# Properties

 Label 260.2.z.a.49.6 Level $260$ Weight $2$ Character 260.49 Analytic conductor $2.076$ Analytic rank $0$ Dimension $16$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$260 = 2^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 260.z (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.07611045255$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$8$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ Defining polynomial: $$x^{16} - 7x^{14} + 21x^{12} - 22x^{10} - 26x^{8} - 198x^{6} + 1701x^{4} - 5103x^{2} + 6561$$ x^16 - 7*x^14 + 21*x^12 - 22*x^10 - 26*x^8 - 198*x^6 + 1701*x^4 - 5103*x^2 + 6561 Coefficient ring: $$\Z[a_1, \ldots, a_{9}]$$ Coefficient ring index: $$2^{8}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 49.6 Root $$1.56631 + 0.739379i$$ of defining polynomial Character $$\chi$$ $$=$$ 260.49 Dual form 260.2.z.a.69.6

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.28064 - 0.739379i) q^{3} +(0.494086 - 2.18080i) q^{5} +(1.56631 - 2.71292i) q^{7} +(-0.406637 + 0.704315i) q^{9} +O(q^{10})$$ $$q+(1.28064 - 0.739379i) q^{3} +(0.494086 - 2.18080i) q^{5} +(1.56631 - 2.71292i) q^{7} +(-0.406637 + 0.704315i) q^{9} +(-4.01176 + 2.31619i) q^{11} +(-2.44512 - 2.64979i) q^{13} +(-0.979690 - 3.15814i) q^{15} +(5.87021 + 3.38917i) q^{17} +(1.45442 + 0.839708i) q^{19} -4.63238i q^{21} +(4.79118 - 2.76619i) q^{23} +(-4.51176 - 2.15500i) q^{25} +5.63891i q^{27} +(3.87062 + 6.70410i) q^{29} -1.46127i q^{31} +(-3.42509 + 5.93242i) q^{33} +(-5.14245 - 4.75622i) q^{35} +(3.72577 + 6.45322i) q^{37} +(-5.09053 - 1.58556i) q^{39} +(4.78901 - 2.76494i) q^{41} +(-10.7707 - 6.21849i) q^{43} +(1.33506 + 1.23478i) q^{45} -1.97634 q^{47} +(-1.40664 - 2.43637i) q^{49} +10.0235 q^{51} +5.65865i q^{53} +(3.06899 + 9.89323i) q^{55} +2.48345 q^{57} +(2.27725 + 1.31477i) q^{59} +(-4.87062 + 8.43615i) q^{61} +(1.27384 + 2.20635i) q^{63} +(-6.98675 + 4.02310i) q^{65} +(-0.317776 - 0.550404i) q^{67} +(4.09053 - 7.08500i) q^{69} +(-12.0089 - 6.93335i) q^{71} -4.89025 q^{73} +(-7.37131 + 0.576115i) q^{75} +14.5115i q^{77} -6.21024 q^{79} +(2.94938 + 5.10848i) q^{81} +3.33075 q^{83} +(10.2915 - 11.1272i) q^{85} +(9.91375 + 5.72371i) q^{87} +(-2.27725 + 1.31477i) q^{89} +(-11.0185 + 2.48305i) q^{91} +(-1.08043 - 1.87136i) q^{93} +(2.54984 - 2.75690i) q^{95} +(3.13942 - 5.43764i) q^{97} -3.76739i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16 q + 10 q^{9}+O(q^{10})$$ 16 * q + 10 * q^9 $$16 q + 10 q^{9} - 6 q^{11} + 6 q^{15} - 18 q^{19} - 14 q^{25} + 12 q^{29} + 18 q^{39} - 48 q^{41} + 45 q^{45} - 6 q^{49} + 44 q^{51} + 2 q^{55} - 30 q^{59} - 28 q^{61} - 15 q^{65} - 34 q^{69} - 18 q^{71} - 42 q^{75} - 16 q^{79} - 44 q^{81} - 45 q^{85} + 30 q^{89} - 10 q^{91}+O(q^{100})$$ 16 * q + 10 * q^9 - 6 * q^11 + 6 * q^15 - 18 * q^19 - 14 * q^25 + 12 * q^29 + 18 * q^39 - 48 * q^41 + 45 * q^45 - 6 * q^49 + 44 * q^51 + 2 * q^55 - 30 * q^59 - 28 * q^61 - 15 * q^65 - 34 * q^69 - 18 * q^71 - 42 * q^75 - 16 * q^79 - 44 * q^81 - 45 * q^85 + 30 * q^89 - 10 * q^91

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/260\mathbb{Z}\right)^\times$$.

 $$n$$ $$41$$ $$131$$ $$157$$ $$\chi(n)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.28064 0.739379i 0.739379 0.426881i −0.0824643 0.996594i $$-0.526279\pi$$
0.821844 + 0.569713i $$0.192946\pi$$
$$4$$ 0 0
$$5$$ 0.494086 2.18080i 0.220962 0.975282i
$$6$$ 0 0
$$7$$ 1.56631 2.71292i 0.592008 1.02539i −0.401953 0.915660i $$-0.631669\pi$$
0.993962 0.109729i $$-0.0349981\pi$$
$$8$$ 0 0
$$9$$ −0.406637 + 0.704315i −0.135546 + 0.234772i
$$10$$ 0 0
$$11$$ −4.01176 + 2.31619i −1.20959 + 0.698358i −0.962670 0.270678i $$-0.912752\pi$$
−0.246921 + 0.969036i $$0.579419\pi$$
$$12$$ 0 0
$$13$$ −2.44512 2.64979i −0.678155 0.734919i
$$14$$ 0 0
$$15$$ −0.979690 3.15814i −0.252955 0.815428i
$$16$$ 0 0
$$17$$ 5.87021 + 3.38917i 1.42373 + 0.821994i 0.996616 0.0822017i $$-0.0261952\pi$$
0.427119 + 0.904195i $$0.359529\pi$$
$$18$$ 0 0
$$19$$ 1.45442 + 0.839708i 0.333666 + 0.192642i 0.657468 0.753483i $$-0.271628\pi$$
−0.323802 + 0.946125i $$0.604961\pi$$
$$20$$ 0 0
$$21$$ 4.63238i 1.01087i
$$22$$ 0 0
$$23$$ 4.79118 2.76619i 0.999030 0.576790i 0.0910690 0.995845i $$-0.470972\pi$$
0.907961 + 0.419054i $$0.137638\pi$$
$$24$$ 0 0
$$25$$ −4.51176 2.15500i −0.902352 0.431000i
$$26$$ 0 0
$$27$$ 5.63891i 1.08521i
