Properties

Label 260.2.x.a.121.3
Level $260$
Weight $2$
Character 260.121
Analytic conductor $2.076$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 121.3
Root \(0.665665 + 1.24775i\) of defining polynomial
Character \(\chi\) \(=\) 260.121
Dual form 260.2.x.a.101.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0473938 - 0.0820885i) q^{3} +1.00000i q^{5} +(0.716063 - 0.413419i) q^{7} +(1.49551 + 2.59030i) q^{9} +O(q^{10})\) \(q+(0.0473938 - 0.0820885i) q^{3} +1.00000i q^{5} +(0.716063 - 0.413419i) q^{7} +(1.49551 + 2.59030i) q^{9} +(1.50000 + 0.866025i) q^{11} +(3.32235 - 1.40072i) q^{13} +(0.0820885 + 0.0473938i) q^{15} +(0.716063 + 1.24026i) q^{17} +(-0.926118 + 0.534695i) q^{19} -0.0783740i q^{21} +(1.54290 - 2.67238i) q^{23} -1.00000 q^{25} +0.567874 q^{27} +(-3.72756 + 6.45632i) q^{29} -5.84325i q^{31} +(0.142181 - 0.0820885i) q^{33} +(0.413419 + 0.716063i) q^{35} +(0.851811 + 0.491793i) q^{37} +(0.0424756 - 0.339112i) q^{39} +(-3.69615 - 2.13397i) q^{41} +(-4.77046 - 8.26268i) q^{43} +(-2.59030 + 1.49551i) q^{45} -3.46410i q^{47} +(-3.15817 + 5.47011i) q^{49} +0.135748 q^{51} +0.334308 q^{53} +(-0.866025 + 1.50000i) q^{55} +0.101365i q^{57} +(-9.98052 + 5.76225i) q^{59} +(-1.35824 - 2.35255i) q^{61} +(2.14176 + 1.23654i) q^{63} +(1.40072 + 3.32235i) q^{65} +(-11.9122 - 6.87752i) q^{67} +(-0.146248 - 0.253309i) q^{69} +(8.46704 - 4.88845i) q^{71} -11.1806i q^{73} +(-0.0473938 + 0.0820885i) q^{75} +1.43213 q^{77} -0.252387 q^{79} +(-4.45961 + 7.72427i) q^{81} -5.67165i q^{83} +(-1.24026 + 0.716063i) q^{85} +(0.353326 + 0.611979i) q^{87} +(3.98052 + 2.29815i) q^{89} +(1.79992 - 2.37653i) q^{91} +(-0.479664 - 0.276934i) q^{93} +(-0.534695 - 0.926118i) q^{95} +(8.25698 - 4.76717i) q^{97} +5.18059i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 6 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{3} + 6 q^{7} - 4 q^{9} + 12 q^{11} - 8 q^{13} - 6 q^{15} + 6 q^{17} - 6 q^{23} - 8 q^{25} + 4 q^{27} - 6 q^{33} - 6 q^{35} + 6 q^{37} - 4 q^{39} + 12 q^{41} + 10 q^{43} - 4 q^{49} + 24 q^{53} - 24 q^{59} - 4 q^{61} + 24 q^{63} - 54 q^{67} - 24 q^{69} - 36 q^{71} + 2 q^{75} + 12 q^{77} - 16 q^{79} + 8 q^{81} + 18 q^{85} - 6 q^{87} - 24 q^{89} + 24 q^{93} - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0473938 0.0820885i 0.0273628 0.0473938i −0.852020 0.523510i \(-0.824622\pi\)
0.879383 + 0.476116i \(0.157956\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0.716063 0.413419i 0.270646 0.156258i −0.358535 0.933516i \(-0.616724\pi\)
0.629181 + 0.777259i \(0.283390\pi\)
\(8\) 0 0
\(9\) 1.49551 + 2.59030i 0.498503 + 0.863432i
\(10\) 0 0
\(11\) 1.50000 + 0.866025i 0.452267 + 0.261116i 0.708787 0.705422i \(-0.249243\pi\)
−0.256520 + 0.966539i \(0.582576\pi\)
\(12\) 0 0
\(13\) 3.32235 1.40072i 0.921453 0.388490i
\(14\) 0 0
\(15\) 0.0820885 + 0.0473938i 0.0211951 + 0.0122370i
\(16\) 0 0
\(17\) 0.716063 + 1.24026i 0.173671 + 0.300807i 0.939700 0.341999i \(-0.111104\pi\)
−0.766030 + 0.642805i \(0.777770\pi\)
\(18\) 0 0
\(19\) −0.926118 + 0.534695i −0.212466 + 0.122667i −0.602457 0.798151i \(-0.705811\pi\)
0.389991 + 0.920819i \(0.372478\pi\)
\(20\) 0 0
\(21\) 0.0783740i 0.0171026i
\(22\) 0 0
\(23\) 1.54290 2.67238i 0.321717 0.557231i −0.659125 0.752033i \(-0.729073\pi\)
0.980842 + 0.194803i \(0.0624066\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0.567874 0.109287
\(28\) 0 0
\(29\) −3.72756 + 6.45632i −0.692190 + 1.19891i 0.278928 + 0.960312i \(0.410021\pi\)
−0.971119 + 0.238597i \(0.923313\pi\)
\(30\) 0 0
\(31\) 5.84325i 1.04948i −0.851263 0.524740i \(-0.824163\pi\)
0.851263 0.524740i \(-0.175837\pi\)
\(32\) 0 0
\(33\) 0.142181 0.0820885i 0.0247506 0.0142898i
\(34\) 0 0
\(35\) 0.413419 + 0.716063i 0.0698806 + 0.121037i
\(36\) 0 0
\(37\) 0.851811 + 0.491793i 0.140037 + 0.0808503i 0.568382 0.822765i \(-0.307570\pi\)
−0.428345 + 0.903615i \(0.640903\pi\)
\(38\) 0 0
\(39\) 0.0424756 0.339112i 0.00680154 0.0543013i
\(40\) 0 0
\(41\) −3.69615 2.13397i −0.577242 0.333271i 0.182795 0.983151i \(-0.441486\pi\)
−0.760037 + 0.649880i \(0.774819\pi\)
\(42\) 0 0
\(43\) −4.77046 8.26268i −0.727488 1.26005i −0.957942 0.286963i \(-0.907354\pi\)
0.230453 0.973083i \(-0.425979\pi\)
\(44\) 0 0
