Properties

Label 260.2.z.a.49.6
Level $260$
Weight $2$
Character 260.49
Analytic conductor $2.076$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.z (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 7x^{14} + 21x^{12} - 22x^{10} - 26x^{8} - 198x^{6} + 1701x^{4} - 5103x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.6
Root \(1.56631 + 0.739379i\) of defining polynomial
Character \(\chi\) \(=\) 260.49
Dual form 260.2.z.a.69.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.28064 - 0.739379i) q^{3} +(0.494086 - 2.18080i) q^{5} +(1.56631 - 2.71292i) q^{7} +(-0.406637 + 0.704315i) q^{9} +O(q^{10})\) \(q+(1.28064 - 0.739379i) q^{3} +(0.494086 - 2.18080i) q^{5} +(1.56631 - 2.71292i) q^{7} +(-0.406637 + 0.704315i) q^{9} +(-4.01176 + 2.31619i) q^{11} +(-2.44512 - 2.64979i) q^{13} +(-0.979690 - 3.15814i) q^{15} +(5.87021 + 3.38917i) q^{17} +(1.45442 + 0.839708i) q^{19} -4.63238i q^{21} +(4.79118 - 2.76619i) q^{23} +(-4.51176 - 2.15500i) q^{25} +5.63891i q^{27} +(3.87062 + 6.70410i) q^{29} -1.46127i q^{31} +(-3.42509 + 5.93242i) q^{33} +(-5.14245 - 4.75622i) q^{35} +(3.72577 + 6.45322i) q^{37} +(-5.09053 - 1.58556i) q^{39} +(4.78901 - 2.76494i) q^{41} +(-10.7707 - 6.21849i) q^{43} +(1.33506 + 1.23478i) q^{45} -1.97634 q^{47} +(-1.40664 - 2.43637i) q^{49} +10.0235 q^{51} +5.65865i q^{53} +(3.06899 + 9.89323i) q^{55} +2.48345 q^{57} +(2.27725 + 1.31477i) q^{59} +(-4.87062 + 8.43615i) q^{61} +(1.27384 + 2.20635i) q^{63} +(-6.98675 + 4.02310i) q^{65} +(-0.317776 - 0.550404i) q^{67} +(4.09053 - 7.08500i) q^{69} +(-12.0089 - 6.93335i) q^{71} -4.89025 q^{73} +(-7.37131 + 0.576115i) q^{75} +14.5115i q^{77} -6.21024 q^{79} +(2.94938 + 5.10848i) q^{81} +3.33075 q^{83} +(10.2915 - 11.1272i) q^{85} +(9.91375 + 5.72371i) q^{87} +(-2.27725 + 1.31477i) q^{89} +(-11.0185 + 2.48305i) q^{91} +(-1.08043 - 1.87136i) q^{93} +(2.54984 - 2.75690i) q^{95} +(3.13942 - 5.43764i) q^{97} -3.76739i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 10 q^{9} - 6 q^{11} + 6 q^{15} - 18 q^{19} - 14 q^{25} + 12 q^{29} + 18 q^{39} - 48 q^{41} + 45 q^{45} - 6 q^{49} + 44 q^{51} + 2 q^{55} - 30 q^{59} - 28 q^{61} - 15 q^{65} - 34 q^{69} - 18 q^{71} - 42 q^{75} - 16 q^{79} - 44 q^{81} - 45 q^{85} + 30 q^{89} - 10 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.28064 0.739379i 0.739379 0.426881i −0.0824643 0.996594i \(-0.526279\pi\)
0.821844 + 0.569713i \(0.192946\pi\)
\(4\) 0 0
\(5\) 0.494086 2.18080i 0.220962 0.975282i
\(6\) 0 0
\(7\) 1.56631 2.71292i 0.592008 1.02539i −0.401953 0.915660i \(-0.631669\pi\)
0.993962 0.109729i \(-0.0349981\pi\)
\(8\) 0 0
\(9\) −0.406637 + 0.704315i −0.135546 + 0.234772i
\(10\) 0 0
\(11\) −4.01176 + 2.31619i −1.20959 + 0.698358i −0.962670 0.270678i \(-0.912752\pi\)
−0.246921 + 0.969036i \(0.579419\pi\)
\(12\) 0 0
\(13\) −2.44512 2.64979i −0.678155 0.734919i
\(14\) 0 0
\(15\) −0.979690 3.15814i −0.252955 0.815428i
\(16\) 0 0
\(17\) 5.87021 + 3.38917i 1.42373 + 0.821994i 0.996616 0.0822017i \(-0.0261952\pi\)
0.427119 + 0.904195i \(0.359529\pi\)
\(18\) 0 0
\(19\) 1.45442 + 0.839708i 0.333666 + 0.192642i 0.657468 0.753483i \(-0.271628\pi\)
−0.323802 + 0.946125i \(0.604961\pi\)
\(20\) 0 0
\(21\) 4.63238i 1.01087i
\(22\) 0 0
\(23\) 4.79118 2.76619i 0.999030 0.576790i 0.0910690 0.995845i \(-0.470972\pi\)
0.907961 + 0.419054i \(0.137638\pi\)
\(24\) 0 0
\(25\) −4.51176 2.15500i −0.902352 0.431000i
\(26\) 0 0
\(27\) 5.63891i 1.08521i
\(28\) 0 0
\(29\) 3.87062 + 6.70410i 0.718755 + 1.24492i 0.961493 + 0.274829i \(0.0886212\pi\)
−0.242738 + 0.970092i \(0.578045\pi\)
\(30\) 0 0
\(31\) 1.46127i 0.262451i −0.991353 0.131226i \(-0.958109\pi\)
0.991353 0.131226i \(-0.0418912\pi\)
\(32\) 0 0
\(33\) −3.42509 + 5.93242i −0.596231 + 1.03270i
\(34\) 0 0
\(35\) −5.14245 4.75622i −0.869232 0.803947i
\(36\) 0 0
\(37\) 3.72577 + 6.45322i 0.612512 + 1.06090i 0.990816 + 0.135220i \(0.0431742\pi\)
−0.378303 + 0.925682i \(0.623492\pi\)
\(38\) 0 0
\(39\) −5.09053 1.58556i −0.815137 0.253892i
\(40\) 0 0
\(41\) 4.78901 2.76494i 0.747918 0.431811i −0.0770232 0.997029i \(-0.524542\pi\)
0.824941 + 0.565219i \(0.191208\pi\)
\(42\) 0 0
\(43\) −10.7707 6.21849i −1.64252 0.948311i −0.979933 0.199329i \(-0.936124\pi\)
−0.662591 0.748982i \(-0.730543\pi\)