$$28$$ 0 0
$$29$$ 3.87062 + 6.70410i 0.718755 + 1.24492i 0.961493 + 0.274829i $$0.0886212\pi$$
−0.242738 + 0.970092i $$0.578045\pi$$
$$30$$ 0 0
$$31$$ 1.46127i 0.262451i −0.991353 0.131226i $$-0.958109\pi$$
0.991353 0.131226i $$-0.0418912\pi$$
$$32$$ 0 0
$$33$$ −3.42509 + 5.93242i −0.596231 + 1.03270i
$$34$$ 0 0
$$35$$ −5.14245 4.75622i −0.869232 0.803947i
$$36$$ 0 0
$$37$$ 3.72577 + 6.45322i 0.612512 + 1.06090i 0.990816 + 0.135220i $$0.0431742\pi$$
−0.378303 + 0.925682i $$0.623492\pi$$
$$38$$ 0 0
$$39$$ −5.09053 1.58556i −0.815137 0.253892i
$$40$$ 0 0
$$41$$ 4.78901 2.76494i 0.747918 0.431811i −0.0770232 0.997029i $$-0.524542\pi$$
0.824941 + 0.565219i $$0.191208\pi$$
$$42$$ 0 0
$$43$$ −10.7707 6.21849i −1.64252 0.948311i −0.979933 0.199329i $$-0.936124\pi$$
−0.662591 0.748982i $$-0.730543\pi$$
$$44$$ 0 0
$$45$$ 1.33506 + 1.23478i 0.199018 + 0.184071i
$$46$$ 0 0
$$47$$ −1.97634 −0.288279 −0.144140 0.989557i $$-0.546041\pi$$
−0.144140 + 0.989557i $$0.546041\pi$$
$$48$$ 0 0
$$49$$ −1.40664 2.43637i −0.200948 0.348052i
$$50$$ 0 0
$$51$$ 10.0235 1.40357
$$52$$ 0 0
$$53$$ 5.65865i 0.777276i 0.921391 + 0.388638i $$0.127054\pi$$
−0.921391 + 0.388638i $$0.872946\pi$$
$$54$$ 0 0
$$55$$ 3.06899 + 9.89323i 0.413823 + 1.33400i
$$56$$ 0 0
$$57$$ 2.48345 0.328941
$$58$$ 0 0
$$59$$ 2.27725 + 1.31477i 0.296473 + 0.171169i 0.640857 0.767660i $$-0.278579\pi$$
−0.344384 + 0.938829i $$0.611912\pi$$
$$60$$ 0 0
$$61$$ −4.87062 + 8.43615i −0.623618 + 1.08014i 0.365188 + 0.930934i $$0.381005\pi$$
−0.988806 + 0.149205i $$0.952329\pi$$
$$62$$ 0 0
$$63$$ 1.27384 + 2.20635i 0.160488 + 0.277974i
$$64$$ 0 0
$$65$$ −6.98675 + 4.02310i −0.866600 + 0.499004i
$$66$$ 0 0
$$67$$ −0.317776 0.550404i −0.0388225 0.0672426i 0.845961 0.533244i $$-0.179027\pi$$
−0.884784 + 0.466002i $$0.845694\pi$$
$$68$$ 0 0
$$69$$ 4.09053 7.08500i 0.492441 0.852934i
$$70$$ 0 0
$$71$$ −12.0089 6.93335i −1.42520 0.822838i −0.428460 0.903561i $$-0.640944\pi$$
−0.996737 + 0.0807229i $$0.974277\pi$$
$$72$$ 0 0
$$73$$ −4.89025 −0.572360 −0.286180 0.958176i $$-0.592386\pi$$
−0.286180 + 0.958176i $$0.592386\pi$$
$$74$$ 0 0
$$75$$ −7.37131 + 0.576115i −0.851166 + 0.0665240i
$$76$$ 0 0
$$77$$ 14.5115i 1.65373i
$$78$$ 0 0
$$79$$ −6.21024 −0.698707 −0.349354 0.936991i $$-0.613599\pi$$
−0.349354 + 0.936991i $$0.613599\pi$$
$$80$$ 0 0
$$81$$ 2.94938 + 5.10848i 0.327709 + 0.567609i
$$82$$ 0 0
$$83$$ 3.33075 0.365597 0.182798 0.983150i $$-0.441484\pi$$
0.182798 + 0.983150i $$0.441484\pi$$
$$84$$ 0 0
$$85$$ 10.2915 11.1272i 1.11627 1.20691i
$$86$$ 0 0
$$87$$ 9.91375 + 5.72371i 1.06287 + 0.613646i
$$88$$ 0 0
$$89$$ −2.27725 + 1.31477i −0.241388 + 0.139366i −0.615815 0.787891i $$-0.711173\pi$$
0.374426 + 0.927257i $$0.377840\pi$$
$$90$$ 0 0
$$91$$ −11.0185 + 2.48305i −1.15505 + 0.260294i
$$92$$ 0 0
$$93$$ −1.08043 1.87136i −0.112035 0.194051i
$$94$$ 0 0
$$95$$ 2.54984 2.75690i 0.261608 0.282852i
$$96$$ 0 0
$$97$$ 3.13942 5.43764i 0.318760 0.552108i −0.661470 0.749972i $$-0.730067\pi$$
0.980230 + 0.197864i $$0.0634003\pi$$
$$98$$ 0 0
$$99$$ 3.76739i 0.378637i
$$100$$ 0 0
$$101$$ 8.41840 + 14.5811i 0.837662 + 1.45087i 0.891845 + 0.452342i $$0.149411\pi$$
−0.0541831 + 0.998531i $$0.517255\pi$$
$$102$$ 0 0
$$103$$ 9.86212i 0.971744i −0.874030 0.485872i $$-0.838502\pi$$
0.874030 0.485872i $$-0.161498\pi$$
$$104$$ 0 0
$$105$$ −10.1023 2.28879i −0.985882 0.223363i
$$106$$ 0 0
$$107$$ −3.53096 + 2.03860i −0.341351 + 0.197079i −0.660869 0.750501i $$-0.729812\pi$$
0.319519 + 0.947580i $$0.396479\pi$$
$$108$$ 0 0
$$109$$ 11.6762i 1.11837i −0.829042 0.559186i $$-0.811114\pi$$
0.829042 0.559186i $$-0.188886\pi$$
$$110$$ 0 0
$$111$$ 9.54275 + 5.50951i 0.905757 + 0.522939i
$$112$$ 0 0
$$113$$ −3.30892 1.91041i −0.311277 0.179716i 0.336221 0.941783i $$-0.390851\pi$$
−0.647498 + 0.762067i $$0.724185\pi$$
$$114$$ 0 0
$$115$$ −3.66525 11.8153i −0.341786 1.10179i
$$116$$ 0 0
$$117$$ 2.86056 0.644637i 0.264459 0.0595967i
$$118$$ 0 0
$$119$$ 18.3891 10.6170i 1.68573 0.973254i
$$120$$ 0 0
$$121$$ 5.22947 9.05771i 0.475407 0.823428i
$$122$$ 0 0
$$123$$ 4.08867 7.08179i 0.368663 0.638544i
$$124$$ 0 0
$$125$$ −6.92882 + 8.77448i −0.619732 + 0.784813i
$$126$$ 0 0
$$127$$ 9.91375 5.72371i 0.879703 0.507897i 0.00914258 0.999958i $$-0.497090\pi$$
0.870561 + 0.492061i $$0.163756\pi$$
$$128$$ 0 0
$$129$$ −18.3913 −1.61926
$$130$$ 0 0
