2.74820i 0.116961 + 0.254071i
\(118\) 0 0
\(119\) 9.71604 5.60956i 0.890668 0.514227i
\(120\) 0 0
\(121\) 10.1653 17.6067i 0.924114 1.60061i
\(122\) 0 0
\(123\) −7.75816 + 13.4375i −0.699530 + 1.21162i
\(124\) 0 0
\(125\) 7.98799 7.82254i 0.714467 0.699669i
\(126\) 0 0
\(127\) 6.47825 3.74022i 0.574852 0.331891i −0.184233 0.982883i \(-0.558980\pi\)
0.759085 + 0.650992i \(0.225647\pi\)
\(128\) 0 0
\(129\) 6.55533 0.577165
\(130\) 0 0
\(131\) 2.86041 0.249915 0.124957 0.992162i \(-0.460121\pi\)
0.124957 + 0.992162i \(0.460121\pi\)
\(132\) 0 0
\(133\) 20.2698 11.7028i 1.75761 1.01476i
\(134\) 0 0
\(135\) 2.41845 + 9.15337i 0.208147 + 0.787797i
\(136\) 0 0
\(137\) 8.18250 14.1725i 0.699078 1.21084i −0.269708 0.962942i \(-0.586927\pi\)
0.968786 0.247897i \(-0.0797394\pi\)
\(138\) 0 0
\(139\) −0.898244 + 1.55580i −0.0761881 + 0.131962i −0.901602 0.432566i \(-0.857608\pi\)
0.825414 + 0.564528i \(0.190942\pi\)
\(140\) 0 0
\(141\) −14.6736 + 8.47182i −1.23574 + 0.713456i
\(142\) 0 0
\(143\) −1.85758 + 20.0959i −0.155339 + 1.68051i
\(144\) 0 0
\(145\) 6.01537 + 6.05748i 0.499549 + 0.503046i
\(146\) 0 0
\(147\) −1.96988 1.13731i −0.162473 0.0938039i
\(148\) 0 0
\(149\) 18.5317 + 10.6993i 1.51818 + 0.876521i 0.999771 + 0.0213870i \(0.00680822\pi\)
0.518407 + 0.855134i \(0.326525\pi\)
\(150\) 0 0
\(151\) 8.34466i 0.679079i −0.940592 0.339540i \(-0.889729\pi\)
0.940592 0.339540i \(-0.110271\pi\)
\(152\) 0 0
\(153\) −2.85387 + 1.64768i −0.230722 + 0.133207i
\(154\) 0 0
\(155\) −4.83910 18.3151i −0.388686 1.47110i
\(156\) 0 0
\(157\) 2.68191i 0.214040i 0.994257 + 0.107020i \(0.0341309\pi\)
−0.994257 + 0.107020i \(0.965869\pi\)
\(158\) 0 0
\(159\) 0.569797 + 0.986917i 0.0451878 + 0.0782676i
\(160\) 0 0
\(161\) 1.01987i 0.0803772i
\(162\) 0 0
\(163\) 3.62354 6.27615i 0.283817 0.491586i −0.688504 0.725232i \(-0.741732\pi\)
0.972322 + 0.233646i \(0.0750657\pi\)
\(164\) 0 0
\(165\) 6.42975 23.6657i 0.500555 1.84237i
\(166\) 0 0
\(167\) 6.36847 + 11.0305i 0.492807 + 0.853566i 0.999966 0.00828625i \(-0.00263763\pi\)
−0.507159 + 0.861853i \(0.669304\pi\)
\(168\) 0 0
\(169\) −4.32616 12.2591i −0.332781 0.943004i
\(170\) 0 0
\(171\) −5.95380 + 3.43743i −0.455298 + 0.262867i
\(172\) 0 0
\(173\) −10.1100 5.83703i −0.768651 0.443781i 0.0637421 0.997966i \(-0.479697\pi\)
−0.832393 + 0.554185i \(0.813030\pi\)
\(174\) 0 0
\(175\) −0.0996423 + 14.2833i −0.00753225 + 1.07972i
\(176\) 0 0
\(177\) −1.15534 −0.0868407
\(178\) 0 0
\(179\) −0.510653 0.884477i −0.0381680 0.0661089i 0.846310 0.532690i \(-0.178819\pi\)
−0.884478 + 0.466581i \(0.845486\pi\)
\(180\) 0 0
\(181\) 13.8771 1.03148 0.515739 0.856745i \(-0.327517\pi\)
0.515739 + 0.856745i \(0.327517\pi\)
\(182\) 0 0
\(183\) 11.3992i 0.842651i
\(184\) 0 0
\(185\) 11.9097 + 11.9931i 0.875619 + 0.881749i
\(186\) 0 0
\(187\) −21.9823 −1.60751
\(188\) 0 0
\(189\) −10.4749 6.04767i −0.761935 0.439904i
\(190\) 0 0
\(191\) −3.24135 + 5.61418i −0.234536 + 0.406228i −0.959138 0.282940i \(-0.908690\pi\)
0.724602 + 0.689168i \(0.242024\pi\)
\(192\) 0 0
\(193\) −10.9599 18.9831i −0.788909 1.36643i −0.926636 0.375961i \(-0.877313\pi\)
0.137726 0.990470i \(-0.456021\pi\)
\(194\) 0 0
\(195\) 2.61240 + 15.5794i 0.187078 + 1.11566i
\(196\) 0 0
\(197\) −9.52412 16.4963i −0.678566 1.17531i −0.975413 0.220385i \(-0.929269\pi\)