\(44\) 0 0
\(45\) 1.33506 + 1.23478i 0.199018 + 0.184071i
\(46\) 0 0
\(47\) −1.97634 −0.288279 −0.144140 0.989557i \(-0.546041\pi\)
−0.144140 + 0.989557i \(0.546041\pi\)
\(48\) 0 0
\(49\) −1.40664 2.43637i −0.200948 0.348052i
\(50\) 0 0
\(51\) 10.0235 1.40357
\(52\) 0 0
\(53\) 5.65865i 0.777276i 0.921391 + 0.388638i \(0.127054\pi\)
−0.921391 + 0.388638i \(0.872946\pi\)
\(54\) 0 0
\(55\) 3.06899 + 9.89323i 0.413823 + 1.33400i
\(56\) 0 0
\(57\) 2.48345 0.328941
\(58\) 0 0
\(59\) 2.27725 + 1.31477i 0.296473 + 0.171169i 0.640857 0.767660i \(-0.278579\pi\)
−0.344384 + 0.938829i \(0.611912\pi\)
\(60\) 0 0
\(61\) −4.87062 + 8.43615i −0.623618 + 1.08014i 0.365188 + 0.930934i \(0.381005\pi\)
−0.988806 + 0.149205i \(0.952329\pi\)
\(62\) 0 0
\(63\) 1.27384 + 2.20635i 0.160488 + 0.277974i
\(64\) 0 0
\(65\) −6.98675 + 4.02310i −0.866600 + 0.499004i
\(66\) 0 0
\(67\) −0.317776 0.550404i −0.0388225 0.0672426i 0.845961 0.533244i \(-0.179027\pi\)
−0.884784 + 0.466002i \(0.845694\pi\)
\(68\) 0 0
\(69\) 4.09053 7.08500i 0.492441 0.852934i
\(70\) 0 0
\(71\) −12.0089 6.93335i −1.42520 0.822838i −0.428460 0.903561i \(-0.640944\pi\)
−0.996737 + 0.0807229i \(0.974277\pi\)
\(72\) 0 0
\(73\) −4.89025 −0.572360 −0.286180 0.958176i \(-0.592386\pi\)
−0.286180 + 0.958176i \(0.592386\pi\)
\(74\) 0 0
\(75\) −7.37131 + 0.576115i −0.851166 + 0.0665240i
\(76\) 0 0
\(77\) 14.5115i 1.65373i
\(78\) 0 0
\(79\) −6.21024 −0.698707 −0.349354 0.936991i \(-0.613599\pi\)
−0.349354 + 0.936991i \(0.613599\pi\)
\(80\) 0 0
\(81\) 2.94938 + 5.10848i 0.327709 + 0.567609i
\(82\) 0 0
\(83\) 3.33075 0.365597 0.182798 0.983150i \(-0.441484\pi\)
0.182798 + 0.983150i \(0.441484\pi\)
\(84\) 0 0
\(85\) 10.2915 11.1272i 1.11627 1.20691i
\(86\) 0 0
\(87\) 9.91375 + 5.72371i 1.06287 + 0.613646i
\(88\) 0 0
\(89\) −2.27725 + 1.31477i −0.241388 + 0.139366i −0.615815 0.787891i \(-0.711173\pi\)
0.374426 + 0.927257i \(0.377840\pi\)
\(90\) 0 0
\(91\) −11.0185 + 2.48305i −1.15505 + 0.260294i
\(92\) 0 0
\(93\) −1.08043 1.87136i −0.112035 0.194051i
\(94\) 0 0
\(95\) 2.54984 2.75690i 0.261608 0.282852i
\(96\) 0 0
\(97\) 3.13942 5.43764i 0.318760 0.552108i −0.661470 0.749972i \(-0.730067\pi\)
0.980230 + 0.197864i \(0.0634003\pi\)
\(98\) 0 0
\(99\) 3.76739i 0.378637i
\(100\) 0 0
\(101\) 8.41840 + 14.5811i 0.837662 + 1.45087i 0.891845 + 0.452342i \(0.149411\pi\)
−0.0541831 + 0.998531i \(0.517255\pi\)
\(102\) 0 0
\(103\) 9.86212i 0.971744i −0.874030 0.485872i \(-0.838502\pi\)
0.874030 0.485872i \(-0.161498\pi\)
\(104\) 0 0
\(105\) −10.1023 2.28879i −0.985882 0.223363i
\(106\) 0 0
\(107\) −3.53096 + 2.03860i −0.341351 + 0.197079i −0.660869 0.750501i \(-0.729812\pi\)
0.319519 + 0.947580i \(0.396479\pi\)
\(108\) 0 0
\(109\) 11.6762i 1.11837i −0.829042 0.559186i \(-0.811114\pi\)
0.829042 0.559186i \(-0.188886\pi\)
\(110\) 0 0
\(111\) 9.54275 + 5.50951i 0.905757 + 0.522939i
\(112\) 0 0
\(113\) −3.30892 1.91041i −0.311277 0.179716i 0.336221 0.941783i \(-0.390851\pi\)
−0.647498 + 0.762067i \(0.724185\pi\)
\(114\) 0 0
\(115\) −3.66525 11.8153i −0.341786 1.10179i
\(116\) 0 0
\(117\) 2.86056 0.644637i 0.264459 0.0595967i
\(118\) 0 0
\(119\) 18.3891 10.6170i 1.68573 0.973254i
\(120\) 0 0
\(121\) 5.22947 9.05771i 0.475407 0.823428i
\(122\) 0 0
\(123\) 4.08867 7.08179i 0.368663 0.638544i
\(124\) 0 0
\(125\) −6.92882 + 8.77448i −0.619732 + 0.784813i
\(126\) 0 0
\(127\) 9.91375 5.72371i 0.879703 0.507897i 0.00914258 0.999958i \(-0.497090\pi\)
0.870561 + 0.492061i \(0.163756\pi\)
\(128\) 0 0
\(129\) −18.3913 −1.61926
\(130\) 0 0
\(131\) −4.36778 −0.381615 −0.190807 0.981628i \(-0.561111\pi\)
−0.190807 + 0.981628i \(0.561111\pi\)
\(132\) 0 0
\(133\) 4.55613 2.63048i 0.395066 0.228092i
\(134\) 0 0
\(135\) 12.2973 + 2.78610i 1.05839 + 0.239790i
\(136\) 0 0
\(137\) 2.76290 4.78548i 0.236050 0.408851i −0.723527 0.690296i \(-0.757480\pi\)
0.959577 + 0.281445i \(0.0908136\pi\)
\(138\) 0 0
\(139\) −5.64787 + 9.78240i −0.479046 + 0.829732i −0.999711 0.0240289i \(-0.992351\pi\)
0.520665 + 0.853761i \(0.325684\pi\)
\(140\) 0 0
\(141\) −2.53099 + 1.46127i −0.213148 + 0.123061i
\(142\) 0 0
\(143\) 15.9467 + 4.96694i 1.33353 + 0.415356i
\(144\) 0 0
\(145\) 16.5327 5.12863i 1.37297 0.425910i
\(146\) 0 0
