Properties

Label 260.2.x.a.101.1
Level $260$
Weight $2$
Character 260.101
Analytic conductor $2.076$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.1
Root \(1.20036 + 0.747754i\) of defining polynomial
Character \(\chi\) \(=\) 260.101
Dual form 260.2.x.a.121.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.41342 - 2.44811i) q^{3} -1.00000i q^{5} +(-1.81414 - 1.04739i) q^{7} +(-2.49551 + 4.32235i) q^{9} +O(q^{10})\) \(q+(-1.41342 - 2.44811i) q^{3} -1.00000i q^{5} +(-1.81414 - 1.04739i) q^{7} +(-2.49551 + 4.32235i) q^{9} +(1.50000 - 0.866025i) q^{11} +(-3.59030 + 0.331331i) q^{13} +(-2.44811 + 1.41342i) q^{15} +(-1.81414 + 3.14218i) q^{17} +(0.926118 + 0.534695i) q^{19} +5.92163i q^{21} +(-3.90893 - 6.77046i) q^{23} -1.00000 q^{25} +5.62828 q^{27} +(0.263457 + 0.456321i) q^{29} -5.84325i q^{31} +(-4.24026 - 2.44811i) q^{33} +(-1.04739 + 1.81414i) q^{35} +(8.44242 - 4.87423i) q^{37} +(5.88573 + 8.32114i) q^{39} +(-3.69615 + 2.13397i) q^{41} +(4.67238 - 8.09281i) q^{43} +(4.32235 + 2.49551i) q^{45} +3.46410i q^{47} +(-1.30593 - 2.26194i) q^{49} +10.2566 q^{51} +12.5939 q^{53} +(-0.866025 - 1.50000i) q^{55} -3.02299i q^{57} +(-1.21564 - 0.701848i) q^{59} +(5.55440 - 9.62050i) q^{61} +(9.05440 - 5.22756i) q^{63} +(0.331331 + 3.59030i) q^{65} +(-9.38201 + 5.41671i) q^{67} +(-11.0499 + 19.1390i) q^{69} +(-12.2709 - 7.08460i) q^{71} -2.64469i q^{73} +(1.41342 + 2.44811i) q^{75} -3.62828 q^{77} +13.5729 q^{79} +(-0.468594 - 0.811629i) q^{81} +15.7925i q^{83} +(3.14218 + 1.81414i) q^{85} +(0.744750 - 1.28994i) q^{87} +(-4.78436 + 2.76225i) q^{89} +(6.86033 + 3.15937i) q^{91} +(-14.3049 + 8.25896i) q^{93} +(0.534695 - 0.926118i) q^{95} +(-13.1589 - 7.59730i) q^{97} +8.64469i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 6 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{3} + 6 q^{7} - 4 q^{9} + 12 q^{11} - 8 q^{13} - 6 q^{15} + 6 q^{17} - 6 q^{23} - 8 q^{25} + 4 q^{27} - 6 q^{33} - 6 q^{35} + 6 q^{37} - 4 q^{39} + 12 q^{41} + 10 q^{43} - 4 q^{49} + 24 q^{53} - 24 q^{59} - 4 q^{61} + 24 q^{63} - 54 q^{67} - 24 q^{69} - 36 q^{71} + 2 q^{75} + 12 q^{77} - 16 q^{79} + 8 q^{81} + 18 q^{85} - 6 q^{87} - 24 q^{89} + 24 q^{93} - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41342 2.44811i −0.816038 1.41342i −0.908580 0.417710i \(-0.862833\pi\)
0.0925423 0.995709i \(-0.470501\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −1.81414 1.04739i −0.685680 0.395878i 0.116312 0.993213i \(-0.462893\pi\)
−0.801992 + 0.597335i \(0.796226\pi\)
\(8\) 0 0
\(9\) −2.49551 + 4.32235i −0.831836 + 1.44078i
\(10\) 0 0
\(11\) 1.50000 0.866025i 0.452267 0.261116i −0.256520 0.966539i \(-0.582576\pi\)
0.708787 + 0.705422i \(0.249243\pi\)
\(12\) 0 0
\(13\) −3.59030 + 0.331331i −0.995769 + 0.0918946i
\(14\) 0 0
\(15\) −2.44811 + 1.41342i −0.632100 + 0.364943i
\(16\) 0 0
\(17\) −1.81414 + 3.14218i −0.439993 + 0.762091i −0.997688 0.0679550i \(-0.978353\pi\)
0.557695 + 0.830046i \(0.311686\pi\)
\(18\) 0 0
\(19\) 0.926118 + 0.534695i 0.212466 + 0.122667i 0.602457 0.798151i \(-0.294189\pi\)
−0.389991 + 0.920819i \(0.627522\pi\)
\(20\) 0 0
\(21\) 5.92163i 1.29220i
\(22\) 0 0
\(23\) −3.90893 6.77046i −0.815068 1.41174i −0.909279 0.416186i \(-0.863366\pi\)