\(45\) −2.59030 + 1.49551i −0.386138 + 0.222937i
\(46\) 0 0
\(47\) 3.46410i 0.505291i −0.967559 0.252646i \(-0.918699\pi\)
0.967559 0.252646i \(-0.0813007\pi\)
\(48\) 0 0
\(49\) −3.15817 + 5.47011i −0.451167 + 0.781444i
\(50\) 0 0
\(51\) 0.135748 0.0190085
\(52\) 0 0
\(53\) 0.334308 0.0459207 0.0229603 0.999736i \(-0.492691\pi\)
0.0229603 + 0.999736i \(0.492691\pi\)
\(54\) 0 0
\(55\) −0.866025 + 1.50000i −0.116775 + 0.202260i
\(56\) 0 0
\(57\) 0.101365i 0.0134261i
\(58\) 0 0
\(59\) −9.98052 + 5.76225i −1.29935 + 0.750181i −0.980292 0.197553i \(-0.936701\pi\)
−0.319060 + 0.947734i \(0.603367\pi\)
\(60\) 0 0
\(61\) −1.35824 2.35255i −0.173905 0.301213i 0.765877 0.642988i \(-0.222305\pi\)
−0.939782 + 0.341775i \(0.888972\pi\)
\(62\) 0 0
\(63\) 2.14176 + 1.23654i 0.269836 + 0.155790i
\(64\) 0 0
\(65\) 1.40072 + 3.32235i 0.173738 + 0.412086i
\(66\) 0 0
\(67\) −11.9122 6.87752i −1.45531 0.840223i −0.456534 0.889706i \(-0.650909\pi\)
−0.998775 + 0.0494832i \(0.984243\pi\)
\(68\) 0 0
\(69\) −0.146248 0.253309i −0.0176062 0.0304948i
\(70\) 0 0
\(71\) 8.46704 4.88845i 1.00485 0.580152i 0.0951721 0.995461i \(-0.469660\pi\)
0.909680 + 0.415309i \(0.136327\pi\)
\(72\) 0 0
\(73\) 11.1806i 1.30859i −0.756240 0.654295i \(-0.772966\pi\)
0.756240 0.654295i \(-0.227034\pi\)
\(74\) 0 0
\(75\) −0.0473938 + 0.0820885i −0.00547256 + 0.00947876i
\(76\) 0 0
\(77\) 1.43213 0.163206
\(78\) 0 0
\(79\) −0.252387 −0.0283958 −0.0141979 0.999899i \(-0.504519\pi\)
−0.0141979 + 0.999899i \(0.504519\pi\)
\(80\) 0 0
\(81\) −4.45961 + 7.72427i −0.495512 + 0.858252i
\(82\) 0 0
\(83\) 5.67165i 0.622544i −0.950321 0.311272i \(-0.899245\pi\)
0.950321 0.311272i \(-0.100755\pi\)
\(84\) 0 0
\(85\) −1.24026 + 0.716063i −0.134525 + 0.0776679i
\(86\) 0 0
\(87\) 0.353326 + 0.611979i 0.0378806 + 0.0656110i
\(88\) 0 0
\(89\) 3.98052 + 2.29815i 0.421934 + 0.243604i 0.695904 0.718135i \(-0.255004\pi\)
−0.273971 + 0.961738i \(0.588337\pi\)
\(90\) 0 0
\(91\) 1.79992 2.37653i 0.188683 0.249128i
\(92\) 0 0
\(93\) −0.479664 0.276934i −0.0497388 0.0287167i
\(94\) 0 0
\(95\) −0.534695 0.926118i −0.0548585 0.0950177i
\(96\) 0 0
\(97\) 8.25698 4.76717i 0.838370 0.484033i −0.0183401 0.999832i \(-0.505838\pi\)
0.856710 + 0.515799i \(0.172505\pi\)
\(98\) 0 0
\(99\) 5.18059i 0.520669i
\(100\) 0 0
\(101\) −2.90072 + 5.02419i −0.288632 + 0.499926i −0.973484 0.228757i \(-0.926534\pi\)
0.684851 + 0.728683i \(0.259867\pi\)
\(102\) 0 0
\(103\) 10.0760 0.992814 0.496407 0.868090i \(-0.334652\pi\)
0.496407 + 0.868090i \(0.334652\pi\)
\(104\) 0 0
\(105\) 0.0783740 0.00764852
\(106\) 0 0
\(107\) −8.13977 + 14.0985i −0.786902 + 1.36295i 0.140955 + 0.990016i \(0.454983\pi\)
−0.927856 + 0.372938i \(0.878351\pi\)
\(108\) 0 0
\(109\) 3.12979i 0.299780i −0.988703 0.149890i \(-0.952108\pi\)
0.988703 0.149890i \(-0.0478919\pi\)
\(110\) 0 0
\(111\) 0.0807411 0.0466159i 0.00766361 0.00442458i
\(112\) 0 0
\(113\) 5.08538 + 8.80813i 0.478392 + 0.828599i 0.999693 0.0247735i \(-0.00788647\pi\)
−0.521301 + 0.853373i \(0.674553\pi\)
\(114\) 0 0
\(115\) 2.67238 + 1.54290i 0.249201 + 0.143876i
\(116\) 0 0
\(117\) 8.59687 + 6.51107i 0.794781 + 0.601949i
\(118\) 0 0
\(119\) 1.02549 + 0.592068i 0.0940068 + 0.0542748i
\(120\) 0 0
\(121\) −4.00000 6.92820i −0.363636 0.629837i
\(122\) 0 0
\(123\) −0.350349 + 0.202274i −0.0315899 + 0.0182385i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 2.98401 5.16846i 0.264788 0.458627i −0.702720 0.711467i \(-0.748031\pi\)
0.967508 + 0.252840i \(0.0813646\pi\)
\(128\) 0 0
\(129\) −0.904361 −0.0796245
\(130\) 0 0
\(131\) 16.6267 1.45268 0.726342 0.687334i \(-0.241219\pi\)
0.726342 + 0.687334i \(0.241219\pi\)
\(132\) 0 0
\(133\) −0.442106 + 0.765750i −0.0383355 + 0.0663990i
\(134\) 0 0
\(135\) 0.567874i 0.0488748i
\(136\) 0 0
\(137\) −0.350349 + 0.202274i −0.0299324 + 0.0172815i −0.514892 0.857255i \(-0.672168\pi\)
0.484959 + 0.874537i \(0.338834\pi\)
\(138\) 0 0
\(139\) 4.65817 + 8.06819i 0.395101 + 0.684335i 0.993114 0.117152i \(-0.0373763\pi\)
−0.598013 + 0.801486i \(0.704043\pi\)
\(140\) 0 0
\(141\) −0.284363 0.164177i −0.0239477 0.0138262i
\(142\) 0 0
\(143\) 6.19658 + 0.776156i 0.518184 + 0.0649054i
\(144\) 0 0
\(145\) −6.45632 3.72756i −0.536168 0.309557i
\(146\) 0 0