\(147\) −3.60280 2.08008i −0.297154 0.171562i
\(148\) 0 0
\(149\) −5.25802 3.03572i −0.430754 0.248696i 0.268914 0.963164i \(-0.413335\pi\)
−0.699668 + 0.714468i \(0.746669\pi\)
\(150\) 0 0
\(151\) 15.1403i 1.23210i −0.787708 0.616048i \(-0.788733\pi\)
0.787708 0.616048i \(-0.211267\pi\)
\(152\) 0 0
\(153\) −4.77408 + 2.75632i −0.385962 + 0.222835i
\(154\) 0 0
\(155\) −3.18673 0.721991i −0.255964 0.0579917i
\(156\) 0 0
\(157\) 19.3218i 1.54205i −0.636804 0.771026i \(-0.719744\pi\)
0.636804 0.771026i \(-0.280256\pi\)
\(158\) 0 0
\(159\) 4.18389 + 7.24671i 0.331804 + 0.574701i
\(160\) 0 0
\(161\) 17.3308i 1.36586i
\(162\) 0 0
\(163\) −0.278858 + 0.482997i −0.0218419 + 0.0378312i −0.876740 0.480965i \(-0.840286\pi\)
0.854898 + 0.518796i \(0.173620\pi\)
\(164\) 0 0
\(165\) 11.2451 + 10.4005i 0.875432 + 0.809681i
\(166\) 0 0
\(167\) 3.16473 + 5.48147i 0.244894 + 0.424169i 0.962102 0.272691i \(-0.0879136\pi\)
−0.717208 + 0.696859i \(0.754580\pi\)
\(168\) 0 0
\(169\) −1.04275 + 12.9581i −0.0802113 + 0.996778i
\(170\) 0 0
\(171\) −1.18284 + 0.682912i −0.0904539 + 0.0522236i
\(172\) 0 0
\(173\) −6.62192 3.82317i −0.503455 0.290670i 0.226684 0.973968i \(-0.427212\pi\)
−0.730139 + 0.683298i \(0.760545\pi\)
\(174\) 0 0
\(175\) −12.9132 + 8.86466i −0.976143 + 0.670106i
\(176\) 0 0
\(177\) 3.88846 0.292275
\(178\) 0 0
\(179\) 2.27725 + 3.94432i 0.170210 + 0.294812i 0.938493 0.345298i \(-0.112222\pi\)
−0.768283 + 0.640110i \(0.778889\pi\)
\(180\) 0 0
\(181\) −7.76475 −0.577149 −0.288575 0.957457i \(-0.593181\pi\)
−0.288575 + 0.957457i \(0.593181\pi\)
\(182\) 0 0
\(183\) 14.4049i 1.06484i
\(184\) 0 0
\(185\) 15.9140 4.93670i 1.17002 0.362953i
\(186\) 0 0
\(187\) −31.3998 −2.29618
\(188\) 0 0
\(189\) 15.2979 + 8.83227i 1.11276 + 0.642453i
\(190\) 0 0
\(191\) −5.71991 + 9.90717i −0.413878 + 0.716858i −0.995310 0.0967371i \(-0.969159\pi\)
0.581432 + 0.813595i \(0.302493\pi\)
\(192\) 0 0
\(193\) −1.58132 2.73893i −0.113826 0.197153i 0.803484 0.595327i \(-0.202977\pi\)
−0.917310 + 0.398174i \(0.869644\pi\)
\(194\) 0 0
\(195\) −5.97293 + 10.3180i −0.427731 + 0.738888i
\(196\) 0 0
\(197\) −11.5791 20.0556i −0.824978 1.42890i −0.901936 0.431870i \(-0.857854\pi\)
0.0769575 0.997034i \(-0.475479\pi\)
\(198\) 0 0
\(199\) 3.01176 5.21652i 0.213498 0.369789i −0.739309 0.673366i \(-0.764848\pi\)
0.952807 + 0.303577i \(0.0981810\pi\)
\(200\) 0 0
\(201\) −0.813915 0.469914i −0.0574091 0.0331452i
\(202\) 0 0
\(203\) 24.2503 1.70204
\(204\) 0 0
\(205\) −3.66359 11.8100i −0.255876 0.824845i
\(206\) 0 0
\(207\) 4.49934i 0.312725i
\(208\) 0 0
\(209\) −7.77969 −0.538132
\(210\) 0 0
\(211\) 2.56910 + 4.44981i 0.176864 + 0.306338i 0.940805 0.338949i \(-0.110071\pi\)
−0.763941 + 0.645287i \(0.776738\pi\)
\(212\) 0 0
\(213\) −20.5055 −1.40501
\(214\) 0 0
\(215\) −18.8829 + 20.4164i −1.28781 + 1.39238i
\(216\) 0 0
\(217\) −3.96430 2.28879i −0.269115 0.155373i
\(218\) 0 0
\(219\) −6.26266 + 3.61575i −0.423191 + 0.244330i
\(220\) 0 0
\(221\) −5.37281 23.8417i −0.361414 1.60377i
\(222\) 0 0
\(223\) 8.31533 + 14.4026i 0.556836 + 0.964468i 0.997758 + 0.0669227i \(0.0213181\pi\)
−0.440922 + 0.897545i \(0.645349\pi\)
\(224\) 0 0
\(225\) 3.35245 2.30140i 0.223496 0.153427i
\(226\) 0 0
\(227\) −7.22129 + 12.5076i −0.479294 + 0.830161i −0.999718 0.0237467i \(-0.992440\pi\)
0.520424 + 0.853908i \(0.325774\pi\)
\(228\) 0 0
\(229\) 4.00567i 0.264702i −0.991203 0.132351i \(-0.957747\pi\)
0.991203 0.132351i \(-0.0422526\pi\)
\(230\) 0 0
\(231\) 10.7295 + 18.5840i 0.705948 + 1.22274i
\(232\) 0 0
\(233\) 3.48148i 0.228079i −0.993476 0.114040i \(-0.963621\pi\)
0.993476 0.114040i \(-0.0363791\pi\)
\(234\) 0 0
\(235\) −0.976482 + 4.31000i −0.0636987 + 0.281154i
\(236\) 0 0
\(237\) −7.95310 + 4.59173i −0.516610 + 0.298265i
\(238\) 0 0
\(239\) 19.1155i 1.23648i 0.785990 + 0.618239i \(0.212154\pi\)
−0.785990 + 0.618239i \(0.787846\pi\)
\(240\) 0 0
\(241\) 19.3464 + 11.1696i 1.24621 + 0.719499i 0.970351 0.241700i \(-0.0777050\pi\)
0.275857 + 0.961199i \(0.411038\pi\)
\(242\) 0 0
\(243\) −7.09611 4.09694i −0.455216 0.262819i
\(244\) 0 0
\(245\) −6.00822 + 1.86382i −0.383851 + 0.119075i
\(246\) 0 0
\(247\) −1.33118 5.90708i −0.0847010 0.375859i
\(248\) 0 0
\(249\) 4.26549 2.46268i 0.270315 0.156066i