0.0942118 0.995552i \(-0.469967\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 5.62828 1.08316
\(28\) 0 0
\(29\) 0.263457 + 0.456321i 0.0489227 + 0.0847366i 0.889450 0.457033i \(-0.151088\pi\)
−0.840527 + 0.541770i \(0.817755\pi\)
\(30\) 0 0
\(31\) 5.84325i 1.04948i −0.851263 0.524740i \(-0.824163\pi\)
0.851263 0.524740i \(-0.175837\pi\)
\(32\) 0 0
\(33\) −4.24026 2.44811i −0.738134 0.426162i
\(34\) 0 0
\(35\) −1.04739 + 1.81414i −0.177042 + 0.306646i
\(36\) 0 0
\(37\) 8.44242 4.87423i 1.38792 0.801319i 0.394844 0.918748i \(-0.370799\pi\)
0.993081 + 0.117429i \(0.0374654\pi\)
\(38\) 0 0
\(39\) 5.88573 + 8.32114i 0.942471 + 1.33245i
\(40\) 0 0
\(41\) −3.69615 + 2.13397i −0.577242 + 0.333271i −0.760037 0.649880i \(-0.774819\pi\)
0.182795 + 0.983151i \(0.441486\pi\)
\(42\) 0 0
\(43\) 4.67238 8.09281i 0.712532 1.23414i −0.251372 0.967891i \(-0.580882\pi\)
0.963904 0.266251i \(-0.0857849\pi\)
\(44\) 0 0
\(45\) 4.32235 + 2.49551i 0.644337 + 0.372008i
\(46\) 0 0
\(47\) 3.46410i 0.505291i 0.967559 + 0.252646i \(0.0813007\pi\)
−0.967559 + 0.252646i \(0.918699\pi\)
\(48\) 0 0
\(49\) −1.30593 2.26194i −0.186562 0.323134i
\(50\) 0 0
\(51\) 10.2566 1.43621
\(52\) 0 0
\(53\) 12.5939 1.72990 0.864952 0.501854i \(-0.167349\pi\)
0.864952 + 0.501854i \(0.167349\pi\)
\(54\) 0 0
\(55\) −0.866025 1.50000i −0.116775 0.202260i
\(56\) 0 0
\(57\) 3.02299i 0.400405i
\(58\) 0 0
\(59\) −1.21564 0.701848i −0.158262 0.0913729i 0.418777 0.908089i \(-0.362459\pi\)
−0.577040 + 0.816716i \(0.695792\pi\)
\(60\) 0 0
\(61\) 5.55440 9.62050i 0.711168 1.23178i −0.253251 0.967400i \(-0.581500\pi\)
0.964419 0.264378i \(-0.0851667\pi\)
\(62\) 0 0
\(63\) 9.05440 5.22756i 1.14075 0.658610i
\(64\) 0 0
\(65\) 0.331331 + 3.59030i 0.0410965 + 0.445321i
\(66\) 0 0
\(67\) −9.38201 + 5.41671i −1.14620 + 0.661756i −0.947957 0.318398i \(-0.896855\pi\)
−0.198238 + 0.980154i \(0.563522\pi\)
\(68\) 0 0
\(69\) −11.0499 + 19.1390i −1.33025 + 2.30406i
\(70\) 0 0
\(71\) −12.2709 7.08460i −1.45629 0.840787i −0.457460 0.889230i \(-0.651241\pi\)
−0.998826 + 0.0484428i \(0.984574\pi\)
\(72\) 0 0
\(73\) 2.64469i 0.309538i −0.987951 0.154769i \(-0.950537\pi\)
0.987951 0.154769i \(-0.0494633\pi\)
\(74\) 0 0
\(75\) 1.41342 + 2.44811i 0.163208 + 0.282684i
\(76\) 0 0
\(77\) −3.62828 −0.413481
\(78\) 0 0
\(79\) 13.5729 1.52707 0.763535 0.645766i \(-0.223462\pi\)
0.763535 + 0.645766i \(0.223462\pi\)
\(80\) 0 0
\(81\) −0.468594 0.811629i −0.0520660 0.0901809i
\(82\) 0 0
\(83\) 15.7925i 1.73345i 0.498789 + 0.866724i \(0.333778\pi\)
−0.498789 + 0.866724i \(0.666222\pi\)
\(84\) 0 0
\(85\) 3.14218 + 1.81414i 0.340817 + 0.196771i
\(86\) 0 0
\(87\) 0.744750 1.28994i 0.0798456 0.138297i
\(88\) 0 0
\(89\) −4.78436 + 2.76225i −0.507141 + 0.292798i −0.731658 0.681672i \(-0.761253\pi\)
0.224516 + 0.974470i \(0.427920\pi\)
\(90\) 0 0
\(91\) 6.86033 + 3.15937i 0.719158 + 0.331192i
\(92\) 0 0
\(93\) −14.3049 + 8.25896i −1.48335 + 0.856415i
\(94\) 0 0
\(95\) 0.534695 0.926118i 0.0548585 0.0950177i
\(96\) 0 0
\(97\) −13.1589 7.59730i −1.33608 0.771389i −0.349860 0.936802i \(-0.613771\pi\)
−0.986224 + 0.165413i \(0.947104\pi\)
\(98\) 0 0
\(99\) 8.64469i 0.868824i
\(100\) 0 0
\(101\) −1.83133 3.17196i −0.182224 0.315622i 0.760413 0.649439i \(-0.224996\pi\)
−0.942638 + 0.333818i \(0.891663\pi\)
\(102\) 0 0