$$131$$ −4.36778 −0.381615 −0.190807 0.981628i $$-0.561111\pi$$
−0.190807 + 0.981628i $$0.561111\pi$$
$$132$$ 0 0
$$133$$ 4.55613 2.63048i 0.395066 0.228092i
$$134$$ 0 0
$$135$$ 12.2973 + 2.78610i 1.05839 + 0.239790i
$$136$$ 0 0
$$137$$ 2.76290 4.78548i 0.236050 0.408851i −0.723527 0.690296i $$-0.757480\pi$$
0.959577 + 0.281445i $$0.0908136\pi$$
$$138$$ 0 0
$$139$$ −5.64787 + 9.78240i −0.479046 + 0.829732i −0.999711 0.0240289i $$-0.992351\pi$$
0.520665 + 0.853761i $$0.325684\pi$$
$$140$$ 0 0
$$141$$ −2.53099 + 1.46127i −0.213148 + 0.123061i
$$142$$ 0 0
$$143$$ 15.9467 + 4.96694i 1.33353 + 0.415356i
$$144$$ 0 0
$$145$$ 16.5327 5.12863i 1.37297 0.425910i
$$146$$ 0 0
$$147$$ −3.60280 2.08008i −0.297154 0.171562i
$$148$$ 0 0
$$149$$ −5.25802 3.03572i −0.430754 0.248696i 0.268914 0.963164i $$-0.413335\pi$$
−0.699668 + 0.714468i $$0.746669\pi$$
$$150$$ 0 0
$$151$$ 15.1403i 1.23210i −0.787708 0.616048i $$-0.788733\pi$$
0.787708 0.616048i $$-0.211267\pi$$
$$152$$ 0 0
$$153$$ −4.77408 + 2.75632i −0.385962 + 0.222835i
$$154$$ 0 0
$$155$$ −3.18673 0.721991i −0.255964 0.0579917i
$$156$$ 0 0
$$157$$ 19.3218i 1.54205i −0.636804 0.771026i $$-0.719744\pi$$
0.636804 0.771026i $$-0.280256\pi$$
$$158$$ 0 0
$$159$$ 4.18389 + 7.24671i 0.331804 + 0.574701i
$$160$$ 0 0
$$161$$ 17.3308i 1.36586i
$$162$$ 0 0
$$163$$ −0.278858 + 0.482997i −0.0218419 + 0.0378312i −0.876740 0.480965i $$-0.840286\pi$$
0.854898 + 0.518796i $$0.173620\pi$$
$$164$$ 0 0
$$165$$ 11.2451 + 10.4005i 0.875432 + 0.809681i
$$166$$ 0 0
$$167$$ 3.16473 + 5.48147i 0.244894 + 0.424169i 0.962102 0.272691i $$-0.0879136\pi$$
−0.717208 + 0.696859i $$0.754580\pi$$
$$168$$ 0 0
$$169$$ −1.04275 + 12.9581i −0.0802113 + 0.996778i
$$170$$ 0 0
$$171$$ −1.18284 + 0.682912i −0.0904539 + 0.0522236i
$$172$$ 0 0
$$173$$ −6.62192 3.82317i −0.503455 0.290670i 0.226684 0.973968i $$-0.427212\pi$$
−0.730139 + 0.683298i $$0.760545\pi$$
$$174$$ 0 0
$$175$$ −12.9132 + 8.86466i −0.976143 + 0.670106i
$$176$$ 0 0
$$177$$ 3.88846 0.292275
$$178$$ 0 0
$$179$$ 2.27725 + 3.94432i 0.170210 + 0.294812i 0.938493 0.345298i $$-0.112222\pi$$
−0.768283 + 0.640110i $$0.778889\pi$$
$$180$$ 0 0
$$181$$ −7.76475 −0.577149 −0.288575 0.957457i $$-0.593181\pi$$
−0.288575 + 0.957457i $$0.593181\pi$$
$$182$$ 0 0
$$183$$ 14.4049i 1.06484i
$$184$$ 0 0
$$185$$ 15.9140 4.93670i 1.17002 0.362953i
$$186$$ 0 0
$$187$$ −31.3998 −2.29618
$$188$$ 0 0
$$189$$ 15.2979 + 8.83227i 1.11276 + 0.642453i
$$190$$ 0 0
$$191$$ −5.71991 + 9.90717i −0.413878 + 0.716858i −0.995310 0.0967371i $$-0.969159\pi$$
0.581432 + 0.813595i $$0.302493\pi$$
$$192$$ 0 0
$$193$$ −1.58132 2.73893i −0.113826 0.197153i 0.803484 0.595327i $$-0.202977\pi$$
−0.917310 + 0.398174i $$0.869644\pi$$
$$194$$ 0 0
$$195$$ −5.97293 + 10.3180i −0.427731 + 0.738888i
$$196$$ 0 0
$$197$$ −11.5791 20.0556i −0.824978 1.42890i −0.901936 0.431870i $$-0.857854\pi$$
0.0769575 0.997034i $$-0.475479\pi$$
$$198$$ 0 0
$$199$$ 3.01176 5.21652i 0.213498 0.369789i −0.739309 0.673366i $$-0.764848\pi$$
0.952807 + 0.303577i $$0.0981810\pi$$
$$200$$ 0 0
$$201$$ −0.813915 0.469914i −0.0574091 0.0331452i
$$202$$ 0 0
$$203$$ 24.2503 1.70204
$$204$$ 0 0
$$205$$ −3.66359 11.8100i −0.255876 0.824845i
$$206$$ 0 0
$$207$$ 4.49934i 0.312725i
$$208$$ 0 0
$$209$$ −7.77969 −0.538132
$$210$$ 0 0
$$211$$ 2.56910 + 4.44981i 0.176864 + 0.306338i 0.940805 0.338949i $$-0.110071\pi$$
−0.763941 + 0.645287i $$0.776738\pi$$
$$212$$ 0 0
$$213$$ −20.5055 −1.40501
$$214$$ 0 0
$$215$$ −18.8829 + 20.4164i −1.28781 + 1.39238i
$$216$$ 0 0
$$217$$ −3.96430 2.28879i −0.269115 0.155373i
$$218$$ 0 0
$$219$$ −6.26266 + 3.61575i −0.423191 + 0.244330i
$$220$$ 0 0
$$221$$ −5.37281 23.8417i −0.361414 1.60377i
$$222$$ 0 0
$$223$$ 8.31533 + 14.4026i 0.556836 + 0.964468i 0.997758 + 0.0669227i $$0.0213181\pi$$
−0.440922 + 0.897545i $$0.645349\pi$$
$$224$$ 0 0
$$225$$ 3.35245 2.30140i 0.223496 0.153427i
$$226$$ 0 0
$$227$$ −7.22129 + 12.5076i −0.479294 + 0.830161i −0.999718 0.0237467i $$-0.992440\pi$$
0.520424 + 0.853908i $$0.325774\pi$$
$$228$$ 0 0
$$229$$ 4.00567i 0.264702i −0.991203 0.132351i $$-0.957747\pi$$
0.991203 0.132351i $$-0.0422526\pi$$
$$230$$ 0 0
$$231$$ 10.7295 + 18.5840i 0.705948 + 1.22274i
$$232$$ 0 0
$$233$$ 3.48148i 0.228079i −0.993476 0.114040i $$-0.963621\pi$$
0.993476 0.114040i $$-0.0363791\pi$$
$$234$$ 0 0