\(250\) 0 0
\(251\) 8.37281 14.5021i 0.528487 0.915367i −0.470961 0.882154i \(-0.656093\pi\)
0.999448 0.0332127i \(-0.0105739\pi\)
\(252\) 0 0
\(253\) −12.8140 + 22.1946i −0.805612 + 1.39536i
\(254\) 0 0
\(255\) 4.95248 21.8593i 0.310136 1.36888i
\(256\) 0 0
\(257\) −13.6560 + 7.88431i −0.851839 + 0.491810i −0.861271 0.508146i \(-0.830331\pi\)
0.00943181 + 0.999956i \(0.496998\pi\)
\(258\) 0 0
\(259\) 23.3428 1.45045
\(260\) 0 0
\(261\) −6.29574 −0.389696
\(262\) 0 0
\(263\) 10.6443 6.14549i 0.656355 0.378947i −0.134532 0.990909i \(-0.542953\pi\)
0.790887 + 0.611962i \(0.209620\pi\)
\(264\) 0 0
\(265\) 12.3404 + 2.79586i 0.758063 + 0.171748i
\(266\) 0 0
\(267\) −1.94423 + 3.36751i −0.118985 + 0.206088i
\(268\) 0 0
\(269\) 6.82503 11.8213i 0.416130 0.720758i −0.579417 0.815031i \(-0.696720\pi\)
0.995546 + 0.0942739i \(0.0300529\pi\)
\(270\) 0 0
\(271\) −1.54558 + 0.892343i −0.0938875 + 0.0542060i −0.546209 0.837649i \(-0.683929\pi\)
0.452321 + 0.891855i \(0.350596\pi\)
\(272\) 0 0
\(273\) −12.2748 + 11.3267i −0.742906 + 0.685525i
\(274\) 0 0
\(275\) 23.0915 1.80475i 1.39247 0.108830i
\(276\) 0 0
\(277\) 16.9723 + 9.79899i 1.01977 + 0.588764i 0.914037 0.405631i \(-0.132948\pi\)
0.105732 + 0.994395i \(0.466281\pi\)
\(278\) 0 0
\(279\) 1.02919 + 0.594204i 0.0616161 + 0.0355741i
\(280\) 0 0
\(281\) 18.0710i 1.07803i 0.842297 + 0.539013i \(0.181203\pi\)
−0.842297 + 0.539013i \(0.818797\pi\)
\(282\) 0 0
\(283\) −6.31095 + 3.64363i −0.375147 + 0.216591i −0.675705 0.737172i \(-0.736161\pi\)
0.300558 + 0.953764i \(0.402827\pi\)
\(284\) 0 0
\(285\) 1.22704 5.41590i 0.0726834 0.320810i
\(286\) 0 0
\(287\) 17.3230i 1.02254i
\(288\) 0 0
\(289\) 14.4729 + 25.0678i 0.851347 + 1.47458i
\(290\) 0 0
\(291\) 9.28489i 0.544290i
\(292\) 0 0
\(293\) 6.14226 10.6387i 0.358835 0.621520i −0.628932 0.777461i \(-0.716508\pi\)
0.987766 + 0.155941i \(0.0498408\pi\)
\(294\) 0 0
\(295\) 3.99241 4.31662i 0.232447 0.251323i
\(296\) 0 0
\(297\) −13.0608 22.6219i −0.757864 1.31266i
\(298\) 0 0
\(299\) −19.0448 5.93194i −1.10139 0.343053i
\(300\) 0 0
\(301\) −33.7406 + 19.4801i −1.94478 + 1.12282i
\(302\) 0 0
\(303\) 21.5619 + 12.4488i 1.23870 + 0.715163i
\(304\) 0 0
\(305\) 15.9910 + 14.7900i 0.915645 + 0.846874i
\(306\) 0 0
\(307\) −31.1511 −1.77789 −0.888943 0.458018i \(-0.848560\pi\)
−0.888943 + 0.458018i \(0.848560\pi\)
\(308\) 0 0
\(309\) −7.29185 12.6299i −0.414819 0.718487i
\(310\) 0 0
\(311\) 0.694196 0.0393643 0.0196821 0.999806i \(-0.493735\pi\)
0.0196821 + 0.999806i \(0.493735\pi\)
\(312\) 0 0
\(313\) 14.5944i 0.824925i −0.910975 0.412463i \(-0.864669\pi\)
0.910975 0.412463i \(-0.135331\pi\)
\(314\) 0 0
\(315\) 5.44098 1.68785i 0.306565 0.0950998i
\(316\) 0 0
\(317\) −14.5641 −0.817999 −0.408999 0.912535i \(-0.634122\pi\)
−0.408999 + 0.912535i \(0.634122\pi\)
\(318\) 0 0
\(319\) −31.0560 17.9302i −1.73880 1.00390i
\(320\) 0 0
\(321\) −3.01460 + 5.22143i −0.168258 + 0.291432i
\(322\) 0 0
\(323\) 5.69182 + 9.85852i 0.316701 + 0.548543i
\(324\) 0 0
\(325\) 5.32151 + 17.2244i 0.295184 + 0.955440i
\(326\) 0 0
\(327\) −8.63311 14.9530i −0.477412 0.826902i
\(328\) 0 0
\(329\) −3.09556 + 5.36167i −0.170664 + 0.295598i
\(330\) 0 0
\(331\) −8.71991 5.03444i −0.479290 0.276718i 0.240831 0.970567i \(-0.422580\pi\)
−0.720120 + 0.693849i \(0.755913\pi\)
\(332\) 0 0
\(333\) −6.06013 −0.332093
\(334\) 0 0
\(335\) −1.35733 + 0.421058i −0.0741588 + 0.0230049i
\(336\) 0 0
\(337\) 0.974536i 0.0530863i 0.999648 + 0.0265432i \(0.00844995\pi\)
−0.999648 + 0.0265432i \(0.991550\pi\)
\(338\) 0 0
\(339\) −5.65006 −0.306869
\(340\) 0 0
\(341\) 3.38457 + 5.86225i 0.183285 + 0.317459i
\(342\) 0 0
\(343\) 13.1154 0.708165
\(344\) 0 0
\(345\) −13.4299 12.4212i −0.723040 0.668735i
\(346\) 0 0
\(347\) 7.29440 + 4.21142i 0.391584 + 0.226081i 0.682846 0.730562i \(-0.260742\pi\)
−0.291262 + 0.956643i \(0.594075\pi\)
\(348\) 0 0
\(349\) 3.51639 2.03019i 0.188228 0.108674i −0.402925 0.915233i \(-0.632006\pi\)
0.591153 + 0.806560i \(0.298673\pi\)
\(350\) 0 0
\(351\) 14.9419 13.7878i 0.797540 0.735940i
\(352\) 0 0
\(353\) 1.95925 + 3.39351i 0.104280 + 0.180618i 0.913444 0.406965i \(-0.133413\pi\)
−0.809164 + 0.587583i \(0.800079\pi\)
\(354\) 0 0
\(355\) −21.0537 + 22.7634i −1.11741 + 1.20815i