\(103\) 13.7804 1.35783 0.678914 0.734218i \(-0.262451\pi\)
0.678914 + 0.734218i \(0.262451\pi\)
\(104\) 0 0
\(105\) 5.92163 0.577892
\(106\) 0 0
\(107\) −1.61856 2.80342i −0.156472 0.271017i 0.777122 0.629350i \(-0.216679\pi\)
−0.933594 + 0.358333i \(0.883345\pi\)
\(108\) 0 0
\(109\) 9.12979i 0.874476i −0.899346 0.437238i \(-0.855957\pi\)
0.899346 0.437238i \(-0.144043\pi\)
\(110\) 0 0
\(111\) −23.8654 13.7787i −2.26520 1.30781i
\(112\) 0 0
\(113\) 5.47680 9.48610i 0.515214 0.892377i −0.484630 0.874719i \(-0.661046\pi\)
0.999844 0.0176577i \(-0.00562092\pi\)
\(114\) 0 0
\(115\) −6.77046 + 3.90893i −0.631349 + 0.364509i
\(116\) 0 0
\(117\) 7.52748 16.3453i 0.695916 1.51113i
\(118\) 0 0
\(119\) 6.58220 3.80024i 0.603390 0.348367i
\(120\) 0 0
\(121\) −4.00000 + 6.92820i −0.363636 + 0.629837i
\(122\) 0 0
\(123\) 10.4484 + 6.03240i 0.942103 + 0.543923i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 0.453810 + 0.786022i 0.0402691 + 0.0697482i 0.885458 0.464720i \(-0.153845\pi\)
−0.845188 + 0.534469i \(0.820512\pi\)
\(128\) 0 0
\(129\) −26.4161 −2.32581
\(130\) 0 0
\(131\) −13.1626 −1.15002 −0.575012 0.818145i \(-0.695003\pi\)
−0.575012 + 0.818145i \(0.695003\pi\)
\(132\) 0 0
\(133\) −1.12007 1.94002i −0.0971225 0.168221i
\(134\) 0 0
\(135\) 5.62828i 0.484405i
\(136\) 0 0
\(137\) 10.4484 + 6.03240i 0.892669 + 0.515383i 0.874815 0.484458i \(-0.160983\pi\)
0.0178546 + 0.999841i \(0.494316\pi\)
\(138\) 0 0
\(139\) 2.80593 4.86002i 0.237996 0.412221i −0.722143 0.691744i \(-0.756843\pi\)
0.960139 + 0.279522i \(0.0901761\pi\)
\(140\) 0 0
\(141\) 8.48052 4.89623i 0.714188 0.412337i
\(142\) 0 0
\(143\) −5.09850 + 3.60628i −0.426358 + 0.301573i
\(144\) 0 0
\(145\) 0.456321 0.263457i 0.0378954 0.0218789i
\(146\) 0 0
\(147\) −3.69166 + 6.39414i −0.304483 + 0.527380i
\(148\) 0 0
\(149\) 18.1767 + 10.4943i 1.48909 + 0.859727i 0.999922 0.0124625i \(-0.00396705\pi\)
0.489168 + 0.872189i \(0.337300\pi\)
\(150\) 0 0
\(151\) 6.99102i 0.568921i 0.958688 + 0.284460i \(0.0918144\pi\)
−0.958688 + 0.284460i \(0.908186\pi\)
\(152\) 0 0
\(153\) −9.05440 15.6827i −0.732005 1.26787i
\(154\) 0 0
\(155\) −5.84325 −0.469341
\(156\) 0 0
\(157\) 3.74761 0.299092 0.149546 0.988755i \(-0.452219\pi\)
0.149546 + 0.988755i \(0.452219\pi\)
\(158\) 0 0
\(159\) −17.8005 30.8313i −1.41167 2.44508i
\(160\) 0 0
\(161\) 16.3767i 1.29067i
\(162\) 0 0
\(163\) −5.52377 3.18915i −0.432655 0.249793i 0.267822 0.963468i \(-0.413696\pi\)
−0.700477 + 0.713675i \(0.747029\pi\)
\(164\) 0 0
\(165\) −2.44811 + 4.24026i −0.190585 + 0.330104i
\(166\) 0 0
\(167\) −13.4484 + 7.76445i −1.04067 + 0.600831i −0.920023 0.391864i \(-0.871830\pi\)
−0.120647 + 0.992695i \(0.538497\pi\)
\(168\) 0 0
\(169\) 12.7804 2.37915i 0.983111 0.183012i
\(170\) 0 0
\(171\) −4.62227 + 2.66867i −0.353474 + 0.204078i
\(172\) 0 0
\(173\) −2.38802 + 4.13617i −0.181558 + 0.314467i −0.942411 0.334456i \(-0.891447\pi\)
0.760853 + 0.648924i \(0.224781\pi\)
\(174\) 0 0
\(175\) 1.81414 + 1.04739i 0.137136 + 0.0791755i
\(176\) 0 0
\(177\) 3.96802i 0.298255i
\(178\) 0 0
\(179\) 7.85134 + 13.5989i 0.586837 + 1.01643i 0.994644 + 0.103363i \(0.0329604\pi\)
−0.407807 + 0.913068i \(0.633706\pi\)
\(180\) 0 0
\(181\) 10.8851 0.809080 0.404540 0.914520i \(-0.367432\pi\)
0.404540 + 0.914520i \(0.367432\pi\)