0.296847 0.954925i \(-0.404065\pi\)
\(198\) 0 0
\(199\) −5.84746 + 10.1281i −0.414516 + 0.717962i −0.995377 0.0960401i \(-0.969382\pi\)
0.580862 + 0.814002i \(0.302716\pi\)
\(200\) 0 0
\(201\) −20.7016 11.9521i −1.46018 0.843033i
\(202\) 0 0
\(203\) −10.9064 −0.765479
\(204\) 0 0
\(205\) −12.5647 + 12.4774i −0.877560 + 0.871459i
\(206\) 0 0
\(207\) 0.299565i 0.0208212i
\(208\) 0 0
\(209\) −45.8600 −3.17220
\(210\) 0 0
\(211\) −6.59946 11.4306i −0.454326 0.786915i 0.544323 0.838876i \(-0.316786\pi\)
−0.998649 + 0.0519600i \(0.983453\pi\)
\(212\) 0 0
\(213\) 4.78913 0.328146
\(214\) 0 0
\(215\) 7.21938 + 1.96144i 0.492358 + 0.133769i
\(216\) 0 0
\(217\) 20.9593 + 12.1008i 1.42281 + 0.821459i
\(218\) 0 0
\(219\) −7.06751 + 4.08043i −0.477578 + 0.275730i
\(220\) 0 0
\(221\) 12.8625 5.92120i 0.865223 0.398303i
\(222\) 0 0
\(223\) −1.31858 2.28384i −0.0882985 0.152938i 0.818493 0.574516i \(-0.194810\pi\)
−0.906792 + 0.421578i \(0.861476\pi\)
\(224\) 0 0
\(225\) 0.0292677 4.19540i 0.00195118 0.279693i
\(226\) 0 0
\(227\) 10.6149 18.3855i 0.704535 1.22029i −0.262324 0.964980i \(-0.584489\pi\)
0.966859 0.255311i \(-0.0821777\pi\)
\(228\) 0 0
\(229\) 10.0154i 0.661838i 0.943659 + 0.330919i \(0.107359\pi\)
−0.943659 + 0.330919i \(0.892641\pi\)
\(230\) 0 0
\(231\) 15.6653 + 27.1330i 1.03070 + 1.78522i
\(232\) 0 0
\(233\) 17.9666i 1.17703i 0.808486 + 0.588515i \(0.200287\pi\)
−0.808486 + 0.588515i \(0.799713\pi\)
\(234\) 0 0
\(235\) −18.6949 + 4.93946i −1.21952 + 0.322215i
\(236\) 0 0
\(237\) 16.7239 9.65556i 1.08634 0.627196i
\(238\) 0 0
\(239\) 12.6771i 0.820014i 0.912082 + 0.410007i \(0.134474\pi\)
−0.912082 + 0.410007i \(0.865526\pi\)
\(240\) 0 0
\(241\) 7.38988 + 4.26655i 0.476024 + 0.274833i 0.718758 0.695260i \(-0.244711\pi\)
−0.242734 + 0.970093i \(0.578044\pi\)
\(242\) 0 0
\(243\) 7.34826 + 4.24252i 0.471391 + 0.272158i
\(244\) 0 0
\(245\) −1.82913 1.84194i −0.116859 0.117677i
\(246\) 0 0
\(247\) 26.8340 12.3529i 1.70740 0.785998i
\(248\) 0 0
\(249\) 10.3368 5.96796i 0.655069 0.378204i
\(250\) 0 0
\(251\) −9.86247 + 17.0823i −0.622514 + 1.07823i 0.366502 + 0.930417i \(0.380555\pi\)
−0.989016 + 0.147808i \(0.952778\pi\)
\(252\) 0 0
\(253\) −0.999150 + 1.73058i −0.0628160 + 0.108800i
\(254\) 0 0
\(255\) −16.6355 + 4.39534i −1.04176 + 0.275247i
\(256\) 0 0
\(257\) 20.7648 11.9885i 1.29527 0.747824i 0.315687 0.948863i \(-0.397765\pi\)
0.979583 + 0.201039i \(0.0644318\pi\)
\(258\) 0 0
\(259\) −21.5934 −1.34175
\(260\) 0 0
\(261\) 3.20351 0.198292
\(262\) 0 0
\(263\) −0.547238 + 0.315948i −0.0337441 + 0.0194822i −0.516777 0.856120i \(-0.672868\pi\)
0.483033 + 0.875602i \(0.339535\pi\)
\(264\) 0 0
\(265\) 0.332218 + 1.25738i 0.0204080 + 0.0772404i
\(266\) 0 0
\(267\) 0.577670 1.00055i 0.0353528 0.0612329i
\(268\) 0 0
\(269\) −3.68656 + 6.38531i −0.224774 + 0.389319i −0.956252 0.292546i \(-0.905498\pi\)
0.731478 + 0.681865i \(0.238831\pi\)
\(270\) 0 0
\(271\) −10.0955 + 5.82862i −0.613255 + 0.354063i −0.774238 0.632894i \(-0.781867\pi\)
0.160983 + 0.986957i \(0.448534\pi\)
\(272\) 0 0
\(273\) −16.4748 11.6567i −0.997100 0.705494i
\(274\) 0 0
\(275\) 14.1622 24.1391i 0.854010 1.45564i
\(276\) 0 0
\(277\) 0.798087 + 0.460776i 0.0479524 + 0.0276853i 0.523785 0.851851i \(-0.324520\pi\)
−0.475832 + 0.879536i \(0.657853\pi\)
\(278\) 0 0
\(279\) −6.15632 3.55435i −0.368569 0.212793i