$$235$$ −0.976482 + 4.31000i −0.0636987 + 0.281154i
$$236$$ 0 0
$$237$$ −7.95310 + 4.59173i −0.516610 + 0.298265i
$$238$$ 0 0
$$239$$ 19.1155i 1.23648i 0.785990 + 0.618239i $$0.212154\pi$$
−0.785990 + 0.618239i $$0.787846\pi$$
$$240$$ 0 0
$$241$$ 19.3464 + 11.1696i 1.24621 + 0.719499i 0.970351 0.241700i $$-0.0777050\pi$$
0.275857 + 0.961199i $$0.411038\pi$$
$$242$$ 0 0
$$243$$ −7.09611 4.09694i −0.455216 0.262819i
$$244$$ 0 0
$$245$$ −6.00822 + 1.86382i −0.383851 + 0.119075i
$$246$$ 0 0
$$247$$ −1.33118 5.90708i −0.0847010 0.375859i
$$248$$ 0 0
$$249$$ 4.26549 2.46268i 0.270315 0.156066i
$$250$$ 0 0
$$251$$ 8.37281 14.5021i 0.528487 0.915367i −0.470961 0.882154i $$-0.656093\pi$$
0.999448 0.0332127i $$-0.0105739\pi$$
$$252$$ 0 0
$$253$$ −12.8140 + 22.1946i −0.805612 + 1.39536i
$$254$$ 0 0
$$255$$ 4.95248 21.8593i 0.310136 1.36888i
$$256$$ 0 0
$$257$$ −13.6560 + 7.88431i −0.851839 + 0.491810i −0.861271 0.508146i $$-0.830331\pi$$
0.00943181 + 0.999956i $$0.496998\pi$$
$$258$$ 0 0
$$259$$ 23.3428 1.45045
$$260$$ 0 0
$$261$$ −6.29574 −0.389696
$$262$$ 0 0
$$263$$ 10.6443 6.14549i 0.656355 0.378947i −0.134532 0.990909i $$-0.542953\pi$$
0.790887 + 0.611962i $$0.209620\pi$$
$$264$$ 0 0
$$265$$ 12.3404 + 2.79586i 0.758063 + 0.171748i
$$266$$ 0 0
$$267$$ −1.94423 + 3.36751i −0.118985 + 0.206088i
$$268$$ 0 0
$$269$$ 6.82503 11.8213i 0.416130 0.720758i −0.579417 0.815031i $$-0.696720\pi$$
0.995546 + 0.0942739i $$0.0300529\pi$$
$$270$$ 0 0
$$271$$ −1.54558 + 0.892343i −0.0938875 + 0.0542060i −0.546209 0.837649i $$-0.683929\pi$$
0.452321 + 0.891855i $$0.350596\pi$$
$$272$$ 0 0
$$273$$ −12.2748 + 11.3267i −0.742906 + 0.685525i
$$274$$ 0 0
$$275$$ 23.0915 1.80475i 1.39247 0.108830i
$$276$$ 0 0
$$277$$ 16.9723 + 9.79899i 1.01977 + 0.588764i 0.914037 0.405631i $$-0.132948\pi$$
0.105732 + 0.994395i $$0.466281\pi$$
$$278$$ 0 0
$$279$$ 1.02919 + 0.594204i 0.0616161 + 0.0355741i
$$280$$ 0 0
$$281$$ 18.0710i 1.07803i 0.842297 + 0.539013i $$0.181203\pi$$
−0.842297 + 0.539013i $$0.818797\pi$$
$$282$$ 0 0
$$283$$ −6.31095 + 3.64363i −0.375147 + 0.216591i −0.675705 0.737172i $$-0.736161\pi$$
0.300558 + 0.953764i $$0.402827\pi$$
$$284$$ 0 0
$$285$$ 1.22704 5.41590i 0.0726834 0.320810i
$$286$$ 0 0
$$287$$ 17.3230i 1.02254i
$$288$$ 0 0
$$289$$ 14.4729 + 25.0678i 0.851347 + 1.47458i
$$290$$ 0 0
$$291$$ 9.28489i 0.544290i
$$292$$ 0 0
$$293$$ 6.14226 10.6387i 0.358835 0.621520i −0.628932 0.777461i $$-0.716508\pi$$
0.987766 + 0.155941i $$0.0498408\pi$$
$$294$$ 0 0
$$295$$ 3.99241 4.31662i 0.232447 0.251323i
$$296$$ 0 0
$$297$$ −13.0608 22.6219i −0.757864 1.31266i
$$298$$ 0 0
$$299$$ −19.0448 5.93194i −1.10139 0.343053i
$$300$$ 0 0
$$301$$ −33.7406 + 19.4801i −1.94478 + 1.12282i
$$302$$ 0 0
$$303$$ 21.5619 + 12.4488i 1.23870 + 0.715163i
$$304$$ 0 0
$$305$$ 15.9910 + 14.7900i 0.915645 + 0.846874i
$$306$$ 0 0
$$307$$ −31.1511 −1.77789 −0.888943 0.458018i $$-0.848560\pi$$
−0.888943 + 0.458018i $$0.848560\pi$$
$$308$$ 0 0
$$309$$ −7.29185 12.6299i −0.414819 0.718487i
$$310$$ 0 0
$$311$$ 0.694196 0.0393643 0.0196821 0.999806i $$-0.493735\pi$$
0.0196821 + 0.999806i $$0.493735\pi$$
$$312$$ 0 0
$$313$$ 14.5944i 0.824925i −0.910975 0.412463i $$-0.864669\pi$$
0.910975 0.412463i $$-0.135331\pi$$
$$314$$ 0 0
$$315$$ 5.44098 1.68785i 0.306565 0.0950998i
$$316$$ 0 0
$$317$$ −14.5641 −0.817999 −0.408999 0.912535i $$-0.634122\pi$$
−0.408999 + 0.912535i $$0.634122\pi$$
$$318$$ 0 0
$$319$$ −31.0560 17.9302i −1.73880 1.00390i
$$320$$ 0 0
$$321$$ −3.01460 + 5.22143i −0.168258 + 0.291432i
$$322$$ 0 0
$$323$$ 5.69182 + 9.85852i 0.316701 + 0.548543i
$$324$$ 0 0
$$325$$ 5.32151 + 17.2244i 0.295184 + 0.955440i
$$326$$ 0 0
$$327$$ −8.63311 14.9530i −0.477412 0.826902i
$$328$$ 0 0
$$329$$ −3.09556 + 5.36167i −0.170664 + 0.295598i
$$330$$ 0 0
$$331$$ −8.71991 5.03444i −0.479290 0.276718i 0.240831 0.970567i $$-0.422580\pi$$
−0.720120 + 0.693849i $$0.755913\pi$$
$$332$$ 0 0
$$333$$ −6.06013 −0.332093
$$334$$ 0 0
$$335$$ −1.35733 + 0.421058i −0.0741588 + 0.0230049i
$$336$$ 0 0
$$337$$ 0.974536i 0.0530863i 0.999648 + 0.0265432i $$0.00844995\pi$$
−0.999648 + 0.0265432i $$0.991550\pi$$
$$338$$ 0 0
$$339$$ −5.65006 −0.306869
$$340$$ 0 0
$$341$$ 3.38457 + 5.86225i 0.183285 + 0.317459i
$$342$$ 0 0
$$343$$ 13.1154 0.708165
$$344$$ 0 0
$$345$$ −13.4299 12.4212i −0.723040 0.668735i
$$346$$ 0 0