\(147\) 0.299355 + 0.518498i 0.0246904 + 0.0427650i
\(148\) 0 0
\(149\) 9.41179 5.43390i 0.771044 0.445162i −0.0622030 0.998064i \(-0.519813\pi\)
0.833247 + 0.552901i \(0.186479\pi\)
\(150\) 0 0
\(151\) 0.991015i 0.0806477i 0.999187 + 0.0403238i \(0.0128390\pi\)
−0.999187 + 0.0403238i \(0.987161\pi\)
\(152\) 0 0
\(153\) −2.14176 + 3.70963i −0.173151 + 0.299906i
\(154\) 0 0
\(155\) 5.84325 0.469341
\(156\) 0 0
\(157\) 17.5729 1.40247 0.701235 0.712930i \(-0.252632\pi\)
0.701235 + 0.712930i \(0.252632\pi\)
\(158\) 0 0
\(159\) 0.0158441 0.0274428i 0.00125652 0.00217636i
\(160\) 0 0
\(161\) 2.55146i 0.201083i
\(162\) 0 0
\(163\) −14.9666 + 8.64098i −1.17228 + 0.676814i −0.954215 0.299122i \(-0.903306\pi\)
−0.218061 + 0.975935i \(0.569973\pi\)
\(164\) 0 0
\(165\) 0.0820885 + 0.142181i 0.00639058 + 0.0110688i
\(166\) 0 0
\(167\) −2.64965 1.52978i −0.205036 0.118378i 0.393966 0.919125i \(-0.371103\pi\)
−0.599002 + 0.800747i \(0.704436\pi\)
\(168\) 0 0
\(169\) 9.07597 9.30735i 0.698151 0.715950i
\(170\) 0 0
\(171\) −2.77003 1.59928i −0.211830 0.122300i
\(172\) 0 0
\(173\) −1.71006 2.96190i −0.130013 0.225189i 0.793668 0.608351i \(-0.208169\pi\)
−0.923681 + 0.383161i \(0.874835\pi\)
\(174\) 0 0
\(175\) −0.716063 + 0.413419i −0.0541293 + 0.0312516i
\(176\) 0 0
\(177\) 1.09238i 0.0821083i
\(178\) 0 0
\(179\) −5.19109 + 8.99123i −0.388000 + 0.672036i −0.992180 0.124811i \(-0.960167\pi\)
0.604180 + 0.796848i \(0.293501\pi\)
\(180\) 0 0
\(181\) −10.3492 −0.769247 −0.384624 0.923073i \(-0.625669\pi\)
−0.384624 + 0.923073i \(0.625669\pi\)
\(182\) 0 0
\(183\) −0.257489 −0.0190342
\(184\) 0 0
\(185\) −0.491793 + 0.851811i −0.0361574 + 0.0626264i
\(186\) 0 0
\(187\) 2.48052i 0.181393i
\(188\) 0 0
\(189\) 0.406634 0.234770i 0.0295782 0.0170770i
\(190\) 0 0
\(191\) 7.75296 + 13.4285i 0.560984 + 0.971653i 0.997411 + 0.0719134i \(0.0229105\pi\)
−0.436427 + 0.899740i \(0.643756\pi\)
\(192\) 0 0
\(193\) 4.82401 + 2.78514i 0.347239 + 0.200479i 0.663469 0.748204i \(-0.269084\pi\)
−0.316229 + 0.948683i \(0.602417\pi\)
\(194\) 0 0
\(195\) 0.339112 + 0.0424756i 0.0242843 + 0.00304174i
\(196\) 0 0
\(197\) −21.5405 12.4364i −1.53470 0.886058i −0.999136 0.0415608i \(-0.986767\pi\)
−0.535561 0.844497i \(-0.679900\pi\)
\(198\) 0 0
\(199\) −9.32443 16.1504i −0.660991 1.14487i −0.980356 0.197239i \(-0.936803\pi\)
0.319364 0.947632i \(-0.396531\pi\)
\(200\) 0 0
\(201\) −1.12913 + 0.651904i −0.0796427 + 0.0459817i
\(202\) 0 0
\(203\) 6.16418i 0.432640i
\(204\) 0 0
\(205\) 2.13397 3.69615i 0.149043 0.258150i
\(206\) 0 0
\(207\) 9.22968 0.641507
\(208\) 0 0
\(209\) −1.85224 −0.128122
\(210\) 0 0
\(211\) −4.82235 + 8.35255i −0.331984 + 0.575013i −0.982901 0.184136i \(-0.941051\pi\)
0.650917 + 0.759149i \(0.274385\pi\)
\(212\) 0 0
\(213\) 0.926728i 0.0634984i
\(214\) 0 0
\(215\) 8.26268 4.77046i 0.563510 0.325343i
\(216\) 0 0
\(217\) −2.41571 4.18414i −0.163989 0.284038i
\(218\) 0 0
\(219\) −0.917797 0.529891i −0.0620190 0.0358067i
\(220\) 0 0
\(221\) 4.11626 + 3.11756i 0.276890 + 0.209710i
\(222\) 0 0
\(223\) −1.00558 0.580573i −0.0673387 0.0388780i 0.465953 0.884810i \(-0.345712\pi\)
−0.533291 + 0.845932i \(0.679045\pi\)
\(224\) 0 0
\(225\) −1.49551 2.59030i −0.0997005 0.172686i
\(226\) 0 0
\(227\) −23.5957 + 13.6230i −1.56610 + 0.904191i −0.569488 + 0.822000i \(0.692858\pi\)
−0.996617 + 0.0821911i \(0.973808\pi\)
\(228\) 0 0
\(229\) 24.3432i 1.60864i −0.594193 0.804322i \(-0.702529\pi\)
0.594193 0.804322i \(-0.297471\pi\)
\(230\) 0 0
\(231\) 0.0678739 0.117561i 0.00446577 0.00773495i
\(232\) 0 0
\(233\) −23.0238 −1.50834 −0.754171 0.656678i \(-0.771961\pi\)
−0.754171 + 0.656678i \(0.771961\pi\)
\(234\) 0 0
\(235\) 3.46410 0.225973
\(236\) 0 0
\(237\) −0.0119616 + 0.0207181i −0.000776989 + 0.00134578i
\(238\) 0 0
\(239\) 23.7057i 1.53340i −0.642008 0.766698i \(-0.721898\pi\)
0.642008 0.766698i \(-0.278102\pi\)
\(240\) 0 0
\(241\) −9.37968 + 5.41536i −0.604198 + 0.348834i −0.770691 0.637209i \(-0.780089\pi\)
0.166493 + 0.986043i \(0.446756\pi\)
\(242\) 0 0
\(243\) 1.27453 + 2.20754i 0.0817609 + 0.141614i
\(244\) 0 0
\(245\) −5.47011 3.15817i −0.349472 0.201768i
\(246\) 0 0
\(247\) −2.32793 + 3.07367i −0.148123 + 0.195573i
\(248\) 0 0
\(249\) −0.465577 0.268801i −0.0295047 0.0170346i