\(280\) 0 0
\(281\) 13.3326i 0.795358i −0.917525 0.397679i \(-0.869816\pi\)
0.917525 0.397679i \(-0.130184\pi\)
\(282\) 0 0
\(283\) −4.50837 + 2.60291i −0.267995 + 0.154727i −0.627976 0.778233i \(-0.716116\pi\)
0.359981 + 0.932960i \(0.382783\pi\)
\(284\) 0 0
\(285\) −34.7053 + 9.16965i −2.05577 + 0.543163i
\(286\) 0 0
\(287\) 22.6226i 1.33537i
\(288\) 0 0
\(289\) −0.788317 1.36541i −0.0463716 0.0803180i
\(290\) 0 0
\(291\) 9.24197i 0.541774i
\(292\) 0 0
\(293\) −7.52296 + 13.0302i −0.439496 + 0.761230i −0.997651 0.0685075i \(-0.978176\pi\)
0.558155 + 0.829737i \(0.311510\pi\)
\(294\) 0 0
\(295\) −1.27238 0.345693i −0.0740806 0.0201270i
\(296\) 0 0
\(297\) 11.8496 + 20.5241i 0.687583 + 1.19093i
\(298\) 0 0
\(299\) 0.118479 1.28174i 0.00685180 0.0741251i
\(300\) 0 0
\(301\) −8.27712 + 4.77880i −0.477085 + 0.275445i
\(302\) 0 0
\(303\) −4.29988 2.48253i −0.247021 0.142618i
\(304\) 0 0
\(305\) −3.41078 + 12.5539i −0.195301 + 0.718834i
\(306\) 0 0
\(307\) 4.41991 0.252258 0.126129 0.992014i \(-0.459745\pi\)
0.126129 + 0.992014i \(0.459745\pi\)
\(308\) 0 0
\(309\) −0.911189 1.57822i −0.0518357 0.0897821i
\(310\) 0 0
\(311\) 32.2076 1.82633 0.913164 0.407593i \(-0.133632\pi\)
0.913164 + 0.407593i \(0.133632\pi\)
\(312\) 0 0
\(313\) 18.8549i 1.06574i −0.846196 0.532872i \(-0.821113\pi\)
0.846196 0.532872i \(-0.178887\pi\)
\(314\) 0 0
\(315\) 3.77688 + 3.80332i 0.212803 + 0.214293i
\(316\) 0 0
\(317\) −23.9904 −1.34743 −0.673716 0.738990i \(-0.735303\pi\)
−0.673716 + 0.738990i \(0.735303\pi\)
\(318\) 0 0
\(319\) 18.5066 + 10.6848i 1.03617 + 0.598234i
\(320\) 0 0
\(321\) 0.578158 1.00140i 0.0322697 0.0558927i
\(322\) 0 0
\(323\) 16.0883 + 27.8657i 0.895175 + 1.55049i
\(324\) 0 0
\(325\) −1.78452 + 17.9392i −0.0989874 + 0.995089i
\(326\) 0 0
\(327\) −4.78140 8.28162i −0.264412 0.457975i
\(328\) 0 0
\(329\) 12.3518 21.3940i 0.680978 1.17949i
\(330\) 0 0
\(331\) −6.24135 3.60345i −0.343056 0.198063i 0.318567 0.947900i \(-0.396798\pi\)
−0.661622 + 0.749837i \(0.730132\pi\)
\(332\) 0 0
\(333\) 6.34257 0.347570
\(334\) 0 0
\(335\) −19.2224 19.3570i −1.05023 1.05758i
\(336\) 0 0
\(337\) 20.1923i 1.09995i 0.835183 + 0.549973i \(0.185362\pi\)
−0.835183 + 0.549973i \(0.814638\pi\)
\(338\) 0 0
\(339\) 15.3731 0.834953
\(340\) 0 0
\(341\) −23.7099 41.0668i −1.28396 2.22389i
\(342\) 0 0
\(343\) −16.6807 −0.900675
\(344\) 0 0
\(345\) −0.410097 + 1.50943i −0.0220789 + 0.0812647i
\(346\) 0 0
\(347\) −7.21747 4.16701i −0.387454 0.223697i 0.293602 0.955928i \(-0.405146\pi\)
−0.681056 + 0.732231i \(0.738479\pi\)
\(348\) 0 0
\(349\) 19.2518 11.1150i 1.03052 0.594973i 0.113389 0.993551i \(-0.463829\pi\)
0.917135 + 0.398577i \(0.130496\pi\)
\(350\) 0 0
\(351\) −12.4619 8.81739i −0.665169 0.470638i
\(352\) 0 0
\(353\) 11.8106 + 20.4565i 0.628613 + 1.08879i 0.987830 + 0.155536i \(0.0497105\pi\)
−0.359217 + 0.933254i \(0.616956\pi\)
\(354\) 0 0
\(355\) 5.27427 + 1.43297i 0.279929 + 0.0760542i
\(356\) 0 0
\(357\) 10.9912 19.0372i 0.581714 1.00756i
\(358\) 0 0
\(359\) 2.91598i 0.153899i 0.997035 + 0.0769497i \(0.0245181\pi\)
−0.997035 + 0.0769497i \(0.975482\pi\)
\(360\) 0 0
\(361\) 24.0637 + 41.6795i 1.26651 + 2.19366i
\(362\) 0 0
\(363\) 39.8348i 2.09079i
\(364\) 0 0
\(365\) −9.00436 + 2.37908i −0.471310 + 0.124527i
\(366\) 0 0