\(182\) 0 0
\(183\) −31.4028 −2.32136
\(184\) 0 0
\(185\) −4.87423 8.44242i −0.358361 0.620699i
\(186\) 0 0
\(187\) 6.28436i 0.459558i
\(188\) 0 0
\(189\) −10.2105 5.89502i −0.742703 0.428800i
\(190\) 0 0
\(191\) 2.97909 5.15994i 0.215560 0.373360i −0.737886 0.674925i \(-0.764176\pi\)
0.953446 + 0.301565i \(0.0975091\pi\)
\(192\) 0 0
\(193\) 11.0587 6.38473i 0.796021 0.459583i −0.0460568 0.998939i \(-0.514666\pi\)
0.842078 + 0.539356i \(0.181332\pi\)
\(194\) 0 0
\(195\) 8.32114 5.88573i 0.595889 0.421486i
\(196\) 0 0
\(197\) −13.9499 + 8.05397i −0.993888 + 0.573822i −0.906434 0.422347i \(-0.861206\pi\)
−0.0874540 + 0.996169i \(0.527873\pi\)
\(198\) 0 0
\(199\) −4.26403 + 7.38551i −0.302269 + 0.523545i −0.976650 0.214839i \(-0.931077\pi\)
0.674381 + 0.738384i \(0.264411\pi\)
\(200\) 0 0
\(201\) 26.5214 + 15.3122i 1.87068 + 1.08004i
\(202\) 0 0
\(203\) 1.10377i 0.0774696i
\(204\) 0 0
\(205\) 2.13397 + 3.69615i 0.149043 + 0.258150i
\(206\) 0 0
\(207\) 39.0190 2.71201
\(208\) 0 0
\(209\) 1.85224 0.128122
\(210\) 0 0
\(211\) 2.09030 + 3.62050i 0.143902 + 0.249245i 0.928963 0.370173i \(-0.120702\pi\)
−0.785061 + 0.619419i \(0.787368\pi\)
\(212\) 0 0
\(213\) 40.0540i 2.74446i
\(214\) 0 0
\(215\) −8.09281 4.67238i −0.551925 0.318654i
\(216\) 0 0
\(217\) −6.12019 + 10.6005i −0.415465 + 0.719607i
\(218\) 0 0
\(219\) −6.47451 + 3.73806i −0.437507 + 0.252595i
\(220\) 0 0
\(221\) 5.47219 11.8824i 0.368100 0.799299i
\(222\) 0 0
\(223\) −9.09249 + 5.24955i −0.608878 + 0.351536i −0.772526 0.634983i \(-0.781007\pi\)
0.163648 + 0.986519i \(0.447674\pi\)
\(224\) 0 0
\(225\) 2.49551 4.32235i 0.166367 0.288156i
\(226\) 0 0
\(227\) 13.4977 + 7.79288i 0.895872 + 0.517232i 0.875858 0.482568i \(-0.160296\pi\)
0.0200131 + 0.999800i \(0.493629\pi\)
\(228\) 0 0
\(229\) 19.2714i 1.27349i −0.771074 0.636745i \(-0.780280\pi\)
0.771074 0.636745i \(-0.219720\pi\)
\(230\) 0 0
\(231\) 5.12828 + 8.88244i 0.337416 + 0.584422i
\(232\) 0 0
\(233\) 2.48794 0.162991 0.0814953 0.996674i \(-0.474030\pi\)
0.0814953 + 0.996674i \(0.474030\pi\)
\(234\) 0 0
\(235\) 3.46410 0.225973
\(236\) 0 0
\(237\) −19.1842 33.2280i −1.24615 2.15839i
\(238\) 0 0
\(239\) 16.7775i 1.08525i −0.839976 0.542624i \(-0.817431\pi\)
0.839976 0.542624i \(-0.182569\pi\)
\(240\) 0 0
\(241\) 25.1835 + 14.5397i 1.62221 + 0.936585i 0.986326 + 0.164803i \(0.0526990\pi\)
0.635887 + 0.771782i \(0.280634\pi\)
\(242\) 0 0
\(243\) 7.11778 12.3284i 0.456606 0.790864i
\(244\) 0 0
\(245\) −2.26194 + 1.30593i −0.144510 + 0.0834330i
\(246\) 0 0
\(247\) −3.50220 1.61286i −0.222840 0.102624i
\(248\) 0 0
\(249\) 38.6617 22.3214i 2.45009 1.41456i
\(250\) 0 0
\(251\) 9.56040 16.5591i 0.603447 1.04520i −0.388847 0.921302i \(-0.627127\pi\)
0.992295 0.123899i \(-0.0395400\pi\)
\(252\) 0 0
\(253\) −11.7268 6.77046i −0.737256 0.425655i
\(254\) 0 0
\(255\) 10.2566i 0.642291i
\(256\) 0 0
\(257\) 6.85453 + 11.8724i 0.427574 + 0.740580i 0.996657 0.0817004i \(-0.0260351\pi\)
−0.569083 + 0.822280i \(0.692702\pi\)
\(258\) 0 0
\(259\) −20.4210 −1.26890
\(260\) 0 0
\(261\) −2.62983 −0.162783
\(262\) 0 0
\(263\) 5.95675 + 10.3174i 0.367309 + 0.636197i 0.989144 0.146951i \(-0.0469459\pi\)
−0.621835 + 0.783148i \(0.713613\pi\)
\(264\) 0 0
\(265\) 12.5939i 0.773637i
\(266\) 0 0