\(356\) 0 0
\(357\) 15.6999 27.1930i 0.830927 1.43921i
\(358\) 0 0
\(359\) 4.23682i 0.223611i −0.993730 0.111805i \(-0.964337\pi\)
0.993730 0.111805i \(-0.0356633\pi\)
\(360\) 0 0
\(361\) −8.08978 14.0119i −0.425778 0.737469i
\(362\) 0 0
\(363\) 15.4663i 0.811768i
\(364\) 0 0
\(365\) −2.41620 + 10.6646i −0.126470 + 0.558213i
\(366\) 0 0
\(367\) 19.9499 11.5181i 1.04138 0.601238i 0.121153 0.992634i \(-0.461341\pi\)
0.920222 + 0.391396i \(0.128008\pi\)
\(368\) 0 0
\(369\) 4.49730i 0.234120i
\(370\) 0 0
\(371\) 15.3515 + 8.86319i 0.797010 + 0.460154i
\(372\) 0 0
\(373\) 20.2984 + 11.7193i 1.05101 + 0.606801i 0.922932 0.384964i \(-0.125786\pi\)
0.128078 + 0.991764i \(0.459119\pi\)
\(374\) 0 0
\(375\) −2.38567 + 16.3600i −0.123195 + 0.844826i
\(376\) 0 0
\(377\) 8.30032 26.6487i 0.427488 1.37248i
\(378\) 0 0
\(379\) 18.8942 10.9086i 0.970532 0.560337i 0.0711334 0.997467i \(-0.477338\pi\)
0.899398 + 0.437130i \(0.144005\pi\)
\(380\) 0 0
\(381\) 8.46398 14.6600i 0.433623 0.751057i
\(382\) 0 0
\(383\) 6.94924 12.0364i 0.355089 0.615033i −0.632044 0.774933i \(-0.717784\pi\)
0.987133 + 0.159900i \(0.0511171\pi\)
\(384\) 0 0
\(385\) 31.6466 + 7.16990i 1.61286 + 0.365412i
\(386\) 0 0
\(387\) 8.75956 5.05733i 0.445273 0.257079i
\(388\) 0 0
\(389\) −6.66919 −0.338141 −0.169071 0.985604i \(-0.554077\pi\)
−0.169071 + 0.985604i \(0.554077\pi\)
\(390\) 0 0
\(391\) 37.5003 1.89647
\(392\) 0 0
\(393\) −5.59356 + 3.22945i −0.282158 + 0.162904i
\(394\) 0 0
\(395\) −3.06839 + 13.5433i −0.154388 + 0.681437i
\(396\) 0 0
\(397\) −1.66745 + 2.88812i −0.0836871 + 0.144950i −0.904831 0.425771i \(-0.860003\pi\)
0.821144 + 0.570721i \(0.193336\pi\)
\(398\) 0 0
\(399\) 3.88984 6.73741i 0.194736 0.337292i
\(400\) 0 0
\(401\) −17.1405 + 9.89607i −0.855956 + 0.494186i −0.862656 0.505791i \(-0.831201\pi\)
0.00670012 + 0.999978i \(0.497867\pi\)
\(402\) 0 0
\(403\) −3.87205 + 3.57298i −0.192880 + 0.177983i
\(404\) 0 0
\(405\) 12.5978 3.90798i 0.625990 0.194189i
\(406\) 0 0
\(407\) −29.8937 17.2592i −1.48178 0.855505i
\(408\) 0 0
\(409\) 5.06018 + 2.92150i 0.250210 + 0.144459i 0.619860 0.784712i \(-0.287189\pi\)
−0.369651 + 0.929171i \(0.620523\pi\)
\(410\) 0 0
\(411\) 8.17132i 0.403062i
\(412\) 0 0
\(413\) 7.13375 4.11868i 0.351029 0.202667i
\(414\) 0 0
\(415\) 1.64567 7.26368i 0.0807829 0.356560i
\(416\) 0 0
\(417\) 16.7037i 0.817982i
\(418\) 0 0
\(419\) −17.8553 30.9262i −0.872287 1.51085i −0.859625 0.510926i \(-0.829303\pi\)
−0.0126627 0.999920i \(-0.504031\pi\)
\(420\) 0 0
\(421\) 24.9384i 1.21542i −0.794159 0.607711i \(-0.792088\pi\)
0.794159 0.607711i \(-0.207912\pi\)
\(422\) 0 0
\(423\) 0.803653 1.39197i 0.0390750 0.0676798i
\(424\) 0 0
\(425\) −19.1813 27.9414i −0.930430 1.35536i
\(426\) 0 0
\(427\) 15.2578 + 26.4272i 0.738375 + 1.27890i
\(428\) 0 0
\(429\) 24.0944 5.42975i 1.16329 0.262151i
\(430\) 0 0
\(431\) −26.2773 + 15.1712i −1.26573 + 0.730770i −0.974177 0.225785i \(-0.927505\pi\)
−0.291553 + 0.956555i \(0.594172\pi\)
\(432\) 0 0
\(433\) −10.1016 5.83216i −0.485452 0.280276i 0.237234 0.971453i \(-0.423759\pi\)
−0.722686 + 0.691177i \(0.757093\pi\)
\(434\) 0 0
\(435\) 17.3805 18.7919i 0.833331 0.901002i
\(436\) 0 0
\(437\) 9.29116 0.444457
\(438\) 0 0
\(439\) 1.74627 + 3.02462i 0.0833447 + 0.144357i 0.904685 0.426082i \(-0.140106\pi\)
−0.821340 + 0.570439i \(0.806773\pi\)
\(440\) 0 0
\(441\) 2.28796 0.108950
\(442\) 0 0
\(443\) 27.7833i 1.32002i −0.751255 0.660012i \(-0.770551\pi\)
0.751255 0.660012i \(-0.229449\pi\)
\(444\) 0 0
\(445\) 1.74210 + 5.61584i 0.0825832 + 0.266216i
\(446\) 0 0
\(447\) −8.97820 −0.424654
\(448\) 0 0
\(449\) −3.16257 1.82591i −0.149251 0.0861700i 0.423515 0.905889i \(-0.360796\pi\)
−0.572766 + 0.819719i \(0.694129\pi\)
\(450\) 0 0
\(451\) −12.8082 + 22.1845i −0.603116 + 1.04463i
\(452\) 0 0
\(453\) −11.1944 19.3893i −0.525958 0.910987i
\(454\) 0 0
\(455\) −0.0290415 + 25.2559i −0.00136149 + 1.18402i
\(456\) 0 0
\(457\) 21.1718 + 36.6706i 0.990374 + 1.71538i 0.615061 + 0.788480i \(0.289131\pi\)
0.375313 + 0.926898i \(0.377535\pi\)
\(458\) 0 0
\(459\) −19.1112 + 33.1016i −0.892035 + 1.54505i
\(460\) 0 0
\(461\) 2.87450 + 1.65960i 0.133879 + 0.0772951i 0.565444 0.824787i \(-0.308705\pi\)
−0.431565 + 0.902082i \(0.642038\pi\)