\(367\) −13.0933 + 7.55944i −0.683467 + 0.394600i −0.801160 0.598450i \(-0.795783\pi\)
0.117693 + 0.993050i \(0.462450\pi\)
\(368\) 0 0
\(369\) 6.64489i 0.345919i
\(370\) 0 0
\(371\) −1.43891 0.830758i −0.0747047 0.0431308i
\(372\) 0 0
\(373\) −9.15978 5.28840i −0.474275 0.273823i 0.243752 0.969838i \(-0.421622\pi\)
−0.718028 + 0.696014i \(0.754955\pi\)
\(374\) 0 0
\(375\) 5.89088 21.0994i 0.304204 1.08957i
\(376\) 0 0
\(377\) −13.7068 1.26700i −0.705937 0.0652537i
\(378\) 0 0
\(379\) 5.38724 3.11032i 0.276724 0.159767i −0.355215 0.934784i \(-0.615592\pi\)
0.631939 + 0.775018i \(0.282259\pi\)
\(380\) 0 0
\(381\) 7.32845 12.6932i 0.375448 0.650295i
\(382\) 0 0
\(383\) −6.49304 + 11.2463i −0.331779 + 0.574657i −0.982861 0.184350i \(-0.940982\pi\)
0.651082 + 0.759007i \(0.274315\pi\)
\(384\) 0 0
\(385\) 9.13358 + 34.5688i 0.465490 + 1.76179i
\(386\) 0 0
\(387\) 2.43122 1.40367i 0.123586 0.0713523i
\(388\) 0 0
\(389\) −0.474689 −0.0240677 −0.0120338 0.999928i \(-0.503831\pi\)
−0.0120338 + 0.999928i \(0.503831\pi\)
\(390\) 0 0
\(391\) 1.40206 0.0709052
\(392\) 0 0
\(393\) 4.85370 2.80229i 0.244837 0.141357i
\(394\) 0 0
\(395\) 21.3071 5.62964i 1.07208 0.283258i
\(396\) 0 0
\(397\) 12.5054 21.6600i 0.627629 1.08709i −0.360397 0.932799i \(-0.617359\pi\)
0.988026 0.154286i \(-0.0493078\pi\)
\(398\) 0 0
\(399\) 22.9300 39.7159i 1.14793 1.98828i
\(400\) 0 0
\(401\) 11.2970 6.52234i 0.564147 0.325710i −0.190661 0.981656i \(-0.561063\pi\)
0.754808 + 0.655946i \(0.227730\pi\)
\(402\) 0 0
\(403\) 24.9352 + 17.6428i 1.24211 + 0.878850i
\(404\) 0 0
\(405\) 17.0374 + 17.1567i 0.846598 + 0.852524i
\(406\) 0 0
\(407\) 36.6408 + 21.1546i 1.81622 + 1.04859i
\(408\) 0 0
\(409\) 10.0173 + 5.78349i 0.495324 + 0.285975i 0.726780 0.686870i \(-0.241016\pi\)
−0.231457 + 0.972845i \(0.574349\pi\)
\(410\) 0 0
\(411\) 32.0650i 1.58165i
\(412\) 0 0
\(413\) 1.45880 0.842237i 0.0717827 0.0414438i
\(414\) 0 0
\(415\) 13.1696 3.47960i 0.646471 0.170807i
\(416\) 0 0
\(417\) 3.51997i 0.172374i
\(418\) 0 0
\(419\) 8.22688 + 14.2494i 0.401909 + 0.696128i 0.993956 0.109776i \(-0.0350133\pi\)
−0.592047 + 0.805904i \(0.701680\pi\)
\(420\) 0 0
\(421\) 22.2913i 1.08641i −0.839599 0.543206i \(-0.817210\pi\)
0.839599 0.543206i \(-0.182790\pi\)
\(422\) 0 0
\(423\) −3.62807 + 6.28400i −0.176403 + 0.305539i
\(424\) 0 0
\(425\) −19.6358 0.136982i −0.952477 0.00664461i
\(426\) 0 0
\(427\) −8.30993 14.3932i −0.402146 0.696537i
\(428\) 0 0
\(429\) 16.5355 + 35.9197i 0.798344 + 1.73422i
\(430\) 0 0
\(431\) −23.4893 + 13.5616i −1.13144 + 0.653238i −0.944297 0.329094i \(-0.893257\pi\)
−0.187145 + 0.982332i \(0.559923\pi\)
\(432\) 0 0
\(433\) −19.0881 11.0205i −0.917315 0.529612i −0.0345372 0.999403i \(-0.510996\pi\)
−0.882777 + 0.469792i \(0.844329\pi\)
\(434\) 0 0
\(435\) 16.1416 + 4.38554i 0.773932 + 0.210270i
\(436\) 0 0
\(437\) 2.92501 0.139922
\(438\) 0 0
\(439\) −13.1843 22.8358i −0.629251 1.08989i −0.987702 0.156346i \(-0.950028\pi\)
0.358451 0.933548i \(-0.383305\pi\)
\(440\) 0 0
\(441\) −0.974111 −0.0463862
\(442\) 0 0
\(443\) 40.3081i 1.91510i 0.288274 + 0.957548i \(0.406918\pi\)
−0.288274 + 0.957548i \(0.593082\pi\)
\(444\) 0 0
\(445\) 0.935567 0.929063i 0.0443501 0.0440418i
\(446\) 0 0
\(447\) 41.9276 1.98311
\(448\) 0 0
\(449\) −0.993353 0.573512i −0.0468792 0.0270657i 0.476377 0.879241i \(-0.341950\pi\)