$$347$$ 7.29440 + 4.21142i 0.391584 + 0.226081i 0.682846 0.730562i $$-0.260742\pi$$
−0.291262 + 0.956643i $$0.594075\pi$$
$$348$$ 0 0
$$349$$ 3.51639 2.03019i 0.188228 0.108674i −0.402925 0.915233i $$-0.632006\pi$$
0.591153 + 0.806560i $$0.298673\pi$$
$$350$$ 0 0
$$351$$ 14.9419 13.7878i 0.797540 0.735940i
$$352$$ 0 0
$$353$$ 1.95925 + 3.39351i 0.104280 + 0.180618i 0.913444 0.406965i $$-0.133413\pi$$
−0.809164 + 0.587583i $$0.800079\pi$$
$$354$$ 0 0
$$355$$ −21.0537 + 22.7634i −1.11741 + 1.20815i
$$356$$ 0 0
$$357$$ 15.6999 27.1930i 0.830927 1.43921i
$$358$$ 0 0
$$359$$ 4.23682i 0.223611i −0.993730 0.111805i $$-0.964337\pi$$
0.993730 0.111805i $$-0.0356633\pi$$
$$360$$ 0 0
$$361$$ −8.08978 14.0119i −0.425778 0.737469i
$$362$$ 0 0
$$363$$ 15.4663i 0.811768i
$$364$$ 0 0
$$365$$ −2.41620 + 10.6646i −0.126470 + 0.558213i
$$366$$ 0 0
$$367$$ 19.9499 11.5181i 1.04138 0.601238i 0.121153 0.992634i $$-0.461341\pi$$
0.920222 + 0.391396i $$0.128008\pi$$
$$368$$ 0 0
$$369$$ 4.49730i 0.234120i
$$370$$ 0 0
$$371$$ 15.3515 + 8.86319i 0.797010 + 0.460154i
$$372$$ 0 0
$$373$$ 20.2984 + 11.7193i 1.05101 + 0.606801i 0.922932 0.384964i $$-0.125786\pi$$
0.128078 + 0.991764i $$0.459119\pi$$
$$374$$ 0 0
$$375$$ −2.38567 + 16.3600i −0.123195 + 0.844826i
$$376$$ 0 0
$$377$$ 8.30032 26.6487i 0.427488 1.37248i
$$378$$ 0 0
$$379$$ 18.8942 10.9086i 0.970532 0.560337i 0.0711334 0.997467i $$-0.477338\pi$$
0.899398 + 0.437130i $$0.144005\pi$$
$$380$$ 0 0
$$381$$ 8.46398 14.6600i 0.433623 0.751057i
$$382$$ 0 0
$$383$$ 6.94924 12.0364i 0.355089 0.615033i −0.632044 0.774933i $$-0.717784\pi$$
0.987133 + 0.159900i $$0.0511171\pi$$
$$384$$ 0 0
$$385$$ 31.6466 + 7.16990i 1.61286 + 0.365412i
$$386$$ 0 0
$$387$$ 8.75956 5.05733i 0.445273 0.257079i
$$388$$ 0 0
$$389$$ −6.66919 −0.338141 −0.169071 0.985604i $$-0.554077\pi$$
−0.169071 + 0.985604i $$0.554077\pi$$
$$390$$ 0 0
$$391$$ 37.5003 1.89647
$$392$$ 0 0
$$393$$ −5.59356 + 3.22945i −0.282158 + 0.162904i
$$394$$ 0 0
$$395$$ −3.06839 + 13.5433i −0.154388 + 0.681437i
$$396$$ 0 0
$$397$$ −1.66745 + 2.88812i −0.0836871 + 0.144950i −0.904831 0.425771i $$-0.860003\pi$$
0.821144 + 0.570721i $$0.193336\pi$$
$$398$$ 0 0
$$399$$ 3.88984 6.73741i 0.194736 0.337292i
$$400$$ 0 0
$$401$$ −17.1405 + 9.89607i −0.855956 + 0.494186i −0.862656 0.505791i $$-0.831201\pi$$
0.00670012 + 0.999978i $$0.497867\pi$$
$$402$$ 0 0
$$403$$ −3.87205 + 3.57298i −0.192880 + 0.177983i
$$404$$ 0 0
$$405$$ 12.5978 3.90798i 0.625990 0.194189i
$$406$$ 0 0
$$407$$ −29.8937 17.2592i −1.48178 0.855505i
$$408$$ 0 0
$$409$$ 5.06018 + 2.92150i 0.250210 + 0.144459i 0.619860 0.784712i $$-0.287189\pi$$
−0.369651 + 0.929171i $$0.620523\pi$$
$$410$$ 0 0
$$411$$ 8.17132i 0.403062i
$$412$$ 0 0
$$413$$ 7.13375 4.11868i 0.351029 0.202667i
$$414$$ 0 0
$$415$$ 1.64567 7.26368i 0.0807829 0.356560i
$$416$$ 0 0
$$417$$ 16.7037i 0.817982i
$$418$$ 0 0
$$419$$ −17.8553 30.9262i −0.872287 1.51085i −0.859625 0.510926i $$-0.829303\pi$$
−0.0126627 0.999920i $$-0.504031\pi$$
$$420$$ 0 0
$$421$$ 24.9384i 1.21542i −0.794159 0.607711i $$-0.792088\pi$$
0.794159 0.607711i $$-0.207912\pi$$
$$422$$ 0 0
$$423$$ 0.803653 1.39197i 0.0390750 0.0676798i
$$424$$ 0 0
$$425$$ −19.1813 27.9414i −0.930430 1.35536i
$$426$$ 0 0
$$427$$ 15.2578 + 26.4272i 0.738375 + 1.27890i
$$428$$ 0 0
$$429$$ 24.0944 5.42975i 1.16329 0.262151i
$$430$$ 0 0
$$431$$ −26.2773 + 15.1712i −1.26573 + 0.730770i −0.974177 0.225785i $$-0.927505\pi$$
−0.291553 + 0.956555i $$0.594172\pi$$
$$432$$ 0 0
$$433$$ −10.1016 5.83216i −0.485452 0.280276i 0.237234 0.971453i $$-0.423759\pi$$
−0.722686 + 0.691177i $$0.757093\pi$$
$$434$$ 0 0
$$435$$ 17.3805 18.7919i 0.833331 0.901002i
$$436$$ 0 0
$$437$$ 9.29116 0.444457
$$438$$ 0 0
$$439$$ 1.74627 + 3.02462i 0.0833447 + 0.144357i 0.904685 0.426082i $$-0.140106\pi$$
−0.821340 + 0.570439i $$0.806773\pi$$
$$440$$ 0 0
$$441$$ 2.28796 0.108950
$$442$$ 0 0
$$443$$ 27.7833i 1.32002i −0.751255 0.660012i $$-0.770551\pi$$
0.751255 0.660012i $$-0.229449\pi$$
$$444$$ 0 0
$$445$$ 1.74210 + 5.61584i 0.0825832 + 0.266216i
$$446$$ 0 0
$$447$$ −8.97820 −0.424654
$$448$$ 0 0
$$449$$ −3.16257 1.82591i −0.149251 0.0861700i 0.423515 0.905889i $$-0.360796\pi$$
−0.572766 + 0.819719i $$0.694129\pi$$
$$450$$ 0 0
$$451$$ −12.8082 + 22.1845i −0.603116 + 1.04463i
$$452$$ 0 0
$$453$$ −11.1944 19.3893i −0.525958 0.910987i
$$454$$ 0 0