\(267\) 13.5246 + 7.80844i 0.827693 + 0.477869i
\(268\) 0 0
\(269\) 10.4656 18.1270i 0.638100 1.10522i −0.347749 0.937588i \(-0.613054\pi\)
0.985849 0.167634i \(-0.0536127\pi\)
\(270\) 0 0
\(271\) 1.69014 0.975805i 0.102669 0.0592760i −0.447786 0.894141i \(-0.647787\pi\)
0.550455 + 0.834865i \(0.314454\pi\)
\(272\) 0 0
\(273\) −1.96202 21.2604i −0.118747 1.28674i
\(274\) 0 0
\(275\) −1.50000 + 0.866025i −0.0904534 + 0.0522233i
\(276\) 0 0
\(277\) 6.24026 10.8084i 0.374941 0.649416i −0.615377 0.788233i \(-0.710996\pi\)
0.990318 + 0.138816i \(0.0443297\pi\)
\(278\) 0 0
\(279\) 25.2566 + 14.5819i 1.51207 + 0.872994i
\(280\) 0 0
\(281\) 2.29553i 0.136940i 0.997653 + 0.0684698i \(0.0218117\pi\)
−0.997653 + 0.0684698i \(0.978188\pi\)
\(282\) 0 0
\(283\) 7.46484 + 12.9295i 0.443739 + 0.768578i 0.997963 0.0637892i \(-0.0203185\pi\)
−0.554225 + 0.832367i \(0.686985\pi\)
\(284\) 0 0
\(285\) −3.02299 −0.179067
\(286\) 0 0
\(287\) 8.94045 0.527738
\(288\) 0 0
\(289\) 1.91780 + 3.32172i 0.112812 + 0.195395i
\(290\) 0 0
\(291\) 42.9527i 2.51793i
\(292\) 0 0
\(293\) 1.24026 + 0.716063i 0.0724566 + 0.0418329i 0.535791 0.844351i \(-0.320014\pi\)
−0.463334 + 0.886184i \(0.653347\pi\)
\(294\) 0 0
\(295\) −0.701848 + 1.21564i −0.0408632 + 0.0707771i
\(296\) 0 0
\(297\) 8.44242 4.87423i 0.489879 0.282832i
\(298\) 0 0
\(299\) 16.2775 + 23.0128i 0.941350 + 1.33086i
\(300\) 0 0
\(301\) −16.9527 + 9.78765i −0.977138 + 0.564151i
\(302\) 0 0
\(303\) −5.17688 + 8.96661i −0.297404 + 0.515118i
\(304\) 0 0
\(305\) −9.62050 5.55440i −0.550868 0.318044i
\(306\) 0 0
\(307\) 17.3833i 0.992118i −0.868289 0.496059i \(-0.834780\pi\)
0.868289 0.496059i \(-0.165220\pi\)
\(308\) 0 0
\(309\) −19.4775 33.7361i −1.10804 1.91918i
\(310\) 0 0
\(311\) −20.2164 −1.14637 −0.573185 0.819426i \(-0.694292\pi\)
−0.573185 + 0.819426i \(0.694292\pi\)
\(312\) 0 0
\(313\) −4.86425 −0.274944 −0.137472 0.990506i \(-0.543898\pi\)
−0.137472 + 0.990506i \(0.543898\pi\)
\(314\) 0 0
\(315\) −5.22756 9.05440i −0.294540 0.510157i
\(316\) 0 0
\(317\) 23.6177i 1.32650i 0.748396 + 0.663252i \(0.230824\pi\)
−0.748396 + 0.663252i \(0.769176\pi\)
\(318\) 0 0
\(319\) 0.790371 + 0.456321i 0.0442523 + 0.0255491i
\(320\) 0 0
\(321\) −4.57540 + 7.92482i −0.255374 + 0.442320i
\(322\) 0 0
\(323\) −3.36022 + 1.94002i −0.186967 + 0.107946i
\(324\) 0 0
\(325\) 3.59030 0.331331i 0.199154 0.0183789i
\(326\) 0 0
\(327\) −22.3508 + 12.9042i −1.23600 + 0.713605i
\(328\) 0 0
\(329\) 3.62828 6.28436i 0.200033 0.346468i
\(330\) 0 0
\(331\) −12.8863 7.43991i −0.708295 0.408934i 0.102134 0.994771i \(-0.467433\pi\)
−0.810429 + 0.585836i \(0.800766\pi\)
\(332\) 0 0
\(333\) 48.6547i 2.66626i
\(334\) 0 0
\(335\) 5.41671 + 9.38201i 0.295946 + 0.512594i
\(336\) 0 0
\(337\) −29.1906 −1.59012 −0.795058 0.606534i \(-0.792559\pi\)
−0.795058 + 0.606534i \(0.792559\pi\)
\(338\) 0 0
\(339\) −30.9641 −1.68174
\(340\) 0 0
\(341\) −5.06040 8.76488i −0.274036 0.474645i
\(342\) 0 0
\(343\) 20.1348i 1.08718i
\(344\) 0 0
\(345\) 19.1390 + 11.0499i 1.03041 + 0.594907i
\(346\) 0 0
\(347\) 12.1125 20.9795i 0.650234 1.12624i −0.332833 0.942986i \(-0.608004\pi\)
0.983066 0.183252i \(-0.0586623\pi\)
\(348\) 0 0
\(349\) −11.1557 + 6.44076i −0.597152 + 0.344766i −0.767920 0.640545i \(-0.778708\pi\)