\(250\) 0 0
\(251\) −0.560405 0.970649i −0.0353724 0.0612668i 0.847797 0.530321i \(-0.177928\pi\)
−0.883170 + 0.469054i \(0.844595\pi\)
\(252\) 0 0
\(253\) 4.62870 2.67238i 0.291004 0.168011i
\(254\) 0 0
\(255\) 0.135748i 0.00850086i
\(256\) 0 0
\(257\) 8.31534 14.4026i 0.518697 0.898409i −0.481067 0.876684i \(-0.659751\pi\)
0.999764 0.0217255i \(-0.00691599\pi\)
\(258\) 0 0
\(259\) 0.813267 0.0505340
\(260\) 0 0
\(261\) −22.2984 −1.38023
\(262\) 0 0
\(263\) −12.2510 + 21.2193i −0.755427 + 1.30844i 0.189734 + 0.981836i \(0.439237\pi\)
−0.945162 + 0.326603i \(0.894096\pi\)
\(264\) 0 0
\(265\) 0.334308i 0.0205364i
\(266\) 0 0
\(267\) 0.377303 0.217836i 0.0230906 0.0133314i
\(268\) 0 0
\(269\) 3.26643 + 5.65763i 0.199158 + 0.344952i 0.948256 0.317508i \(-0.102846\pi\)
−0.749098 + 0.662460i \(0.769513\pi\)
\(270\) 0 0
\(271\) 4.89831 + 2.82804i 0.297551 + 0.171791i 0.641342 0.767255i \(-0.278378\pi\)
−0.343791 + 0.939046i \(0.611711\pi\)
\(272\) 0 0
\(273\) −0.109780 0.260386i −0.00664419 0.0157593i
\(274\) 0 0
\(275\) −1.50000 0.866025i −0.0904534 0.0522233i
\(276\) 0 0
\(277\) 1.85782 + 3.21784i 0.111626 + 0.193341i 0.916426 0.400205i \(-0.131061\pi\)
−0.804800 + 0.593546i \(0.797728\pi\)
\(278\) 0 0
\(279\) 15.1357 8.73863i 0.906154 0.523168i
\(280\) 0 0
\(281\) 9.70447i 0.578920i −0.957190 0.289460i \(-0.906524\pi\)
0.957190 0.289460i \(-0.0934758\pi\)
\(282\) 0 0
\(283\) −12.0988 + 20.9558i −0.719200 + 1.24569i 0.242117 + 0.970247i \(0.422158\pi\)
−0.961317 + 0.275444i \(0.911175\pi\)
\(284\) 0 0
\(285\) −0.101365 −0.00600433
\(286\) 0 0
\(287\) −3.52890 −0.208305
\(288\) 0 0
\(289\) 7.47451 12.9462i 0.439677 0.761543i
\(290\) 0 0
\(291\) 0.903737i 0.0529780i
\(292\) 0 0
\(293\) −3.14218 + 1.81414i −0.183568 + 0.105983i −0.588968 0.808156i \(-0.700466\pi\)
0.405400 + 0.914139i \(0.367132\pi\)
\(294\) 0 0
\(295\) −5.76225 9.98052i −0.335491 0.581088i
\(296\) 0 0
\(297\) 0.851811 + 0.491793i 0.0494271 + 0.0285367i
\(298\) 0 0
\(299\) 1.38279 11.0398i 0.0799689 0.638446i
\(300\) 0 0
\(301\) −6.83190 3.94440i −0.393784 0.227351i
\(302\) 0 0
\(303\) 0.274952 + 0.476231i 0.0157956 + 0.0273588i
\(304\) 0 0
\(305\) 2.35255 1.35824i 0.134707 0.0777729i
\(306\) 0 0
\(307\) 9.40129i 0.536560i 0.963341 + 0.268280i \(0.0864552\pi\)
−0.963341 + 0.268280i \(0.913545\pi\)
\(308\) 0 0
\(309\) 0.477538 0.827121i 0.0271662 0.0470532i
\(310\) 0 0
\(311\) 25.5370 1.44807 0.724034 0.689764i \(-0.242286\pi\)
0.724034 + 0.689764i \(0.242286\pi\)
\(312\) 0 0
\(313\) 5.25656 0.297118 0.148559 0.988904i \(-0.452536\pi\)
0.148559 + 0.988904i \(0.452536\pi\)
\(314\) 0 0
\(315\) −1.23654 + 2.14176i −0.0696713 + 0.120674i
\(316\) 0 0
\(317\) 14.1536i 0.794947i 0.917614 + 0.397474i \(0.130113\pi\)
−0.917614 + 0.397474i \(0.869887\pi\)
\(318\) 0 0
\(319\) −11.1827 + 6.45632i −0.626110 + 0.361485i
\(320\) 0 0
\(321\) 0.771550 + 1.33636i 0.0430637 + 0.0745885i
\(322\) 0 0
\(323\) −1.32632 0.765750i −0.0737983 0.0426075i
\(324\) 0 0
\(325\) −3.32235 + 1.40072i −0.184291 + 0.0776980i
\(326\) 0 0
\(327\) −0.256920 0.148333i −0.0142077 0.00820282i
\(328\) 0 0
\(329\) −1.43213 2.48052i −0.0789557 0.136755i
\(330\) 0 0
\(331\) −16.0945 + 9.29214i −0.884632 + 0.510742i −0.872183 0.489180i \(-0.837296\pi\)
−0.0124490 + 0.999923i \(0.503963\pi\)
\(332\) 0 0
\(333\) 2.94192i 0.161216i
\(334\) 0 0
\(335\) 6.87752 11.9122i 0.375759 0.650834i
\(336\) 0 0
\(337\) 22.4060 1.22053 0.610267 0.792196i \(-0.291062\pi\)
0.610267 + 0.792196i \(0.291062\pi\)
\(338\) 0 0
\(339\) 0.964061 0.0523606
\(340\) 0 0
\(341\) 5.06040 8.76488i 0.274036 0.474645i
\(342\) 0 0
\(343\) 11.0105i 0.594509i
\(344\) 0 0
\(345\) 0.253309 0.146248i 0.0136377 0.00787372i
\(346\) 0 0
\(347\) −10.0862 17.4699i −0.541457 0.937831i −0.998821 0.0485514i \(-0.984540\pi\)
0.457364 0.889280i \(-0.348794\pi\)
\(348\) 0 0
\(349\) 24.7634 + 14.2972i 1.32556 + 0.765310i 0.984609 0.174773i \(-0.0559192\pi\)
0.340947 + 0.940083i \(0.389252\pi\)
\(350\) 0 0
\(351\) 1.88667 0.795432i 0.100703 0.0424570i
\(352\) 0 0
\(353\) 9.66167 + 5.57817i 0.514239 + 0.296896i 0.734574 0.678528i \(-0.237382\pi\)
−0.220336 + 0.975424i \(0.570715\pi\)
\(354\) 0 0
\(355\) 4.88845 + 8.46704i 0.259452 + 0.449384i