\(462\) 0 0
\(463\) −26.2130 −1.21822 −0.609111 0.793085i \(-0.708474\pi\)
−0.609111 + 0.793085i \(0.708474\pi\)
\(464\) 0 0
\(465\) −4.61488 + 1.43159i −0.214010 + 0.0663883i
\(466\) 0 0
\(467\) 2.45243i 0.113485i 0.998389 + 0.0567424i \(0.0180714\pi\)
−0.998389 + 0.0567424i \(0.981929\pi\)
\(468\) 0 0
\(469\) −1.99094 −0.0919330
\(470\) 0 0
\(471\) −14.2862 24.7444i −0.658272 1.14016i
\(472\) 0 0
\(473\) 57.6128 2.64904
\(474\) 0 0
\(475\) −4.75240 6.92283i −0.218055 0.317641i
\(476\) 0 0
\(477\) −3.98548 2.30102i −0.182482 0.105356i
\(478\) 0 0
\(479\) 1.89707 1.09528i 0.0866795 0.0500444i −0.456034 0.889962i \(-0.650730\pi\)
0.542713 + 0.839918i \(0.317397\pi\)
\(480\) 0 0
\(481\) 7.98969 25.6514i 0.364299 1.16960i
\(482\) 0 0
\(483\) −12.8140 22.1946i −0.583059 1.00989i
\(484\) 0 0
\(485\) −10.3072 9.53310i −0.468028 0.432876i
\(486\) 0 0
\(487\) 9.75727 16.9001i 0.442144 0.765816i −0.555704 0.831380i \(-0.687551\pi\)
0.997848 + 0.0655640i \(0.0208847\pi\)
\(488\) 0 0
\(489\) 0.824728i 0.0372955i
\(490\) 0 0
\(491\) 15.6383 + 27.0863i 0.705747 + 1.22239i 0.966421 + 0.256963i \(0.0827217\pi\)
−0.260674 + 0.965427i \(0.583945\pi\)
\(492\) 0 0
\(493\) 52.4727i 2.36325i
\(494\) 0 0
\(495\) −8.21592 1.86141i −0.369278 0.0836643i
\(496\) 0 0
\(497\) −37.6193 + 21.7195i −1.68746 + 0.974254i
\(498\) 0 0
\(499\) 31.5312i 1.41153i −0.708445 0.705766i \(-0.750603\pi\)
0.708445 0.705766i \(-0.249397\pi\)
\(500\) 0 0
\(501\) 8.10576 + 4.67986i 0.362139 + 0.209081i
\(502\) 0 0
\(503\) −4.86709 2.81002i −0.217013 0.125293i 0.387553 0.921847i \(-0.373320\pi\)
−0.604566 + 0.796555i \(0.706654\pi\)
\(504\) 0 0
\(505\) 35.9578 11.1545i 1.60010 0.496369i
\(506\) 0 0
\(507\) 8.24557 + 17.3657i 0.366199 + 0.771238i
\(508\) 0 0
\(509\) −13.7002 + 7.90980i −0.607250 + 0.350596i −0.771888 0.635758i \(-0.780688\pi\)
0.164639 + 0.986354i \(0.447354\pi\)
\(510\) 0 0
\(511\) −7.65963 + 13.2669i −0.338842 + 0.586892i
\(512\) 0 0
\(513\) −4.73504 + 8.20132i −0.209057 + 0.362097i
\(514\) 0 0
\(515\) −21.5073 4.87273i −0.947725 0.214718i
\(516\) 0 0
\(517\) 7.92861 4.57758i 0.348700 0.201322i
\(518\) 0 0
\(519\) −11.3071 −0.496326
\(520\) 0 0
\(521\) 12.6030 0.552149 0.276074 0.961136i \(-0.410966\pi\)
0.276074 + 0.961136i \(0.410966\pi\)
\(522\) 0 0
\(523\) −23.8881 + 13.7918i −1.04456 + 0.603074i −0.921120 0.389278i \(-0.872724\pi\)
−0.123435 + 0.992353i \(0.539391\pi\)
\(524\) 0 0
\(525\) −9.98279 + 20.9002i −0.435685 + 0.912159i
\(526\) 0 0
\(527\) 4.95248 8.57794i 0.215733 0.373661i
\(528\) 0 0
\(529\) 3.80361 6.58804i 0.165374 0.286437i
\(530\) 0 0
\(531\) −1.85203 + 1.06927i −0.0803712 + 0.0464023i
\(532\) 0 0
\(533\) −19.0362 5.92925i −0.824550 0.256824i
\(534\) 0 0
\(535\) 2.70118 + 8.70755i 0.116782 + 0.376460i
\(536\) 0 0
\(537\) 5.83269 + 3.36751i 0.251699 + 0.145319i
\(538\) 0 0
\(539\) 11.2862 + 6.51608i 0.486130 + 0.280667i
\(540\) 0 0
\(541\) 27.6835i 1.19021i 0.803650 + 0.595103i \(0.202889\pi\)
−0.803650 + 0.595103i \(0.797111\pi\)
\(542\) 0 0
\(543\) −9.94387 + 5.74110i −0.426732 + 0.246374i
\(544\) 0 0
\(545\) −25.4633 5.76902i −1.09073 0.247118i
\(546\) 0 0
\(547\) 24.7863i 1.05979i 0.848064 + 0.529893i \(0.177768\pi\)
−0.848064 + 0.529893i \(0.822232\pi\)
\(548\) 0 0
\(549\) −3.96114 6.86090i −0.169057 0.292816i
\(550\) 0 0
\(551\) 13.0007i 0.553850i
\(552\) 0 0
\(553\) −9.72715 + 16.8479i −0.413641 + 0.716446i
\(554\) 0 0
\(555\) 16.7301 18.0886i 0.710151 0.767820i
\(556\) 0 0
\(557\) 16.3096 + 28.2490i 0.691058 + 1.19695i 0.971491 + 0.237075i \(0.0761886\pi\)
−0.280433 + 0.959874i \(0.590478\pi\)
\(558\) 0 0
\(559\) 9.85811 + 43.7452i 0.416954 + 1.85022i
\(560\) 0 0
\(561\) −40.2119 + 23.2164i −1.69775 + 0.980196i
\(562\) 0 0
\(563\) 29.6082 + 17.0943i 1.24783 + 0.720438i 0.970677 0.240387i \(-0.0772742\pi\)
0.277158 + 0.960824i \(0.410608\pi\)
\(564\) 0 0
\(565\) −5.80111 + 6.27219i −0.244054 + 0.263873i
\(566\) 0 0
\(567\) 18.4786 0.776027
\(568\) 0 0
\(569\) −10.1721 17.6186i −0.426438 0.738612i 0.570116 0.821564i \(-0.306898\pi\)
−0.996554 + 0.0829524i \(0.973565\pi\)
\(570\) 0 0
\(571\) 46.7490 1.95639 0.978193 0.207700i \(-0.0665978\pi\)
0.978193 + 0.207700i \(0.0665978\pi\)
\(572\) 0 0