0.170768 + 0.985311i \(0.445375\pi\)
\(350\) 0 0
\(351\) −20.2072 + 1.86482i −1.07858 + 0.0995368i
\(352\) 0 0
\(353\) 14.0441 8.10837i 0.747492 0.431565i −0.0772948 0.997008i \(-0.524628\pi\)
0.824787 + 0.565443i \(0.191295\pi\)
\(354\) 0 0
\(355\) −7.08460 + 12.2709i −0.376011 + 0.651271i
\(356\) 0 0
\(357\) −18.6068 10.7427i −0.984777 0.568562i
\(358\) 0 0
\(359\) 9.19261i 0.485167i −0.970131 0.242584i \(-0.922005\pi\)
0.970131 0.242584i \(-0.0779949\pi\)
\(360\) 0 0
\(361\) −8.92820 15.4641i −0.469905 0.813900i
\(362\) 0 0
\(363\) 22.6147 1.18696
\(364\) 0 0
\(365\) −2.64469 −0.138430
\(366\) 0 0
\(367\) 2.30066 + 3.98486i 0.120094 + 0.208008i 0.919804 0.392377i \(-0.128347\pi\)
−0.799711 + 0.600385i \(0.795014\pi\)
\(368\) 0 0
\(369\) 21.3014i 1.10891i
\(370\) 0 0
\(371\) −22.8471 13.1908i −1.18616 0.684831i
\(372\) 0 0
\(373\) 10.2463 17.7471i 0.530532 0.918908i −0.468834 0.883286i \(-0.655326\pi\)
0.999365 0.0356212i \(-0.0113410\pi\)
\(374\) 0 0
\(375\) 2.44811 1.41342i 0.126420 0.0729887i
\(376\) 0 0
\(377\) −1.09708 1.55103i −0.0565025 0.0798823i
\(378\) 0 0
\(379\) 6.95307 4.01436i 0.357155 0.206204i −0.310677 0.950516i \(-0.600556\pi\)
0.667832 + 0.744312i \(0.267222\pi\)
\(380\) 0 0
\(381\) 1.28285 2.22196i 0.0657223 0.113834i
\(382\) 0 0
\(383\) −26.1041 15.0712i −1.33386 0.770104i −0.347971 0.937505i \(-0.613129\pi\)
−0.985889 + 0.167401i \(0.946462\pi\)
\(384\) 0 0
\(385\) 3.62828i 0.184914i
\(386\) 0 0
\(387\) 23.3199 + 40.3913i 1.18542 + 2.05321i
\(388\) 0 0
\(389\) −35.8264 −1.81647 −0.908236 0.418459i \(-0.862570\pi\)
−0.908236 + 0.418459i \(0.862570\pi\)
\(390\) 0 0
\(391\) 28.3654 1.43450
\(392\) 0 0
\(393\) 18.6043 + 32.2236i 0.938463 + 1.62547i
\(394\) 0 0
\(395\) 13.5729i 0.682926i
\(396\) 0 0
\(397\) −13.3221 7.69152i −0.668617 0.386026i 0.126935 0.991911i \(-0.459486\pi\)
−0.795552 + 0.605885i \(0.792819\pi\)
\(398\) 0 0
\(399\) −3.16626 + 5.48413i −0.158511 + 0.274550i
\(400\) 0 0
\(401\) −8.46704 + 4.88845i −0.422824 + 0.244117i −0.696285 0.717766i \(-0.745165\pi\)
0.273461 + 0.961883i \(0.411832\pi\)
\(402\) 0 0
\(403\) 1.93605 + 20.9790i 0.0964415 + 1.04504i
\(404\) 0 0
\(405\) −0.811629 + 0.468594i −0.0403301 + 0.0232846i
\(406\) 0 0
\(407\) 8.44242 14.6227i 0.418475 0.724820i
\(408\) 0 0
\(409\) 0.871721 + 0.503289i 0.0431039 + 0.0248860i 0.521397 0.853314i \(-0.325411\pi\)
−0.478293 + 0.878200i \(0.658744\pi\)
\(410\) 0 0
\(411\) 34.1052i 1.68229i
\(412\) 0 0
\(413\) 1.47022 + 2.54650i 0.0723450 + 0.125305i
\(414\) 0 0
\(415\) 15.7925 0.775221
\(416\) 0 0
\(417\) −15.8638 −0.776855
\(418\) 0 0
\(419\) −4.85134 8.40278i −0.237004 0.410502i 0.722849 0.691006i \(-0.242832\pi\)
−0.959853 + 0.280503i \(0.909499\pi\)
\(420\) 0 0
\(421\) 14.2955i 0.696721i −0.937361 0.348361i \(-0.886738\pi\)
0.937361 0.348361i \(-0.113262\pi\)
\(422\) 0 0
\(423\) −14.9730 8.64469i −0.728014 0.420319i
\(424\) 0 0
\(425\) 1.81414 3.14218i 0.0879987 0.152418i
\(426\) 0 0
\(427\) −20.1529 + 11.6353i −0.975267 + 0.563071i
\(428\) 0 0
\(429\) 16.0349 + 7.38452i 0.774173 + 0.356528i
\(430\) 0 0
\(431\) 10.5197 6.07357i 0.506718 0.292554i −0.224766 0.974413i \(-0.572162\pi\)
0.731483 + 0.681859i \(0.238828\pi\)
\(432\) 0 0
\(433\) −0.104510 + 0.181016i −0.00502242 + 0.00869909i −0.868526 0.495644i \(-0.834932\pi\)