$$455$$ −0.0290415 + 25.2559i −0.00136149 + 1.18402i
$$456$$ 0 0
$$457$$ 21.1718 + 36.6706i 0.990374 + 1.71538i 0.615061 + 0.788480i $$0.289131\pi$$
0.375313 + 0.926898i $$0.377535\pi$$
$$458$$ 0 0
$$459$$ −19.1112 + 33.1016i −0.892035 + 1.54505i
$$460$$ 0 0
$$461$$ 2.87450 + 1.65960i 0.133879 + 0.0772951i 0.565444 0.824787i $$-0.308705\pi$$
−0.431565 + 0.902082i $$0.642038\pi$$
$$462$$ 0 0
$$463$$ −26.2130 −1.21822 −0.609111 0.793085i $$-0.708474\pi$$
−0.609111 + 0.793085i $$0.708474\pi$$
$$464$$ 0 0
$$465$$ −4.61488 + 1.43159i −0.214010 + 0.0663883i
$$466$$ 0 0
$$467$$ 2.45243i 0.113485i 0.998389 + 0.0567424i $$0.0180714\pi$$
−0.998389 + 0.0567424i $$0.981929\pi$$
$$468$$ 0 0
$$469$$ −1.99094 −0.0919330
$$470$$ 0 0
$$471$$ −14.2862 24.7444i −0.658272 1.14016i
$$472$$ 0 0
$$473$$ 57.6128 2.64904
$$474$$ 0 0
$$475$$ −4.75240 6.92283i −0.218055 0.317641i
$$476$$ 0 0
$$477$$ −3.98548 2.30102i −0.182482 0.105356i
$$478$$ 0 0
$$479$$ 1.89707 1.09528i 0.0866795 0.0500444i −0.456034 0.889962i $$-0.650730\pi$$
0.542713 + 0.839918i $$0.317397\pi$$
$$480$$ 0 0
$$481$$ 7.98969 25.6514i 0.364299 1.16960i
$$482$$ 0 0
$$483$$ −12.8140 22.1946i −0.583059 1.00989i
$$484$$ 0 0
$$485$$ −10.3072 9.53310i −0.468028 0.432876i
$$486$$ 0 0
$$487$$ 9.75727 16.9001i 0.442144 0.765816i −0.555704 0.831380i $$-0.687551\pi$$
0.997848 + 0.0655640i $$0.0208847\pi$$
$$488$$ 0 0
$$489$$ 0.824728i 0.0372955i
$$490$$ 0 0
$$491$$ 15.6383 + 27.0863i 0.705747 + 1.22239i 0.966421 + 0.256963i $$0.0827217\pi$$
−0.260674 + 0.965427i $$0.583945\pi$$
$$492$$ 0 0
$$493$$ 52.4727i 2.36325i
$$494$$ 0 0
$$495$$ −8.21592 1.86141i −0.369278 0.0836643i
$$496$$ 0 0
$$497$$ −37.6193 + 21.7195i −1.68746 + 0.974254i
$$498$$ 0 0
$$499$$ 31.5312i 1.41153i −0.708445 0.705766i $$-0.750603\pi$$
0.708445 0.705766i $$-0.249397\pi$$
$$500$$ 0 0
$$501$$ 8.10576 + 4.67986i 0.362139 + 0.209081i
$$502$$ 0 0
$$503$$ −4.86709 2.81002i −0.217013 0.125293i 0.387553 0.921847i $$-0.373320\pi$$
−0.604566 + 0.796555i $$0.706654\pi$$
$$504$$ 0 0
$$505$$ 35.9578 11.1545i 1.60010 0.496369i
$$506$$ 0 0
$$507$$ 8.24557 + 17.3657i 0.366199 + 0.771238i
$$508$$ 0 0
$$509$$ −13.7002 + 7.90980i −0.607250 + 0.350596i −0.771888 0.635758i $$-0.780688\pi$$
0.164639 + 0.986354i $$0.447354\pi$$
$$510$$ 0 0
$$511$$ −7.65963 + 13.2669i −0.338842 + 0.586892i
$$512$$ 0 0
$$513$$ −4.73504 + 8.20132i −0.209057 + 0.362097i
$$514$$ 0 0
$$515$$ −21.5073 4.87273i −0.947725 0.214718i
$$516$$ 0 0
$$517$$ 7.92861 4.57758i 0.348700 0.201322i
$$518$$ 0 0
$$519$$ −11.3071 −0.496326
$$520$$ 0 0
$$521$$ 12.6030 0.552149 0.276074 0.961136i $$-0.410966\pi$$
0.276074 + 0.961136i $$0.410966\pi$$
$$522$$ 0 0
$$523$$ −23.8881 + 13.7918i −1.04456 + 0.603074i −0.921120 0.389278i $$-0.872724\pi$$
−0.123435 + 0.992353i $$0.539391\pi$$
$$524$$ 0 0
$$525$$ −9.98279 + 20.9002i −0.435685 + 0.912159i
$$526$$ 0 0
$$527$$ 4.95248 8.57794i 0.215733 0.373661i
$$528$$ 0 0
$$529$$ 3.80361 6.58804i 0.165374 0.286437i
$$530$$ 0 0
$$531$$ −1.85203 + 1.06927i −0.0803712 + 0.0464023i
$$532$$ 0 0
$$533$$ −19.0362 5.92925i −0.824550 0.256824i
$$534$$ 0 0
$$535$$ 2.70118 + 8.70755i 0.116782 + 0.376460i
$$536$$ 0 0
$$537$$ 5.83269 + 3.36751i 0.251699 + 0.145319i
$$538$$ 0 0
$$539$$ 11.2862 + 6.51608i 0.486130 + 0.280667i
$$540$$ 0 0
$$541$$ 27.6835i 1.19021i 0.803650 + 0.595103i $$0.202889\pi$$
−0.803650 + 0.595103i $$0.797111\pi$$
$$542$$ 0 0
$$543$$ −9.94387 + 5.74110i −0.426732 + 0.246374i
$$544$$ 0 0
$$545$$ −25.4633 5.76902i −1.09073 0.247118i
$$546$$ 0 0
$$547$$ 24.7863i 1.05979i 0.848064 + 0.529893i $$0.177768\pi$$
−0.848064 + 0.529893i $$0.822232\pi$$
$$548$$ 0 0
$$549$$ −3.96114 6.86090i −0.169057 0.292816i
$$550$$ 0 0
$$551$$ 13.0007i 0.553850i
$$552$$ 0 0
$$553$$ −9.72715 + 16.8479i −0.413641 + 0.716446i
$$554$$ 0 0
$$555$$ 16.7301 18.0886i 0.710151 0.767820i
$$556$$ 0 0
$$557$$ 16.3096 + 28.2490i 0.691058 + 1.19695i 0.971491 + 0.237075i $$0.0761886\pi$$
−0.280433 + 0.959874i $$0.590478\pi$$
$$558$$ 0 0
$$559$$ 9.85811 + 43.7452i 0.416954 + 1.85022i
$$560$$ 0 0
$$561$$ −40.2119 + 23.2164i −1.69775 + 0.980196i
$$562$$ 0 0
$$563$$ 29.6082 + 17.0943i 1.24783 + 0.720438i 0.970677 0.240387i $$-0.0772742\pi$$
0.277158 + 0.960824i $$0.410608\pi$$
$$564$$ 0 0
$$565$$ −5.80111 + 6.27219i −0.244054 + 0.263873i
$$566$$ 0 0
$$567$$ 18.4786 0.776027
$$568$$ 0 0