−0.523256 + 0.852175i \(0.675283\pi\)
\(450\) 0 0
\(451\) −22.1630 + 38.3874i −1.04361 + 1.80759i
\(452\) 0 0
\(453\) −8.17511 14.1597i −0.384100 0.665281i
\(454\) 0 0
\(455\) −14.6558 17.7670i −0.687076 0.832928i
\(456\) 0 0
\(457\) 5.24440 + 9.08357i 0.245323 + 0.424912i 0.962222 0.272265i \(-0.0877727\pi\)
−0.716899 + 0.697177i \(0.754439\pi\)
\(458\) 0 0
\(459\) 8.31398 14.4002i 0.388063 0.672145i
\(460\) 0 0
\(461\) −2.20580 1.27352i −0.102734 0.0593138i 0.447752 0.894158i \(-0.352225\pi\)
−0.550487 + 0.834844i \(0.685558\pi\)
\(462\) 0 0
\(463\) 3.25551 0.151296 0.0756482 0.997135i \(-0.475897\pi\)
0.0756482 + 0.997135i \(0.475897\pi\)
\(464\) 0 0
\(465\) −26.1542 26.3373i −1.21287 1.22136i
\(466\) 0 0
\(467\) 0.164237i 0.00759998i 0.999993 + 0.00379999i \(0.00120958\pi\)
−0.999993 + 0.00379999i \(0.998790\pi\)
\(468\) 0 0
\(469\) 34.8519 1.60931
\(470\) 0 0
\(471\) 2.62742 + 4.55082i 0.121065 + 0.209691i
\(472\) 0 0
\(473\) 18.7268 0.861059
\(474\) 0 0
\(475\) −40.9647 0.285775i −1.87959 0.0131123i
\(476\) 0 0
\(477\) 0.422649 + 0.244017i 0.0193518 + 0.0111727i
\(478\) 0 0
\(479\) −6.34346 + 3.66240i −0.289840 + 0.167339i −0.637870 0.770144i \(-0.720184\pi\)
0.348030 + 0.937483i \(0.386851\pi\)
\(480\) 0 0
\(481\) −27.1378 2.50850i −1.23738 0.114378i
\(482\) 0 0
\(483\) −0.999150 1.73058i −0.0454629 0.0787440i
\(484\) 0 0
\(485\) −2.76532 + 10.1782i −0.125567 + 0.462167i
\(486\) 0 0
\(487\) −15.9481 + 27.6228i −0.722675 + 1.25171i 0.237248 + 0.971449i \(0.423754\pi\)
−0.959924 + 0.280261i \(0.909579\pi\)
\(488\) 0 0
\(489\) 14.1996i 0.642130i
\(490\) 0 0
\(491\) 3.47434 + 6.01773i 0.156795 + 0.271576i 0.933711 0.358027i \(-0.116551\pi\)
−0.776916 + 0.629604i \(0.783217\pi\)
\(492\) 0 0
\(493\) 14.9935i 0.675272i
\(494\) 0 0
\(495\) −2.68278 10.1538i −0.120582 0.456380i
\(496\) 0 0
\(497\) −6.04702 + 3.49125i −0.271246 + 0.156604i
\(498\) 0 0
\(499\) 14.5396i 0.650881i 0.945563 + 0.325440i \(0.105513\pi\)
−0.945563 + 0.325440i \(0.894487\pi\)
\(500\) 0 0
\(501\) 21.6128 + 12.4781i 0.965587 + 0.557482i
\(502\) 0 0
\(503\) −25.8715 14.9369i −1.15355 0.666003i −0.203801 0.979012i \(-0.565330\pi\)
−0.949750 + 0.313009i \(0.898663\pi\)
\(504\) 0 0
\(505\) −3.99264 4.02059i −0.177670 0.178914i
\(506\) 0 0
\(507\) −19.3508 16.5636i −0.859401 0.735616i
\(508\) 0 0
\(509\) −19.6483 + 11.3440i −0.870896 + 0.502812i −0.867646 0.497183i \(-0.834368\pi\)
−0.00325001 + 0.999995i \(0.501035\pi\)
\(510\) 0 0
\(511\) 5.94922 10.3043i 0.263178 0.455837i
\(512\) 0 0
\(513\) 17.3448 30.0421i 0.765791 1.32639i
\(514\) 0 0
\(515\) −0.531265 2.01074i −0.0234104 0.0886037i
\(516\) 0 0
\(517\) −41.9185 + 24.2017i −1.84358 + 1.06439i
\(518\) 0 0
\(519\) −22.8737 −1.00404
\(520\) 0 0
\(521\) 27.0167 1.18362 0.591812 0.806076i \(-0.298413\pi\)
0.591812 + 0.806076i \(0.298413\pi\)
\(522\) 0 0
\(523\) −19.6728 + 11.3581i −0.860232 + 0.496655i −0.864090 0.503337i \(-0.832105\pi\)
0.00385780 + 0.999993i \(0.498772\pi\)
\(524\) 0 0
\(525\) 13.8240 + 24.3343i 0.603329 + 1.06204i
\(526\) 0 0
\(527\) −16.6355 + 28.8135i −0.724654 + 1.25514i
\(528\) 0 0
\(529\) −11.4363 + 19.8082i −0.497229 + 0.861226i
\(530\) 0 0
\(531\) −0.428489 + 0.247388i −0.0185948 + 0.0107357i
\(532\) 0 0
\(533\) 2.62807 28.4314i 0.113835 1.23150i
\(534\) 0 0