0.863503 + 0.504343i \(0.168265\pi\)
\(434\) 0 0
\(435\) −1.28994 0.744750i −0.0618481 0.0357080i
\(436\) 0 0
\(437\) 8.36033i 0.399929i
\(438\) 0 0
\(439\) −13.8603 24.0068i −0.661517 1.14578i −0.980217 0.197926i \(-0.936579\pi\)
0.318700 0.947856i \(-0.396754\pi\)
\(440\) 0 0
\(441\) 13.0359 0.620755
\(442\) 0 0
\(443\) −7.98798 −0.379521 −0.189760 0.981830i \(-0.560771\pi\)
−0.189760 + 0.981830i \(0.560771\pi\)
\(444\) 0 0
\(445\) 2.76225 + 4.78436i 0.130943 + 0.226801i
\(446\) 0 0
\(447\) 59.3314i 2.80628i
\(448\) 0 0
\(449\) 6.17667 + 3.56610i 0.291495 + 0.168295i 0.638616 0.769526i \(-0.279507\pi\)
−0.347121 + 0.937820i \(0.612841\pi\)
\(450\) 0 0
\(451\) −3.69615 + 6.40192i −0.174045 + 0.301455i
\(452\) 0 0
\(453\) 17.1148 9.88124i 0.804124 0.464261i
\(454\) 0 0
\(455\) 3.15937 6.86033i 0.148114 0.321617i
\(456\) 0 0
\(457\) −27.4364 + 15.8404i −1.28342 + 0.740984i −0.977472 0.211064i \(-0.932307\pi\)
−0.305949 + 0.952048i \(0.598974\pi\)
\(458\) 0 0
\(459\) −10.2105 + 17.6851i −0.476584 + 0.825468i
\(460\) 0 0
\(461\) −10.2649 5.92643i −0.478083 0.276021i 0.241534 0.970392i \(-0.422349\pi\)
−0.719617 + 0.694371i \(0.755683\pi\)
\(462\) 0 0
\(463\) 12.7655i 0.593263i 0.954992 + 0.296632i \(0.0958633\pi\)
−0.954992 + 0.296632i \(0.904137\pi\)
\(464\) 0 0
\(465\) 8.25896 + 14.3049i 0.383000 + 0.663376i
\(466\) 0 0
\(467\) 31.3402 1.45025 0.725125 0.688617i \(-0.241782\pi\)
0.725125 + 0.688617i \(0.241782\pi\)
\(468\) 0 0
\(469\) 22.6937 1.04790
\(470\) 0 0
\(471\) −5.29695 9.17458i −0.244070 0.422742i
\(472\) 0 0
\(473\) 16.1856i 0.744215i
\(474\) 0 0
\(475\) −0.926118 0.534695i −0.0424932 0.0245335i
\(476\) 0 0
\(477\) −31.4282 + 54.4352i −1.43900 + 2.49242i
\(478\) 0 0
\(479\) 13.9656 8.06303i 0.638103 0.368409i −0.145780 0.989317i \(-0.546569\pi\)
0.783884 + 0.620908i \(0.213236\pi\)
\(480\) 0 0
\(481\) −28.6958 + 20.2972i −1.30842 + 0.925471i
\(482\) 0 0
\(483\) 40.0921 23.1472i 1.82426 1.05323i
\(484\) 0 0
\(485\) −7.59730 + 13.1589i −0.344976 + 0.597515i
\(486\) 0 0
\(487\) −4.84109 2.79501i −0.219371 0.126654i 0.386288 0.922378i \(-0.373757\pi\)
−0.605659 + 0.795724i \(0.707090\pi\)
\(488\) 0 0
\(489\) 18.0304i 0.815364i
\(490\) 0 0
\(491\) −9.14772 15.8443i −0.412831 0.715044i 0.582367 0.812926i \(-0.302127\pi\)
−0.995198 + 0.0978817i \(0.968793\pi\)
\(492\) 0 0
\(493\) −1.91179 −0.0861027
\(494\) 0 0
\(495\) 8.64469 0.388550
\(496\) 0 0
\(497\) 14.8407 + 25.7049i 0.665698 + 1.15302i
\(498\) 0 0
\(499\) 0.553868i 0.0247945i −0.999923 0.0123973i \(-0.996054\pi\)
0.999923 0.0123973i \(-0.00394627\pi\)
\(500\) 0 0
\(501\) 38.0165 + 21.9489i 1.69845 + 0.980602i
\(502\) 0 0
\(503\) −7.34162 + 12.7161i −0.327347 + 0.566981i −0.981984 0.188962i \(-0.939488\pi\)
0.654638 + 0.755943i \(0.272821\pi\)
\(504\) 0 0
\(505\) −3.17196 + 1.83133i −0.141150 + 0.0814931i
\(506\) 0 0
\(507\) −23.8886 27.9252i −1.06093 1.24020i
\(508\) 0 0
\(509\) 5.99545 3.46148i 0.265744 0.153427i −0.361208 0.932485i \(-0.617636\pi\)
0.626952 + 0.779058i \(0.284302\pi\)
\(510\) 0 0
\(511\) −2.77003 + 4.79784i −0.122539 + 0.212244i
\(512\) 0 0
\(513\) 5.21245 + 3.00941i 0.230135 + 0.132869i
\(514\) 0 0
\(515\) 13.7804i 0.607239i
\(516\) 0 0
\(517\) 3.00000 + 5.19615i 0.131940 + 0.228527i