$$569$$ −10.1721 17.6186i −0.426438 0.738612i 0.570116 0.821564i $$-0.306898\pi$$
−0.996554 + 0.0829524i $$0.973565\pi$$
$$570$$ 0 0
$$571$$ 46.7490 1.95639 0.978193 0.207700i $$-0.0665978\pi$$
0.978193 + 0.207700i $$0.0665978\pi$$
$$572$$ 0 0
$$573$$ 16.9167i 0.706707i
$$574$$ 0 0
$$575$$ −27.5778 + 2.15538i −1.15007 + 0.0898855i
$$576$$ 0 0
$$577$$ 11.8607 0.493768 0.246884 0.969045i $$-0.420593\pi$$
0.246884 + 0.969045i $$0.420593\pi$$
$$578$$ 0 0
$$579$$ −4.05022 2.33839i −0.168321 0.0971803i
$$580$$ 0 0
$$581$$ 5.21697 9.03606i 0.216436 0.374879i
$$582$$ 0 0
$$583$$ −13.1065 22.7011i −0.542816 0.940185i
$$584$$ 0 0
$$585$$ 0.00753961 6.55681i 0.000311725 0.271091i
$$586$$ 0 0
$$587$$ −5.59483 9.69054i −0.230924 0.399971i 0.727157 0.686472i $$-0.240841\pi$$
−0.958080 + 0.286500i $$0.907508\pi$$
$$588$$ 0 0
$$589$$ 1.22704 2.12529i 0.0505592 0.0875710i
$$590$$ 0 0
$$591$$ −29.6574 17.1227i −1.21994 0.704335i
$$592$$ 0 0
$$593$$ −27.6058 −1.13363 −0.566817 0.823844i $$-0.691825\pi$$
−0.566817 + 0.823844i $$0.691825\pi$$
$$594$$ 0 0
$$595$$ −14.0676 45.3486i −0.576717 1.85911i
$$596$$ 0 0
$$597$$ 8.90733i 0.364553i
$$598$$ 0 0
$$599$$ 29.3193 1.19795 0.598976 0.800767i $$-0.295574\pi$$
0.598976 + 0.800767i $$0.295574\pi$$
$$600$$ 0 0
$$601$$ −16.1764 28.0184i −0.659850 1.14289i −0.980654 0.195748i $$-0.937287\pi$$
0.320804 0.947146i $$-0.396047\pi$$
$$602$$ 0 0
$$603$$ 0.516878 0.0210489
$$604$$ 0 0
$$605$$ −17.1692 15.8797i −0.698029 0.645602i
$$606$$ 0 0
$$607$$ −15.4492 8.91963i −0.627066 0.362036i 0.152549 0.988296i $$-0.451252\pi$$
−0.779615 + 0.626259i $$0.784585\pi$$
$$608$$ 0 0
$$609$$ 31.0560 17.9302i 1.25845 0.726567i
$$610$$ 0 0
$$611$$ 4.83240 + 5.23689i 0.195498 + 0.211862i
$$612$$ 0 0
$$613$$ −13.8288 23.9523i −0.558542 0.967423i −0.997619 0.0689733i $$-0.978028\pi$$
0.439077 0.898450i $$-0.355306\pi$$
$$614$$ 0 0
$$615$$ −13.4238 12.4156i −0.541300 0.500645i
$$616$$ 0 0
$$617$$ −15.8577 + 27.4664i −0.638408 + 1.10575i 0.347374 + 0.937727i $$0.387073\pi$$
−0.985782 + 0.168028i $$0.946260\pi$$
$$618$$ 0 0
$$619$$ 47.4958i 1.90902i 0.298186 + 0.954508i $$0.403618\pi$$
−0.298186 + 0.954508i $$0.596382\pi$$
$$620$$ 0 0
$$621$$ 15.5983 + 27.0170i 0.625938 + 1.08416i
$$622$$ 0 0
$$623$$ 8.23735i 0.330022i
$$624$$ 0 0
$$625$$ 15.7119 + 19.4457i 0.628478 + 0.777828i
$$626$$ 0 0
$$627$$ −9.96300 + 5.75214i −0.397884 + 0.229718i
$$628$$ 0 0
$$629$$ 50.5090i 2.01392i
$$630$$ 0 0
$$631$$ −7.47459 4.31546i −0.297559 0.171796i 0.343787 0.939048i $$-0.388290\pi$$
−0.641346 + 0.767252i $$0.721624\pi$$
$$632$$ 0 0
$$633$$ 6.58020 + 3.79908i 0.261540 + 0.151000i
$$634$$ 0 0
$$635$$ −7.58401 24.4479i −0.300962 0.970185i
$$636$$ 0 0
$$637$$ −3.01645 + 9.68450i −0.119516 + 0.383714i
$$638$$ 0 0
$$639$$ 9.76654 5.63871i 0.386358 0.223064i
$$640$$ 0 0
$$641$$ 7.59556 13.1559i 0.300007 0.519627i −0.676131 0.736782i $$-0.736344\pi$$
0.976137 + 0.217155i $$0.0696778\pi$$
$$642$$ 0 0
$$643$$ −6.80445 + 11.7856i −0.268341 + 0.464781i −0.968434 0.249272i $$-0.919809\pi$$
0.700092 + 0.714052i $$0.253142\pi$$
$$644$$ 0 0
$$645$$ −9.08687 + 40.1077i −0.357795 + 1.57924i
$$646$$ 0 0
$$647$$ 6.95677 4.01649i 0.273499 0.157905i −0.356978 0.934113i $$-0.616193\pi$$
0.630477 + 0.776208i $$0.282860\pi$$
$$648$$ 0 0
$$649$$ −12.1811 −0.478148
$$650$$ 0 0
$$651$$ −6.76914 −0.265304
$$652$$ 0 0
$$653$$ 32.3286 18.6649i 1.26512 0.730415i 0.291055 0.956706i $$-0.405994\pi$$
0.974060 + 0.226292i $$0.0726602\pi$$
$$654$$ 0 0
$$655$$ −2.15806 + 9.52524i −0.0843222 + 0.372182i
$$656$$ 0 0
$$657$$ 1.98855 3.44428i 0.0775809 0.134374i
$$658$$ 0 0
$$659$$ 3.72275 6.44799i 0.145018 0.251178i −0.784362 0.620303i $$-0.787009\pi$$
0.929380 + 0.369126i $$0.120343\pi$$
$$660$$ 0 0
$$661$$ 43.5907 25.1671i 1.69548 0.978888i 0.745542 0.666459i $$-0.232191\pi$$
0.949941 0.312429i $$-0.101142\pi$$
$$662$$ 0 0
$$663$$ −24.5087 26.5602i −0.951840 1.03151i
$$664$$ 0 0
$$665$$ −3.48543 11.2357i −0.135159 0.435701i
$$666$$ 0 0
$$667$$ 37.0896 + 21.4137i 1.43612 + 0.829142i
$$668$$ 0 0
$$669$$ 21.2979 + 12.2964i 0.823426 + 0.475405i
$$670$$ 0 0
$$671$$ 45.1251i 1.74203i
$$672$$ 0 0
$$673$$ −12.7485 + 7.36034i −0.491418 + 0.283720i −0.725163 0.688578i $$-0.758235\pi$$
0.233744 + 0.972298i $$0.424902\pi$$
$$674$$ 0 0
$$675$$ 12.1519 25.4414i 0.467725 0.979240i
$$676$$ 0 0
$$677$$ 22.0788i 0.848559i 0.905531 + 0.424279i $$0.139473\pi$$