\(535\) 0.936358 0.929848i 0.0404823 0.0402008i
\(536\) 0 0
\(537\) −1.73301 1.00055i −0.0747849 0.0431771i
\(538\) 0 0
\(539\) −5.62742 3.24899i −0.242390 0.139944i
\(540\) 0 0
\(541\) 25.2514i 1.08564i 0.839848 + 0.542821i \(0.182644\pi\)
−0.839848 + 0.542821i \(0.817356\pi\)
\(542\) 0 0
\(543\) 23.5475 13.5952i 1.01052 0.583424i
\(544\) 0 0
\(545\) −2.78778 10.5512i −0.119415 0.451964i
\(546\) 0 0
\(547\) 36.9221i 1.57867i −0.613960 0.789337i \(-0.710424\pi\)
0.613960 0.789337i \(-0.289576\pi\)
\(548\) 0 0
\(549\) 2.44086 + 4.22769i 0.104173 + 0.180433i
\(550\) 0 0
\(551\) 31.2797i 1.33256i
\(552\) 0 0
\(553\) −14.0777 + 24.3833i −0.598645 + 1.03688i
\(554\) 0 0
\(555\) 31.9585 + 8.68283i 1.35656 + 0.368566i
\(556\) 0 0
\(557\) −13.3951 23.2010i −0.567570 0.983060i −0.996806 0.0798671i \(-0.974550\pi\)
0.429236 0.903192i \(-0.358783\pi\)
\(558\) 0 0
\(559\) −10.9576 + 5.04429i −0.463456 + 0.213351i
\(560\) 0 0
\(561\) −37.3008 + 21.5357i −1.57484 + 0.909236i
\(562\) 0 0
\(563\) 12.4689 + 7.19895i 0.525503 + 0.303399i 0.739183 0.673504i \(-0.235212\pi\)
−0.213680 + 0.976904i \(0.568545\pi\)
\(564\) 0 0
\(565\) 16.9304 + 4.59984i 0.712268 + 0.193517i
\(566\) 0 0
\(567\) −30.8904 −1.29728
\(568\) 0 0
\(569\) −15.4173 26.7035i −0.646325 1.11947i −0.983994 0.178203i \(-0.942972\pi\)
0.337669 0.941265i \(-0.390362\pi\)
\(570\) 0 0
\(571\) 36.5884 1.53118 0.765588 0.643331i \(-0.222448\pi\)
0.765588 + 0.643331i \(0.222448\pi\)
\(572\) 0 0
\(573\) 12.7020i 0.530632i
\(574\) 0 0
\(575\) −0.903280 + 1.53962i −0.0376694 + 0.0642067i
\(576\) 0 0
\(577\) −17.3008 −0.720241 −0.360120 0.932906i \(-0.617264\pi\)
−0.360120 + 0.932906i \(0.617264\pi\)
\(578\) 0 0
\(579\) −37.1947 21.4744i −1.54576 0.892444i
\(580\) 0 0
\(581\) −8.70122 + 15.0710i −0.360987 + 0.625249i
\(582\) 0 0
\(583\) 1.62776 + 2.81936i 0.0674147 + 0.116766i
\(584\) 0 0
\(585\) 4.30483 + 5.21865i 0.177983 + 0.215764i
\(586\) 0 0
\(587\) 3.93725 + 6.81951i 0.162508 + 0.281471i 0.935767 0.352618i \(-0.114708\pi\)
−0.773260 + 0.634089i \(0.781375\pi\)
\(588\) 0 0
\(589\) −34.7053 + 60.1114i −1.43001 + 2.47685i
\(590\) 0 0
\(591\) −32.3222 18.6612i −1.32956 0.767619i
\(592\) 0 0
\(593\) 43.2400 1.77565 0.887826 0.460179i \(-0.152215\pi\)
0.887826 + 0.460179i \(0.152215\pi\)
\(594\) 0 0
\(595\) 17.8007 17.6770i 0.729759 0.724686i
\(596\) 0 0
\(597\) 22.9146i 0.937832i
\(598\) 0 0
\(599\) 2.10157 0.0858676 0.0429338 0.999078i \(-0.486330\pi\)
0.0429338 + 0.999078i \(0.486330\pi\)
\(600\) 0 0
\(601\) 17.2987 + 29.9623i 0.705630 + 1.22219i 0.966464 + 0.256804i \(0.0826694\pi\)
−0.260833 + 0.965384i \(0.583997\pi\)
\(602\) 0 0
\(603\) −10.2370 −0.416882
\(604\) 0 0
\(605\) 11.9191 43.8701i 0.484581 1.78357i
\(606\) 0 0
\(607\) 8.67746 + 5.00993i 0.352207 + 0.203347i 0.665657 0.746258i \(-0.268151\pi\)
−0.313450 + 0.949605i \(0.601485\pi\)
\(608\) 0 0
\(609\) −18.5066 + 10.6848i −0.749926 + 0.432970i
\(610\) 0 0
\(611\) 18.0087 25.4524i 0.728555 1.02969i
\(612\) 0 0
\(613\) 20.5432 + 35.5818i 0.829731 + 1.43714i 0.898249 + 0.439486i \(0.144839\pi\)
−0.0685186 + 0.997650i \(0.521827\pi\)
\(614\) 0 0
\(615\) −9.09671 + 33.4818i −0.366815 + 1.35012i
\(616\) 0 0
\(617\) 1.17550 2.03603i 0.0473238 0.0819673i −0.841393 0.540423i \(-0.818264\pi\)
0.888717 + 0.458456i \(0.151597\pi\)
\(618\) 0 0