\(356\) 0 0
\(357\) 0.0972040 0.0561207i 0.00514458 0.00297022i
\(358\) 0 0
\(359\) 11.0490i 0.583145i −0.956549 0.291572i \(-0.905822\pi\)
0.956549 0.291572i \(-0.0941784\pi\)
\(360\) 0 0
\(361\) −8.92820 + 15.4641i −0.469905 + 0.813900i
\(362\) 0 0
\(363\) −0.758301 −0.0398005
\(364\) 0 0
\(365\) 11.1806 0.585219
\(366\) 0 0
\(367\) −12.2026 + 21.1355i −0.636970 + 1.10326i 0.349124 + 0.937076i \(0.386479\pi\)
−0.986094 + 0.166188i \(0.946854\pi\)
\(368\) 0 0
\(369\) 12.7655i 0.664545i
\(370\) 0 0
\(371\) 0.239385 0.138209i 0.0124283 0.00717546i
\(372\) 0 0
\(373\) 2.65566 + 4.59974i 0.137505 + 0.238165i 0.926552 0.376168i \(-0.122758\pi\)
−0.789047 + 0.614333i \(0.789425\pi\)
\(374\) 0 0
\(375\) −0.0820885 0.0473938i −0.00423903 0.00244740i
\(376\) 0 0
\(377\) −3.34074 + 26.6714i −0.172057 + 1.37365i
\(378\) 0 0
\(379\) 29.0469 + 16.7703i 1.49204 + 0.861430i 0.999958 0.00911888i \(-0.00290267\pi\)
0.492082 + 0.870549i \(0.336236\pi\)
\(380\) 0 0
\(381\) −0.282847 0.489906i −0.0144907 0.0250986i
\(382\) 0 0
\(383\) 20.6138 11.9014i 1.05331 0.608131i 0.129739 0.991548i \(-0.458586\pi\)
0.923575 + 0.383417i \(0.125253\pi\)
\(384\) 0 0
\(385\) 1.43213i 0.0729879i
\(386\) 0 0
\(387\) 14.2685 24.7138i 0.725310 1.25627i
\(388\) 0 0
\(389\) −26.2787 −1.33238 −0.666191 0.745781i \(-0.732077\pi\)
−0.666191 + 0.745781i \(0.732077\pi\)
\(390\) 0 0
\(391\) 4.41926 0.223492
\(392\) 0 0
\(393\) 0.788003 1.36486i 0.0397495 0.0688482i
\(394\) 0 0
\(395\) 0.252387i 0.0126990i
\(396\) 0 0
\(397\) 28.8317 16.6460i 1.44702 0.835439i 0.448719 0.893673i \(-0.351880\pi\)
0.998303 + 0.0582340i \(0.0185469\pi\)
\(398\) 0 0
\(399\) 0.0419062 + 0.0725836i 0.00209793 + 0.00363373i
\(400\) 0 0
\(401\) 12.2709 + 7.08460i 0.612779 + 0.353788i 0.774052 0.633122i \(-0.218227\pi\)
−0.161273 + 0.986910i \(0.551560\pi\)
\(402\) 0 0
\(403\) −8.18476 19.4133i −0.407712 0.967046i
\(404\) 0 0
\(405\) −7.72427 4.45961i −0.383822 0.221600i
\(406\) 0 0
\(407\) 0.851811 + 1.47538i 0.0422227 + 0.0731319i
\(408\) 0 0
\(409\) 5.93213 3.42491i 0.293325 0.169351i −0.346116 0.938192i \(-0.612499\pi\)
0.639440 + 0.768841i \(0.279166\pi\)
\(410\) 0 0
\(411\) 0.0383462i 0.00189148i
\(412\) 0 0
\(413\) −4.76445 + 8.25227i −0.234443 + 0.406068i
\(414\) 0 0
\(415\) 5.67165 0.278410
\(416\) 0 0
\(417\) 0.883073 0.0432443
\(418\) 0 0
\(419\) 8.19109 14.1874i 0.400161 0.693099i −0.593584 0.804772i \(-0.702288\pi\)
0.993745 + 0.111673i \(0.0356209\pi\)
\(420\) 0 0
\(421\) 21.7045i 1.05781i 0.848681 + 0.528906i \(0.177397\pi\)
−0.848681 + 0.528906i \(0.822603\pi\)
\(422\) 0 0
\(423\) 8.97305 5.18059i 0.436284 0.251889i
\(424\) 0 0
\(425\) −0.716063 1.24026i −0.0347342 0.0601613i
\(426\) 0 0
\(427\) −1.94518 1.12305i −0.0941337 0.0543481i
\(428\) 0 0
\(429\) 0.357393 0.471883i 0.0172551 0.0227827i
\(430\) 0 0
\(431\) 28.0495 + 16.1944i 1.35110 + 0.780056i 0.988403 0.151853i \(-0.0485240\pi\)
0.362693 + 0.931909i \(0.381857\pi\)
\(432\) 0 0
\(433\) 14.3987 + 24.9393i 0.691959 + 1.19851i 0.971195 + 0.238286i \(0.0765855\pi\)
−0.279236 + 0.960223i \(0.590081\pi\)
\(434\) 0 0
\(435\) −0.611979 + 0.353326i −0.0293422 + 0.0169407i
\(436\) 0 0
\(437\) 3.29992i 0.157857i
\(438\) 0 0
\(439\) −8.79992 + 15.2419i −0.419997 + 0.727457i −0.995939 0.0900341i \(-0.971302\pi\)
0.575941 + 0.817491i \(0.304636\pi\)
\(440\) 0 0
\(441\) −18.8923 −0.899632
\(442\) 0 0
\(443\) −14.4043 −0.684370 −0.342185 0.939633i \(-0.611167\pi\)
−0.342185 + 0.939633i \(0.611167\pi\)
\(444\) 0 0
\(445\) −2.29815 + 3.98052i −0.108943 + 0.188695i
\(446\) 0 0
\(447\) 1.03013i 0.0487236i
\(448\) 0 0
\(449\) −2.58821 + 1.49430i −0.122145 + 0.0705206i −0.559828 0.828609i \(-0.689133\pi\)
0.437683 + 0.899130i \(0.355799\pi\)
\(450\) 0 0
\(451\) −3.69615 6.40192i −0.174045 0.301455i
\(452\) 0 0
\(453\) 0.0813509 + 0.0469680i 0.00382220 + 0.00220675i
\(454\) 0 0
\(455\) 2.37653 + 1.79992i 0.111413 + 0.0843818i
\(456\) 0 0
\(457\) −23.0540 13.3102i −1.07842 0.622626i −0.147950 0.988995i \(-0.547267\pi\)
−0.930470 + 0.366369i \(0.880601\pi\)
\(458\) 0 0
\(459\) 0.406634 + 0.704310i 0.0189800 + 0.0328744i
\(460\) 0 0
\(461\) 7.26488 4.19438i 0.338359 0.195352i −0.321187 0.947016i \(-0.604082\pi\)