\(573\) 16.9167i 0.706707i
\(574\) 0 0
\(575\) −27.5778 + 2.15538i −1.15007 + 0.0898855i
\(576\) 0 0
\(577\) 11.8607 0.493768 0.246884 0.969045i \(-0.420593\pi\)
0.246884 + 0.969045i \(0.420593\pi\)
\(578\) 0 0
\(579\) −4.05022 2.33839i −0.168321 0.0971803i
\(580\) 0 0
\(581\) 5.21697 9.03606i 0.216436 0.374879i
\(582\) 0 0
\(583\) −13.1065 22.7011i −0.542816 0.940185i
\(584\) 0 0
\(585\) 0.00753961 6.55681i 0.000311725 0.271091i
\(586\) 0 0
\(587\) −5.59483 9.69054i −0.230924 0.399971i 0.727157 0.686472i \(-0.240841\pi\)
−0.958080 + 0.286500i \(0.907508\pi\)
\(588\) 0 0
\(589\) 1.22704 2.12529i 0.0505592 0.0875710i
\(590\) 0 0
\(591\) −29.6574 17.1227i −1.21994 0.704335i
\(592\) 0 0
\(593\) −27.6058 −1.13363 −0.566817 0.823844i \(-0.691825\pi\)
−0.566817 + 0.823844i \(0.691825\pi\)
\(594\) 0 0
\(595\) −14.0676 45.3486i −0.576717 1.85911i
\(596\) 0 0
\(597\) 8.90733i 0.364553i
\(598\) 0 0
\(599\) 29.3193 1.19795 0.598976 0.800767i \(-0.295574\pi\)
0.598976 + 0.800767i \(0.295574\pi\)
\(600\) 0 0
\(601\) −16.1764 28.0184i −0.659850 1.14289i −0.980654 0.195748i \(-0.937287\pi\)
0.320804 0.947146i \(-0.396047\pi\)
\(602\) 0 0
\(603\) 0.516878 0.0210489
\(604\) 0 0
\(605\) −17.1692 15.8797i −0.698029 0.645602i
\(606\) 0 0
\(607\) −15.4492 8.91963i −0.627066 0.362036i 0.152549 0.988296i \(-0.451252\pi\)
−0.779615 + 0.626259i \(0.784585\pi\)
\(608\) 0 0
\(609\) 31.0560 17.9302i 1.25845 0.726567i
\(610\) 0 0
\(611\) 4.83240 + 5.23689i 0.195498 + 0.211862i
\(612\) 0 0
\(613\) −13.8288 23.9523i −0.558542 0.967423i −0.997619 0.0689733i \(-0.978028\pi\)
0.439077 0.898450i \(-0.355306\pi\)
\(614\) 0 0
\(615\) −13.4238 12.4156i −0.541300 0.500645i
\(616\) 0 0
\(617\) −15.8577 + 27.4664i −0.638408 + 1.10575i 0.347374 + 0.937727i \(0.387073\pi\)
−0.985782 + 0.168028i \(0.946260\pi\)
\(618\) 0 0
\(619\) 47.4958i 1.90902i 0.298186 + 0.954508i \(0.403618\pi\)
−0.298186 + 0.954508i \(0.596382\pi\)
\(620\) 0 0
\(621\) 15.5983 + 27.0170i 0.625938 + 1.08416i
\(622\) 0 0
\(623\) 8.23735i 0.330022i
\(624\) 0 0
\(625\) 15.7119 + 19.4457i 0.628478 + 0.777828i
\(626\) 0 0
\(627\) −9.96300 + 5.75214i −0.397884 + 0.229718i
\(628\) 0 0
\(629\) 50.5090i 2.01392i
\(630\) 0 0
\(631\) −7.47459 4.31546i −0.297559 0.171796i 0.343787 0.939048i \(-0.388290\pi\)
−0.641346 + 0.767252i \(0.721624\pi\)
\(632\) 0 0
\(633\) 6.58020 + 3.79908i 0.261540 + 0.151000i
\(634\) 0 0
\(635\) −7.58401 24.4479i −0.300962 0.970185i
\(636\) 0 0
\(637\) −3.01645 + 9.68450i −0.119516 + 0.383714i
\(638\) 0 0
\(639\) 9.76654 5.63871i 0.386358 0.223064i
\(640\) 0 0
\(641\) 7.59556 13.1559i 0.300007 0.519627i −0.676131 0.736782i \(-0.736344\pi\)
0.976137 + 0.217155i \(0.0696778\pi\)
\(642\) 0 0
\(643\) −6.80445 + 11.7856i −0.268341 + 0.464781i −0.968434 0.249272i \(-0.919809\pi\)
0.700092 + 0.714052i \(0.253142\pi\)
\(644\) 0 0
\(645\) −9.08687 + 40.1077i −0.357795 + 1.57924i
\(646\) 0 0
\(647\) 6.95677 4.01649i 0.273499 0.157905i −0.356978 0.934113i \(-0.616193\pi\)
0.630477 + 0.776208i \(0.282860\pi\)
\(648\) 0 0
\(649\) −12.1811 −0.478148
\(650\) 0 0
\(651\) −6.76914 −0.265304
\(652\) 0 0
\(653\) 32.3286 18.6649i 1.26512 0.730415i 0.291055 0.956706i \(-0.405994\pi\)
0.974060 + 0.226292i \(0.0726602\pi\)
\(654\) 0 0
\(655\) −2.15806 + 9.52524i −0.0843222 + 0.372182i
\(656\) 0 0
\(657\) 1.98855 3.44428i 0.0775809 0.134374i
\(658\) 0 0
\(659\) 3.72275 6.44799i 0.145018 0.251178i −0.784362 0.620303i \(-0.787009\pi\)
0.929380 + 0.369126i \(0.120343\pi\)
\(660\) 0 0
\(661\) 43.5907 25.1671i 1.69548 0.978888i 0.745542 0.666459i \(-0.232191\pi\)
0.949941 0.312429i \(-0.101142\pi\)
\(662\) 0 0
\(663\) −24.5087 26.5602i −0.951840 1.03151i
\(664\) 0 0
\(665\) −3.48543 11.2357i −0.135159 0.435701i
\(666\) 0 0
\(667\) 37.0896 + 21.4137i 1.43612 + 0.829142i
\(668\) 0 0
\(669\) 21.2979 + 12.2964i 0.823426 + 0.475405i
\(670\) 0 0
\(671\) 45.1251i 1.74203i
\(672\) 0 0
\(673\) −12.7485 + 7.36034i −0.491418 + 0.283720i −0.725163 0.688578i \(-0.758235\pi\)
0.233744 + 0.972298i \(0.424902\pi\)
\(674\) 0 0
\(675\) 12.1519 25.4414i 0.467725 0.979240i
\(676\) 0 0
\(677\) 22.0788i 0.848559i 0.905531 + 0.424279i \(0.139473\pi\)
−0.905531 + 0.424279i \(0.860527\pi\)
\(678\) 0 0
\(679\) −9.83460 17.0340i −0.377417 0.653706i