\(619\) 14.1595i 0.569117i 0.958659 + 0.284559i \(0.0918471\pi\)
−0.958659 + 0.284559i \(0.908153\pi\)
\(620\) 0 0
\(621\) −0.755781 1.30905i −0.0303285 0.0525304i
\(622\) 0 0
\(623\) 1.68447i 0.0674870i
\(624\) 0 0
\(625\) 12.8008 21.4741i 0.512034 0.858965i
\(626\) 0 0
\(627\) −77.8178 + 44.9281i −3.10774 + 1.79426i
\(628\) 0 0
\(629\) 29.6853i 1.18363i
\(630\) 0 0
\(631\) −5.36835 3.09942i −0.213711 0.123386i 0.389324 0.921101i \(-0.372709\pi\)
−0.603035 + 0.797715i \(0.706042\pi\)
\(632\) 0 0
\(633\) −22.3967 12.9307i −0.890189 0.513951i
\(634\) 0 0
\(635\) 11.8688 11.7863i 0.470999 0.467725i
\(636\) 0 0
\(637\) 4.16792 + 0.385264i 0.165139 + 0.0152647i
\(638\) 0 0
\(639\) 1.77618 1.02548i 0.0702645 0.0405672i
\(640\) 0 0
\(641\) −7.85182 + 13.5997i −0.310128 + 0.537158i −0.978390 0.206769i \(-0.933705\pi\)
0.668262 + 0.743926i \(0.267039\pi\)
\(642\) 0 0
\(643\) 21.1891 36.7006i 0.835616 1.44733i −0.0579112 0.998322i \(-0.518444\pi\)
0.893528 0.449008i \(-0.148223\pi\)
\(644\) 0 0
\(645\) 14.1718 3.74440i 0.558016 0.147436i
\(646\) 0 0
\(647\) 32.3398 18.6714i 1.27141 0.734048i 0.296155 0.955140i \(-0.404295\pi\)
0.975253 + 0.221092i \(0.0709621\pi\)
\(648\) 0 0
\(649\) −3.30049 −0.129556
\(650\) 0 0
\(651\) 47.4199 1.85853
\(652\) 0 0
\(653\) −30.8970 + 17.8384i −1.20909 + 0.698069i −0.962561 0.271066i \(-0.912624\pi\)
−0.246531 + 0.969135i \(0.579291\pi\)
\(654\) 0 0
\(655\) 6.18386 1.63386i 0.241623 0.0638403i
\(656\) 0 0
\(657\) −1.74745 + 3.02667i −0.0681745 + 0.118082i
\(658\) 0 0
\(659\) 6.51065 11.2768i 0.253619 0.439281i −0.710900 0.703293i \(-0.751712\pi\)
0.964520 + 0.264012i \(0.0850457\pi\)
\(660\) 0 0
\(661\) −3.12096 + 1.80189i −0.121391 + 0.0700853i −0.559466 0.828853i \(-0.688994\pi\)
0.438075 + 0.898938i \(0.355660\pi\)
\(662\) 0 0
\(663\) 16.0249 22.6485i 0.622355 0.879597i
\(664\) 0 0
\(665\) 37.1363 36.8781i 1.44008 1.43007i
\(666\) 0 0
\(667\) −1.18037 0.681490i −0.0457043 0.0263874i
\(668\) 0 0
\(669\) −4.47488 2.58357i −0.173009 0.0998867i
\(670\) 0 0
\(671\) 32.5643i 1.25713i
\(672\) 0 0
\(673\) −17.1417 + 9.89678i −0.660765 + 0.381493i −0.792568 0.609783i \(-0.791257\pi\)
0.131804 + 0.991276i \(0.457923\pi\)
\(674\) 0 0
\(675\) 10.4568 + 18.4071i 0.402483 + 0.708489i
\(676\) 0 0
\(677\) 42.2737i 1.62471i 0.583163 + 0.812355i \(0.301815\pi\)
−0.583163 + 0.812355i \(0.698185\pi\)
\(678\) 0 0
\(679\) −6.73734 11.6694i −0.258556 0.447831i
\(680\) 0 0
\(681\) 41.5968i 1.59399i
\(682\) 0 0
\(683\) 8.70386 15.0755i 0.333044 0.576849i −0.650063 0.759880i \(-0.725258\pi\)
0.983107 + 0.183031i \(0.0585909\pi\)
\(684\) 0 0
\(685\) 9.59426 35.3131i 0.366578 1.34925i
\(686\) 0 0
\(687\) 9.81193 + 16.9948i 0.374348 + 0.648390i
\(688\) 0 0
\(689\) −1.71187 1.21123i −0.0652172 0.0461441i
\(690\) 0 0
\(691\) −39.3977 + 22.7463i −1.49876 + 0.865308i −0.999999 0.00143250i \(-0.999544\pi\)
−0.498759 + 0.866741i \(0.666211\pi\)
\(692\) 0 0
\(693\) 11.6198 + 6.70867i 0.441398 + 0.254841i
\(694\) 0 0
\(695\) −1.05322 + 3.87654i −0.0399510 + 0.147046i
\(696\) 0 0
\(697\) 31.1002 1.17801
\(698\) 0 0
\(699\) 17.6015 + 30.4867i 0.665751 + 1.15311i
\(700\) 0 0
\(701\) −18.7036 −0.706427 −0.353213 0.935543i \(-0.614911\pi\)
−0.353213 + 0.935543i \(0.614911\pi\)
\(702\) 0 0
\(703\) 61.9300i 2.33573i
\(704\) 0 0
\(705\) −26.8835 + 26.6966i −1.01249 + 1.00545i