0.659546 + 0.751664i \(0.270748\pi\)
\(462\) 0 0
\(463\) 21.3014i 0.989960i 0.868904 + 0.494980i \(0.164825\pi\)
−0.868904 + 0.494980i \(0.835175\pi\)
\(464\) 0 0
\(465\) 0.276934 0.479664i 0.0128425 0.0222439i
\(466\) 0 0
\(467\) 2.12392 0.0982833 0.0491417 0.998792i \(-0.484351\pi\)
0.0491417 + 0.998792i \(0.484351\pi\)
\(468\) 0 0
\(469\) −11.3732 −0.525165
\(470\) 0 0
\(471\) 0.832846 1.44253i 0.0383755 0.0664684i
\(472\) 0 0
\(473\) 16.5254i 0.759837i
\(474\) 0 0
\(475\) 0.926118 0.534695i 0.0424932 0.0245335i
\(476\) 0 0
\(477\) 0.499960 + 0.865955i 0.0228916 + 0.0396494i
\(478\) 0 0
\(479\) −25.1617 14.5271i −1.14967 0.663762i −0.200862 0.979619i \(-0.564374\pi\)
−0.948806 + 0.315858i \(0.897708\pi\)
\(480\) 0 0
\(481\) 3.51887 + 0.440759i 0.160447 + 0.0200969i
\(482\) 0 0
\(483\) −0.209445 0.120923i −0.00953010 0.00550220i
\(484\) 0 0
\(485\) 4.76717 + 8.25698i 0.216466 + 0.374930i
\(486\) 0 0
\(487\) −26.2570 + 15.1595i −1.18982 + 0.686941i −0.958265 0.285881i \(-0.907714\pi\)
−0.231552 + 0.972822i \(0.574380\pi\)
\(488\) 0 0
\(489\) 1.63811i 0.0740781i
\(490\) 0 0
\(491\) 19.0759 33.0405i 0.860884 1.49110i −0.0101919 0.999948i \(-0.503244\pi\)
0.871076 0.491148i \(-0.163422\pi\)
\(492\) 0 0
\(493\) −10.6767 −0.480853
\(494\) 0 0
\(495\) −5.18059 −0.232850
\(496\) 0 0
\(497\) 4.04196 7.00087i 0.181306 0.314032i
\(498\) 0 0
\(499\) 16.5179i 0.739444i 0.929142 + 0.369722i \(0.120547\pi\)
−0.929142 + 0.369722i \(0.879453\pi\)
\(500\) 0 0
\(501\) −0.251154 + 0.145004i −0.0112207 + 0.00647829i
\(502\) 0 0
\(503\) −5.88081 10.1859i −0.262212 0.454165i 0.704617 0.709588i \(-0.251119\pi\)
−0.966830 + 0.255423i \(0.917785\pi\)
\(504\) 0 0
\(505\) −5.02419 2.90072i −0.223574 0.129080i
\(506\) 0 0
\(507\) −0.333882 1.18614i −0.0148282 0.0526785i
\(508\) 0 0
\(509\) 27.5930 + 15.9308i 1.22304 + 0.706122i 0.965565 0.260164i \(-0.0837765\pi\)
0.257474 + 0.966285i \(0.417110\pi\)
\(510\) 0 0
\(511\) −4.62227 8.00601i −0.204477 0.354165i
\(512\) 0 0
\(513\) −0.525918 + 0.303639i −0.0232199 + 0.0134060i
\(514\) 0 0
\(515\) 10.0760i 0.444000i
\(516\) 0 0
\(517\) 3.00000 5.19615i 0.131940 0.228527i
\(518\) 0 0
\(519\) −0.324184 −0.0142301
\(520\) 0 0
\(521\) −19.5013 −0.854367 −0.427183 0.904165i \(-0.640494\pi\)
−0.427183 + 0.904165i \(0.640494\pi\)
\(522\) 0 0
\(523\) 22.2830 38.5952i 0.974365 1.68765i 0.292352 0.956311i \(-0.405562\pi\)
0.682014 0.731340i \(-0.261105\pi\)
\(524\) 0 0
\(525\) 0.0783740i 0.00342052i
\(526\) 0 0
\(527\) 7.24714 4.18414i 0.315690 0.182264i
\(528\) 0 0
\(529\) 6.73891 + 11.6721i 0.292996 + 0.507484i
\(530\) 0 0
\(531\) −29.8519 17.2350i −1.29546 0.747935i
\(532\) 0 0
\(533\) −15.2690 1.91253i −0.661374 0.0828407i
\(534\) 0 0
\(535\) −14.0985 8.13977i −0.609531 0.351913i
\(536\) 0 0
\(537\) 0.492051 + 0.852257i 0.0212336 + 0.0367776i
\(538\) 0 0
\(539\) −9.47451 + 5.47011i −0.408096 + 0.235614i
\(540\) 0 0
\(541\) 3.74450i 0.160989i 0.996755 + 0.0804943i \(0.0256499\pi\)
−0.996755 + 0.0804943i \(0.974350\pi\)
\(542\) 0 0
\(543\) −0.490486 + 0.849547i −0.0210488 + 0.0364576i
\(544\) 0 0
\(545\) 3.12979 0.134066
\(546\) 0 0
\(547\) 38.3803 1.64102 0.820511 0.571630i \(-0.193689\pi\)
0.820511 + 0.571630i \(0.193689\pi\)
\(548\) 0 0
\(549\) 4.06253 7.03651i 0.173385 0.300311i
\(550\) 0 0
\(551\) 7.97242i 0.339637i
\(552\) 0 0
\(553\) −0.180725 + 0.104342i −0.00768522 + 0.00443706i
\(554\) 0 0
\(555\) 0.0466159 + 0.0807411i 0.00197873 + 0.00342727i
\(556\) 0 0
\(557\) −23.0763 13.3231i −0.977772 0.564517i −0.0761755 0.997094i \(-0.524271\pi\)
−0.901597 + 0.432577i \(0.857604\pi\)
\(558\) 0 0
\(559\) −27.4228 20.7694i −1.15986 0.878452i
\(560\) 0 0
\(561\) 0.203622 + 0.117561i 0.00859691 + 0.00496343i
\(562\) 0 0
\(563\) −8.34675 14.4570i −0.351774 0.609290i 0.634787 0.772687i \(-0.281088\pi\)
−0.986560 + 0.163398i \(0.947755\pi\)
\(564\) 0 0
\(565\) −8.80813 + 5.08538i −0.370561 + 0.213943i
\(566\) 0 0
\(567\) 7.37475i 0.309710i
\(568\) 0 0
\(569\) −21.9620 + 38.0393i −0.920694 + 1.59469i −0.122350 + 0.992487i \(0.539043\pi\)
−0.798344 + 0.602202i \(0.794290\pi\)
\(570\) 0 0
\(571\) −11.4641 −0.479758 −0.239879 0.970803i \(-0.577108\pi\)
−0.239879 + 0.970803i \(0.577108\pi\)
\(572\) 0 0
\(573\) 1.46977 0.0614004