−0.905531 + 0.424279i $$0.860527\pi$$
$$678$$ 0 0
$$679$$ −9.83460 17.0340i −0.377417 0.653706i
$$680$$ 0 0
$$681$$ 21.3571i 0.818405i
$$682$$ 0 0
$$683$$ 19.9013 34.4700i 0.761501 1.31896i −0.180576 0.983561i $$-0.557796\pi$$
0.942077 0.335397i $$-0.108870\pi$$
$$684$$ 0 0
$$685$$ −9.07106 8.38976i −0.346587 0.320556i
$$686$$ 0 0
$$687$$ −2.96171 5.12983i −0.112996 0.195715i
$$688$$ 0 0
$$689$$ 14.9942 13.8361i 0.571234 0.527113i
$$690$$ 0 0
$$691$$ −34.6907 + 20.0287i −1.31970 + 0.761927i −0.983680 0.179928i $$-0.942413\pi$$
−0.336017 + 0.941856i $$0.609080\pi$$
$$692$$ 0 0
$$693$$ −10.2206 5.90089i −0.388250 0.224156i
$$694$$ 0 0
$$695$$ 18.5429 + 17.1502i 0.703372 + 0.650544i
$$696$$ 0 0
$$697$$ 37.4833 1.41978
$$698$$ 0 0
$$699$$ −2.57413 4.45853i −0.0973627 0.168637i
$$700$$ 0 0
$$701$$ 12.1911 0.460452 0.230226 0.973137i $$-0.426053\pi$$
0.230226 + 0.973137i $$0.426053\pi$$
$$702$$ 0 0
$$703$$ 12.5142i 0.471983i
$$704$$ 0 0
$$705$$ 1.93620 + 6.24156i 0.0729216 + 0.235071i
$$706$$ 0 0
$$707$$ 52.7432 1.98361
$$708$$ 0 0
$$709$$ −18.7237 10.8101i −0.703183 0.405983i 0.105349 0.994435i $$-0.466404\pi$$
−0.808532 + 0.588452i $$0.799737\pi$$
$$710$$ 0 0
$$711$$ 2.52531 4.37397i 0.0947066 0.164037i
$$712$$ 0 0
$$713$$ −4.04214 7.00119i −0.151379 0.262197i
$$714$$ 0 0
$$715$$ 18.7109 32.3223i 0.699748 1.20879i
$$716$$ 0 0
$$717$$ 14.1336 + 24.4801i 0.527829 + 0.914227i
$$718$$ 0 0
$$719$$ −1.39194 + 2.41091i −0.0519105 + 0.0899117i −0.890813 0.454370i $$-0.849864\pi$$
0.838903 + 0.544282i $$0.183198\pi$$
$$720$$ 0 0
$$721$$ −26.7552 15.4471i −0.996415 0.575281i
$$722$$ 0 0
$$723$$ 33.0343 1.22856
$$724$$ 0 0
$$725$$ −3.01593 38.5885i −0.112009 1.43314i
$$726$$ 0 0
$$727$$ 22.5075i 0.834756i 0.908733 + 0.417378i $$0.137051\pi$$
−0.908733 + 0.417378i $$0.862949\pi$$
$$728$$ 0 0
$$729$$ −29.8131 −1.10419
$$730$$ 0 0
$$731$$ −42.1510 73.0077i −1.55901 2.70029i
$$732$$ 0 0
$$733$$ −8.58058 −0.316931 −0.158465 0.987365i $$-0.550655\pi$$
−0.158465 + 0.987365i $$0.550655\pi$$
$$734$$ 0 0
$$735$$ −6.31632 + 6.82924i −0.232981 + 0.251900i
$$736$$ 0 0
$$737$$ 2.54968 + 1.47206i 0.0939187 + 0.0542240i
$$738$$ 0 0
$$739$$ −4.98591 + 2.87861i −0.183410 + 0.105892i −0.588894 0.808211i $$-0.700436\pi$$
0.405484 + 0.914102i $$0.367103\pi$$
$$740$$ 0 0
$$741$$ −6.07234 6.58061i −0.223073 0.241745i
$$742$$ 0 0
$$743$$ 13.3320 + 23.0918i 0.489105 + 0.847154i 0.999921 0.0125354i $$-0.00399025\pi$$
−0.510817 + 0.859690i $$0.670657\pi$$
$$744$$ 0 0
$$745$$ −9.21821 + 9.96678i −0.337729 + 0.365155i
$$746$$ 0 0
$$747$$ −1.35440 + 2.34590i −0.0495550 + 0.0858318i
$$748$$ 0 0
$$749$$ 12.7723i 0.466689i
$$750$$ 0 0
$$751$$ 21.8390 + 37.8262i 0.796916 + 1.38030i 0.921615 + 0.388104i $$0.126870\pi$$
−0.124699 + 0.992195i $$0.539797\pi$$
$$752$$ 0 0
$$753$$ 24.7627i 0.902404i
$$754$$ 0 0
$$755$$ −33.0178 7.48058i −1.20164 0.272246i
$$756$$ 0 0
$$757$$ 27.9105 16.1141i 1.01442 0.585678i 0.101941 0.994790i $$-0.467495\pi$$
0.912484 + 0.409112i $$0.134162\pi$$
$$758$$ 0 0
$$759$$ 37.8977i 1.37560i
$$760$$ 0 0
$$761$$ 10.4017 + 6.00543i 0.377062 + 0.217697i 0.676539 0.736407i $$-0.263479\pi$$
−0.299477 + 0.954103i $$0.596812\pi$$
$$762$$ 0 0
$$763$$ −31.6765 18.2884i −1.14677 0.662086i
$$764$$ 0 0
$$765$$ 3.65217 + 11.7732i 0.132044 + 0.425660i
$$766$$ 0 0
$$767$$ −2.08430 9.24902i −0.0752596 0.333963i
$$768$$ 0 0
$$769$$ −43.3628 + 25.0355i −1.56370 + 0.902804i −0.566826 + 0.823838i $$0.691829\pi$$
−0.996877 + 0.0789667i $$0.974838\pi$$
$$770$$ 0 0
$$771$$ −11.6590 + 20.1940i −0.419888 + 0.727268i
$$772$$ 0 0
$$773$$ 24.3030 42.0940i 0.874118 1.51402i 0.0164180 0.999865i $$-0.494774\pi$$
0.857700 0.514151i $$-0.171893\pi$$
$$774$$ 0 0
$$775$$ −3.14903 + 6.59288i −0.113117 + 0.236823i
$$776$$ 0 0
$$777$$ 29.8937 17.2592i 1.07243 0.619169i
$$778$$ 0 0
$$779$$ 9.28695 0.332740
$$780$$ 0 0
$$781$$ 64.2359 2.29854
$$782$$ 0 0
$$783$$ −37.8038 + 21.8261i −1.35100 + 0.780000i
$$784$$ 0 0
$$785$$ −42.1370 9.54665i −1.50394 0.340734i
$$786$$ 0 0
$$787$$ −20.3298 + 35.2122i −0.724679 + 1.25518i 0.234427 + 0.972134i $$0.424679\pi$$
−0.959106 + 0.283047i $$0.908655\pi$$
$$788$$ 0 0
$$789$$ 9.08769 15.7403i 0.323530 0.560371i
$$790$$ 0 0
$$791$$ −10.3656 + 5.98457i −0.368558 + 0.212787i
$$792$$ 0 0
$$793$$ 34.2633 7.72134i 1.21672 0.274193i
$$794$$ 0 0