\(706\) 0 0
\(707\) 7.23902 0.272251
\(708\) 0 0
\(709\) −6.95338 4.01454i −0.261140 0.150769i 0.363715 0.931510i \(-0.381508\pi\)
−0.624854 + 0.780741i \(0.714842\pi\)
\(710\) 0 0
\(711\) 4.13501 7.16205i 0.155075 0.268598i
\(712\) 0 0
\(713\) 1.51225 + 2.61929i 0.0566342 + 0.0980933i
\(714\) 0 0
\(715\) 7.46292 + 44.5060i 0.279097 + 1.66443i
\(716\) 0 0
\(717\) 12.4195 + 21.5112i 0.463815 + 0.803352i
\(718\) 0 0
\(719\) 2.01466 3.48949i 0.0751341 0.130136i −0.826010 0.563655i \(-0.809395\pi\)
0.901145 + 0.433519i \(0.142728\pi\)
\(720\) 0 0
\(721\) 2.30103 + 1.32850i 0.0856950 + 0.0494760i
\(722\) 0 0
\(723\) 16.7194 0.621803
\(724\) 0 0
\(725\) 16.4645 + 9.65958i 0.611478 + 0.358748i
\(726\) 0 0
\(727\) 20.5996i 0.763997i −0.924163 0.381998i \(-0.875236\pi\)
0.924163 0.381998i \(-0.124764\pi\)
\(728\) 0 0
\(729\) −15.8144 −0.585717
\(730\) 0 0
\(731\) −6.56961 11.3789i −0.242986 0.420864i
\(732\) 0 0
\(733\) 5.93875 0.219353 0.109676 0.993967i \(-0.465019\pi\)
0.109676 + 0.993967i \(0.465019\pi\)
\(734\) 0 0
\(735\) −4.90828 1.33354i −0.181045 0.0491882i
\(736\) 0 0
\(737\) −59.1388 34.1438i −2.17840 1.25770i
\(738\) 0 0
\(739\) 20.8499 12.0377i 0.766975 0.442813i −0.0648194 0.997897i \(-0.520647\pi\)
0.831794 + 0.555084i \(0.187314\pi\)
\(740\) 0 0
\(741\) 33.4315 47.2499i 1.22814 1.73577i
\(742\) 0 0
\(743\) 0.496302 + 0.859620i 0.0182075 + 0.0315364i 0.874986 0.484149i \(-0.160871\pi\)
−0.856778 + 0.515685i \(0.827537\pi\)
\(744\) 0 0
\(745\) 46.1748 + 12.5453i 1.69172 + 0.459624i
\(746\) 0 0
\(747\) 2.55579 4.42676i 0.0935114 0.161967i
\(748\) 0 0
\(749\) 1.68590i 0.0616014i
\(750\) 0 0
\(751\) −13.8054 23.9116i −0.503766 0.872548i −0.999991 0.00435392i \(-0.998614\pi\)
0.496225 0.868194i \(-0.334719\pi\)
\(752\) 0 0
\(753\) 38.6483i 1.40842i
\(754\) 0 0
\(755\) −4.76647 18.0402i −0.173470 0.656549i
\(756\) 0 0
\(757\) 9.01555 5.20513i 0.327676 0.189184i −0.327133 0.944978i \(-0.606082\pi\)
0.654809 + 0.755795i \(0.272749\pi\)
\(758\) 0 0
\(759\) 3.91539i 0.142120i
\(760\) 0 0
\(761\) 26.7558 + 15.4475i 0.969896 + 0.559970i 0.899205 0.437528i \(-0.144146\pi\)
0.0706917 + 0.997498i \(0.477479\pi\)
\(762\) 0 0
\(763\) 12.0745 + 6.97122i 0.437127 + 0.252375i
\(764\) 0 0
\(765\) −5.22857 + 5.19222i −0.189039 + 0.187725i
\(766\) 0 0
\(767\) 1.93121 0.889028i 0.0697320 0.0321009i
\(768\) 0 0
\(769\) 46.0983 26.6148i 1.66235 0.959756i 0.690755 0.723089i \(-0.257278\pi\)
0.971591 0.236666i \(-0.0760549\pi\)
\(770\) 0 0
\(771\) 23.4899 40.6857i 0.845968 1.46526i
\(772\) 0 0
\(773\) −9.00393 + 15.5953i −0.323849 + 0.560923i −0.981279 0.192593i \(-0.938310\pi\)
0.657430 + 0.753516i \(0.271644\pi\)
\(774\) 0 0
\(775\) −20.9231 36.8309i −0.751581 1.32300i
\(776\) 0 0
\(777\) −36.6408 + 21.1546i −1.31448 + 0.758917i
\(778\) 0 0
\(779\) 64.8820 2.32464
\(780\) 0 0
\(781\) 13.6812 0.489554
\(782\) 0 0
\(783\) −13.9989 + 8.08224i −0.500278 + 0.288836i
\(784\) 0 0
\(785\) 1.53191 + 5.79797i 0.0546761 + 0.206939i
\(786\) 0 0
\(787\) −27.0083 + 46.7798i −0.962742 + 1.66752i −0.247180 + 0.968970i \(0.579504\pi\)
−0.715562 + 0.698549i \(0.753829\pi\)
\(788\) 0 0
\(789\) −0.619056 + 1.07224i −0.0220390 + 0.0381726i
\(790\) 0 0
\(791\) −19.4110 + 11.2069i −0.690174 + 0.398472i
\(792\) 0 0
\(793\) −8.77159 19.0543i −0.311488 0.676638i
\(794\) 0 0