\(574\) 0 0
\(575\) −1.54290 + 2.67238i −0.0643434 + 0.111446i
\(576\) 0 0
\(577\) 44.9354i 1.87069i 0.353743 + 0.935343i \(0.384909\pi\)
−0.353743 + 0.935343i \(0.615091\pi\)
\(578\) 0 0
\(579\) 0.457256 0.263997i 0.0190029 0.0109713i
\(580\) 0 0
\(581\) −2.34477 4.06126i −0.0972773 0.168489i
\(582\) 0 0
\(583\) 0.501461 + 0.289519i 0.0207684 + 0.0119906i
\(584\) 0 0
\(585\) −6.51107 + 8.59687i −0.269200 + 0.355437i
\(586\) 0 0
\(587\) −21.2364 12.2608i −0.876520 0.506059i −0.00701059 0.999975i \(-0.502232\pi\)
−0.869509 + 0.493916i \(0.835565\pi\)
\(588\) 0 0
\(589\) 3.12436 + 5.41154i 0.128737 + 0.222979i
\(590\) 0 0
\(591\) −2.04177 + 1.17882i −0.0839873 + 0.0484901i
\(592\) 0 0
\(593\) 18.7655i 0.770607i −0.922790 0.385303i \(-0.874097\pi\)
0.922790 0.385303i \(-0.125903\pi\)
\(594\) 0 0
\(595\) −0.592068 + 1.02549i −0.0242724 + 0.0420411i
\(596\) 0 0
\(597\) −1.76768 −0.0723464
\(598\) 0 0
\(599\) −35.9293 −1.46803 −0.734015 0.679133i \(-0.762356\pi\)
−0.734015 + 0.679133i \(0.762356\pi\)
\(600\) 0 0
\(601\) 19.8863 34.4441i 0.811179 1.40500i −0.100860 0.994901i \(-0.532160\pi\)
0.912039 0.410103i \(-0.134507\pi\)
\(602\) 0 0
\(603\) 41.1415i 1.67541i
\(604\) 0 0
\(605\) 6.92820 4.00000i 0.281672 0.162623i
\(606\) 0 0
\(607\) −16.7306 28.9783i −0.679076 1.17619i −0.975260 0.221063i \(-0.929047\pi\)
0.296184 0.955131i \(-0.404286\pi\)
\(608\) 0 0
\(609\) 0.506008 + 0.292144i 0.0205045 + 0.0118383i
\(610\) 0 0
\(611\) −4.85224 11.5089i −0.196300 0.465602i
\(612\) 0 0
\(613\) 17.1212 + 9.88495i 0.691520 + 0.399249i 0.804181 0.594384i \(-0.202604\pi\)
−0.112661 + 0.993633i \(0.535937\pi\)
\(614\) 0 0
\(615\) −0.202274 0.350349i −0.00815649 0.0141275i
\(616\) 0 0
\(617\) −16.8950 + 9.75436i −0.680169 + 0.392696i −0.799919 0.600108i \(-0.795124\pi\)
0.119750 + 0.992804i \(0.461791\pi\)
\(618\) 0 0
\(619\) 40.4640i 1.62639i 0.581994 + 0.813193i \(0.302273\pi\)
−0.581994 + 0.813193i \(0.697727\pi\)
\(620\) 0 0
\(621\) 0.876173 1.51758i 0.0351596 0.0608983i
\(622\) 0 0
\(623\) 3.80040 0.152260
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −0.0877845 + 0.152047i −0.00350578 + 0.00607218i
\(628\) 0 0
\(629\) 1.40862i 0.0561653i
\(630\) 0 0
\(631\) −16.9707 + 9.79806i −0.675594 + 0.390054i −0.798193 0.602402i \(-0.794211\pi\)
0.122599 + 0.992456i \(0.460877\pi\)
\(632\) 0 0
\(633\) 0.457099 + 0.791718i 0.0181680 + 0.0314680i
\(634\) 0 0
\(635\) 5.16846 + 2.98401i 0.205104 + 0.118417i
\(636\) 0 0
\(637\) −2.83044 + 22.5973i −0.112146 + 0.895338i
\(638\) 0 0
\(639\) 25.3250 + 14.6214i 1.00184 + 0.578414i
\(640\) 0 0
\(641\) 15.5238 + 26.8881i 0.613155 + 1.06202i 0.990705 + 0.136026i \(0.0434332\pi\)
−0.377550 + 0.925989i \(0.623233\pi\)
\(642\) 0 0
\(643\) −5.14990 + 2.97329i −0.203092 + 0.117255i −0.598097 0.801424i \(-0.704076\pi\)
0.395005 + 0.918679i \(0.370743\pi\)
\(644\) 0 0
\(645\) 0.904361i 0.0356092i
\(646\) 0 0
\(647\) 21.2510 36.8078i 0.835462 1.44706i −0.0581916 0.998305i \(-0.518533\pi\)
0.893654 0.448757i \(-0.148133\pi\)
\(648\) 0 0
\(649\) −19.9610 −0.783539
\(650\) 0 0
\(651\) −0.457959 −0.0179488
\(652\) 0 0
\(653\) 15.3054 26.5097i 0.598945 1.03740i −0.394032 0.919097i \(-0.628920\pi\)
0.992977 0.118307i \(-0.0377467\pi\)
\(654\) 0 0
\(655\) 16.6267i 0.649660i
\(656\) 0 0
\(657\) 28.9610 16.7207i 1.12988 0.652335i
\(658\) 0 0
\(659\) 12.7191 + 22.0302i 0.495467 + 0.858175i 0.999986 0.00522582i \(-0.00166344\pi\)
−0.504519 + 0.863401i \(0.668330\pi\)
\(660\) 0 0
\(661\) −0.288909 0.166802i −0.0112373 0.00648784i 0.494371 0.869251i \(-0.335398\pi\)
−0.505608 + 0.862763i \(0.668732\pi\)
\(662\) 0 0
\(663\) 0.451001 0.190145i 0.0175154 0.00738461i
\(664\) 0 0
\(665\) −0.765750 0.442106i −0.0296945 0.0171441i
\(666\) 0 0
\(667\) 11.5025 + 19.9229i 0.445379 + 0.771419i
\(668\) 0 0
\(669\) −0.0953167 + 0.0550311i −0.00368516 + 0.00212763i
\(670\) 0 0
\(671\) 4.70510i 0.181638i
\(672\) 0 0
\(673\) 4.90706 8.49928i 0.189153 0.327623i −0.755815 0.654785i \(-0.772759\pi\)
0.944968 + 0.327162i \(0.106092\pi\)
\(674\) 0 0
\(675\) −0.567874 −0.0218575
\(676\) 0 0
\(677\) −23.2414 −0.893241 −0.446620 0.894724i \(-0.647373\pi\)
−0.446620 + 0.894724i \(0.647373\pi\)
\(678\) 0 0
\(679\) 3.94168 6.82719i 0.151268 0.262004i