\(680\) 0 0
\(681\) 21.3571i 0.818405i
\(682\) 0 0
\(683\) 19.9013 34.4700i 0.761501 1.31896i −0.180576 0.983561i \(-0.557796\pi\)
0.942077 0.335397i \(-0.108870\pi\)
\(684\) 0 0
\(685\) −9.07106 8.38976i −0.346587 0.320556i
\(686\) 0 0
\(687\) −2.96171 5.12983i −0.112996 0.195715i
\(688\) 0 0
\(689\) 14.9942 13.8361i 0.571234 0.527113i
\(690\) 0 0
\(691\) −34.6907 + 20.0287i −1.31970 + 0.761927i −0.983680 0.179928i \(-0.942413\pi\)
−0.336017 + 0.941856i \(0.609080\pi\)
\(692\) 0 0
\(693\) −10.2206 5.90089i −0.388250 0.224156i
\(694\) 0 0
\(695\) 18.5429 + 17.1502i 0.703372 + 0.650544i
\(696\) 0 0
\(697\) 37.4833 1.41978
\(698\) 0 0
\(699\) −2.57413 4.45853i −0.0973627 0.168637i
\(700\) 0 0
\(701\) 12.1911 0.460452 0.230226 0.973137i \(-0.426053\pi\)
0.230226 + 0.973137i \(0.426053\pi\)
\(702\) 0 0
\(703\) 12.5142i 0.471983i
\(704\) 0 0
\(705\) 1.93620 + 6.24156i 0.0729216 + 0.235071i
\(706\) 0 0
\(707\) 52.7432 1.98361
\(708\) 0 0
\(709\) −18.7237 10.8101i −0.703183 0.405983i 0.105349 0.994435i \(-0.466404\pi\)
−0.808532 + 0.588452i \(0.799737\pi\)
\(710\) 0 0
\(711\) 2.52531 4.37397i 0.0947066 0.164037i
\(712\) 0 0
\(713\) −4.04214 7.00119i −0.151379 0.262197i
\(714\) 0 0
\(715\) 18.7109 32.3223i 0.699748 1.20879i
\(716\) 0 0
\(717\) 14.1336 + 24.4801i 0.527829 + 0.914227i
\(718\) 0 0
\(719\) −1.39194 + 2.41091i −0.0519105 + 0.0899117i −0.890813 0.454370i \(-0.849864\pi\)
0.838903 + 0.544282i \(0.183198\pi\)
\(720\) 0 0
\(721\) −26.7552 15.4471i −0.996415 0.575281i
\(722\) 0 0
\(723\) 33.0343 1.22856
\(724\) 0 0
\(725\) −3.01593 38.5885i −0.112009 1.43314i
\(726\) 0 0
\(727\) 22.5075i 0.834756i 0.908733 + 0.417378i \(0.137051\pi\)
−0.908733 + 0.417378i \(0.862949\pi\)
\(728\) 0 0
\(729\) −29.8131 −1.10419
\(730\) 0 0
\(731\) −42.1510 73.0077i −1.55901 2.70029i
\(732\) 0 0
\(733\) −8.58058 −0.316931 −0.158465 0.987365i \(-0.550655\pi\)
−0.158465 + 0.987365i \(0.550655\pi\)
\(734\) 0 0
\(735\) −6.31632 + 6.82924i −0.232981 + 0.251900i
\(736\) 0 0
\(737\) 2.54968 + 1.47206i 0.0939187 + 0.0542240i
\(738\) 0 0
\(739\) −4.98591 + 2.87861i −0.183410 + 0.105892i −0.588894 0.808211i \(-0.700436\pi\)
0.405484 + 0.914102i \(0.367103\pi\)
\(740\) 0 0
\(741\) −6.07234 6.58061i −0.223073 0.241745i
\(742\) 0 0
\(743\) 13.3320 + 23.0918i 0.489105 + 0.847154i 0.999921 0.0125354i \(-0.00399025\pi\)
−0.510817 + 0.859690i \(0.670657\pi\)
\(744\) 0 0
\(745\) −9.21821 + 9.96678i −0.337729 + 0.365155i
\(746\) 0 0
\(747\) −1.35440 + 2.34590i −0.0495550 + 0.0858318i
\(748\) 0 0
\(749\) 12.7723i 0.466689i
\(750\) 0 0
\(751\) 21.8390 + 37.8262i 0.796916 + 1.38030i 0.921615 + 0.388104i \(0.126870\pi\)
−0.124699 + 0.992195i \(0.539797\pi\)
\(752\) 0 0
\(753\) 24.7627i 0.902404i
\(754\) 0 0
\(755\) −33.0178 7.48058i −1.20164 0.272246i
\(756\) 0 0
\(757\) 27.9105 16.1141i 1.01442 0.585678i 0.101941 0.994790i \(-0.467495\pi\)
0.912484 + 0.409112i \(0.134162\pi\)
\(758\) 0 0
\(759\) 37.8977i 1.37560i
\(760\) 0 0
\(761\) 10.4017 + 6.00543i 0.377062 + 0.217697i 0.676539 0.736407i \(-0.263479\pi\)
−0.299477 + 0.954103i \(0.596812\pi\)
\(762\) 0 0
\(763\) −31.6765 18.2884i −1.14677 0.662086i
\(764\) 0 0
\(765\) 3.65217 + 11.7732i 0.132044 + 0.425660i
\(766\) 0 0
\(767\) −2.08430 9.24902i −0.0752596 0.333963i
\(768\) 0 0
\(769\) −43.3628 + 25.0355i −1.56370 + 0.902804i −0.566826 + 0.823838i \(0.691829\pi\)
−0.996877 + 0.0789667i \(0.974838\pi\)
\(770\) 0 0
\(771\) −11.6590 + 20.1940i −0.419888 + 0.727268i
\(772\) 0 0
\(773\) 24.3030 42.0940i 0.874118 1.51402i 0.0164180 0.999865i \(-0.494774\pi\)
0.857700 0.514151i \(-0.171893\pi\)
\(774\) 0 0
\(775\) −3.14903 + 6.59288i −0.113117 + 0.236823i
\(776\) 0 0
\(777\) 29.8937 17.2592i 1.07243 0.619169i
\(778\) 0 0
\(779\) 9.28695 0.332740
\(780\) 0 0
\(781\) 64.2359 2.29854
\(782\) 0 0
\(783\) −37.8038 + 21.8261i −1.35100 + 0.780000i
\(784\) 0 0
\(785\) −42.1370 9.54665i −1.50394 0.340734i
\(786\) 0 0
\(787\) −20.3298 + 35.2122i −0.724679 + 1.25518i 0.234427 + 0.972134i \(0.424679\pi\)
−0.959106 + 0.283047i \(0.908655\pi\)
\(788\) 0 0
\(789\) 9.08769 15.7403i 0.323530 0.560371i
\(790\) 0 0
\(791\) −10.3656 + 5.98457i −0.368558 + 0.212787i
\(792\) 0 0
\(793\) 34.2633 7.72134i 1.21672 0.274193i
\(794\) 0 0