\(680\) 0 0
\(681\) 2.58258i 0.0989648i
\(682\) 0 0
\(683\) 4.56144 2.63355i 0.174539 0.100770i −0.410186 0.912002i \(-0.634536\pi\)
0.584724 + 0.811232i \(0.301203\pi\)
\(684\) 0 0
\(685\) −0.202274 0.350349i −0.00772850 0.0133862i
\(686\) 0 0
\(687\) −1.99830 1.15372i −0.0762398 0.0440171i
\(688\) 0 0
\(689\) 1.11069 0.468271i 0.0423138 0.0178397i
\(690\) 0 0
\(691\) 17.1334 + 9.89199i 0.651787 + 0.376309i 0.789140 0.614213i \(-0.210526\pi\)
−0.137354 + 0.990522i \(0.543860\pi\)
\(692\) 0 0
\(693\) 2.14176 + 3.70963i 0.0813586 + 0.140917i
\(694\) 0 0
\(695\) −8.06819 + 4.65817i −0.306044 + 0.176694i
\(696\) 0 0
\(697\) 6.11224i 0.231518i
\(698\) 0 0
\(699\) −1.09119 + 1.88999i −0.0412725 + 0.0714861i
\(700\) 0 0
\(701\) 18.1256 0.684595 0.342298 0.939592i \(-0.388795\pi\)
0.342298 + 0.939592i \(0.388795\pi\)
\(702\) 0 0
\(703\) −1.05184 −0.0396708
\(704\) 0 0
\(705\) 0.164177 0.284363i 0.00618326 0.0107097i
\(706\) 0 0
\(707\) 4.79685i 0.180404i
\(708\) 0 0
\(709\) −22.3514 + 12.9046i −0.839424 + 0.484642i −0.857068 0.515203i \(-0.827717\pi\)
0.0176445 + 0.999844i \(0.494383\pi\)
\(710\) 0 0
\(711\) −0.377447 0.653758i −0.0141554 0.0245178i
\(712\) 0 0
\(713\) −15.6154 9.01556i −0.584802 0.337635i
\(714\) 0 0
\(715\) −0.776156 + 6.19658i −0.0290266 + 0.231739i
\(716\) 0 0
\(717\) −1.94597 1.12350i −0.0726734 0.0419580i
\(718\) 0 0
\(719\) −4.51338 7.81741i −0.168321 0.291540i 0.769509 0.638636i \(-0.220501\pi\)
−0.937830 + 0.347096i \(0.887168\pi\)
\(720\) 0 0
\(721\) 7.21503 4.16560i 0.268702 0.155135i
\(722\) 0 0
\(723\) 1.02662i 0.0381803i
\(724\) 0 0
\(725\) 3.72756 6.45632i 0.138438 0.239782i
\(726\) 0 0
\(727\) 24.8934 0.923245 0.461623 0.887076i \(-0.347267\pi\)
0.461623 + 0.887076i \(0.347267\pi\)
\(728\) 0 0
\(729\) −26.5160 −0.982075
\(730\) 0 0
\(731\) 6.83190 11.8332i 0.252687 0.437667i
\(732\) 0 0
\(733\) 13.2793i 0.490484i 0.969462 + 0.245242i \(0.0788674\pi\)
−0.969462 + 0.245242i \(0.921133\pi\)
\(734\) 0 0
\(735\) −0.518498 + 0.299355i −0.0191251 + 0.0110419i
\(736\) 0 0
\(737\) −11.9122 20.6326i −0.438792 0.760010i
\(738\) 0 0
\(739\) 16.9656 + 9.79508i 0.624089 + 0.360318i 0.778459 0.627695i \(-0.216002\pi\)
−0.154370 + 0.988013i \(0.549335\pi\)
\(740\) 0 0
\(741\) 0.141984 + 0.336769i 0.00521590 + 0.0123715i
\(742\) 0 0
\(743\) 44.3804 + 25.6230i 1.62816 + 0.940017i 0.984642 + 0.174583i \(0.0558578\pi\)
0.643515 + 0.765434i \(0.277475\pi\)
\(744\) 0 0
\(745\) 5.43390 + 9.41179i 0.199083 + 0.344821i
\(746\) 0 0
\(747\) 14.6912 8.48199i 0.537524 0.310340i
\(748\) 0 0
\(749\) 13.4606i 0.491838i
\(750\) 0 0
\(751\) −10.5992 + 18.3584i −0.386772 + 0.669908i −0.992013 0.126134i \(-0.959743\pi\)
0.605242 + 0.796042i \(0.293077\pi\)
\(752\) 0 0
\(753\) −0.106239 −0.00387156
\(754\) 0 0
\(755\) −0.991015 −0.0360667
\(756\) 0 0
\(757\) 16.4747 28.5350i 0.598783 1.03712i −0.394218 0.919017i \(-0.628984\pi\)
0.993001 0.118106i \(-0.0376823\pi\)
\(758\) 0 0
\(759\) 0.506618i 0.0183891i
\(760\) 0 0
\(761\) 45.2367 26.1174i 1.63983 0.946756i 0.658939 0.752197i \(-0.271006\pi\)
0.980891 0.194559i \(-0.0623277\pi\)
\(762\) 0 0
\(763\) −1.29392 2.24113i −0.0468429 0.0811343i
\(764\) 0 0
\(765\) −3.70963 2.14176i −0.134122 0.0774353i
\(766\) 0 0
\(767\) −25.0874 + 33.1241i −0.905854 + 1.19604i
\(768\) 0 0
\(769\) 23.2717 + 13.4359i 0.839200 + 0.484513i 0.856992 0.515329i \(-0.172330\pi\)
−0.0177920 + 0.999842i \(0.505664\pi\)
\(770\) 0 0
\(771\) −0.788191 1.36519i −0.0283860 0.0491660i
\(772\) 0 0
\(773\) 10.3533 5.97746i 0.372381 0.214994i −0.302117 0.953271i \(-0.597693\pi\)
0.674498 + 0.738276i \(0.264360\pi\)
\(774\) 0 0
\(775\) 5.84325i 0.209896i
\(776\) 0 0
\(777\) 0.0385438 0.0667598i 0.00138275 0.00239500i
\(778\) 0 0
\(779\) 4.56410 0.163526
\(780\) 0 0
\(781\) 16.9341 0.605949
\(782\) 0 0
\(783\) −2.11678 + 3.66638i −0.0756477 + 0.131026i
\(784\) 0 0
\(785\) 17.5729i 0.627204i
\(786\) 0 0
\(787\) 29.8724 17.2468i 1.06484 0.614783i 0.138070 0.990422i \(-0.455910\pi\)
0.926766 + 0.375639i \(0.122577\pi\)
\(788\) 0 0
\(789\) 1.16124 + 2.01133i 0.0413413 + 0.0716051i
\(790\) 0 0
\(791\) 7.28290 + 4.20479i 0.258950 + 0.149505i
\(792\) 0 0
\(793\) −7.80782 5.91346i −0.277264 0.209993i
\(794\) 0 0