\(518\) 0 0
\(519\) 13.5011 0.592632
\(520\) 0 0
\(521\) −18.3551 −0.804152 −0.402076 0.915606i \(-0.631711\pi\)
−0.402076 + 0.915606i \(0.631711\pi\)
\(522\) 0 0
\(523\) 9.13563 + 15.8234i 0.399473 + 0.691908i 0.993661 0.112418i \(-0.0358597\pi\)
−0.594188 + 0.804326i \(0.702526\pi\)
\(524\) 0 0
\(525\) 5.92163i 0.258441i
\(526\) 0 0
\(527\) 18.3606 + 10.6005i 0.799798 + 0.461764i
\(528\) 0 0
\(529\) −19.0594 + 33.0119i −0.828670 + 1.43530i
\(530\) 0 0
\(531\) 6.06726 3.50294i 0.263297 0.152014i
\(532\) 0 0
\(533\) 12.5632 8.88625i 0.544174 0.384906i
\(534\) 0 0
\(535\) −2.80342 + 1.61856i −0.121202 + 0.0699763i
\(536\) 0 0
\(537\) 22.1945 38.4420i 0.957763 1.65889i
\(538\) 0 0
\(539\) −3.91780 2.26194i −0.168751 0.0974287i
\(540\) 0 0
\(541\) 31.8881i 1.37098i 0.728084 + 0.685488i \(0.240411\pi\)
−0.728084 + 0.685488i \(0.759589\pi\)
\(542\) 0 0
\(543\) −15.3852 26.6479i −0.660240 1.14357i
\(544\) 0 0
\(545\) −9.12979 −0.391077
\(546\) 0 0
\(547\) 44.7966 1.91537 0.957683 0.287826i \(-0.0929325\pi\)
0.957683 + 0.287826i \(0.0929325\pi\)
\(548\) 0 0
\(549\) 27.7221 + 48.0161i 1.18315 + 2.04928i
\(550\) 0 0
\(551\) 0.563476i 0.0240049i
\(552\) 0 0
\(553\) −24.6231 14.2162i −1.04708 0.604533i
\(554\) 0 0
\(555\) −13.7787 + 23.8654i −0.584872 + 1.01303i
\(556\) 0 0
\(557\) 22.7820 13.1532i 0.965306 0.557319i 0.0675037 0.997719i \(-0.478497\pi\)
0.897802 + 0.440400i \(0.145163\pi\)
\(558\) 0 0
\(559\) −14.0938 + 30.6037i −0.596106 + 1.29440i
\(560\) 0 0
\(561\) 15.3848 8.88244i 0.649548 0.375017i
\(562\) 0 0
\(563\) −2.89492 + 5.01415i −0.122006 + 0.211321i −0.920559 0.390604i \(-0.872266\pi\)
0.798552 + 0.601925i \(0.205599\pi\)
\(564\) 0 0
\(565\) −9.48610 5.47680i −0.399083 0.230411i
\(566\) 0 0
\(567\) 1.96321i 0.0824471i
\(568\) 0 0
\(569\) 11.8184 + 20.4700i 0.495452 + 0.858149i 0.999986 0.00524320i \(-0.00166897\pi\)
−0.504534 + 0.863392i \(0.668336\pi\)
\(570\) 0 0
\(571\) −11.4641 −0.479758 −0.239879 0.970803i \(-0.577108\pi\)
−0.239879 + 0.970803i \(0.577108\pi\)
\(572\) 0 0
\(573\) −16.8428 −0.703620
\(574\) 0 0
\(575\) 3.90893 + 6.77046i 0.163014 + 0.282348i
\(576\) 0 0
\(577\) 34.2415i 1.42549i −0.701422 0.712746i \(-0.747451\pi\)
0.701422 0.712746i \(-0.252549\pi\)
\(578\) 0 0
\(579\) −31.2611 18.0486i −1.29917 0.750074i
\(580\) 0 0
\(581\) 16.5409 28.6497i 0.686233 1.18859i
\(582\) 0 0
\(583\) 18.8908 10.9066i 0.782379 0.451707i
\(584\) 0 0
\(585\) −16.3453 7.52748i −0.675797 0.311223i
\(586\) 0 0
\(587\) −4.88091 + 2.81800i −0.201457 + 0.116311i −0.597335 0.801992i \(-0.703774\pi\)
0.395878 + 0.918303i \(0.370440\pi\)
\(588\) 0 0
\(589\) 3.12436 5.41154i 0.128737 0.222979i
\(590\) 0 0
\(591\) 39.4341 + 22.7673i 1.62210 + 0.936521i
\(592\) 0 0
\(593\) 15.3014i 0.628353i −0.949365 0.314177i \(-0.898272\pi\)
0.949365 0.314177i \(-0.101728\pi\)
\(594\) 0 0
\(595\) −3.80024 6.58220i −0.155795 0.269844i
\(596\) 0 0
\(597\) 24.1074 0.986651
\(598\) 0 0
\(599\) 9.82414 0.401404 0.200702 0.979652i \(-0.435678\pi\)
0.200702 + 0.979652i \(0.435678\pi\)
\(600\) 0 0
\(601\) 23.0945 + 40.0008i 0.942043 + 1.63167i 0.761566 + 0.648087i \(0.224431\pi\)
0.180476 + 0.983579i \(0.442236\pi\)
\(602\) 0 0
\(603\) 54.0697i 2.20189i
\(604\) 0 0
\(605\) 6.92820 + 4.00000i 0.281672 + 0.162623i
\(606\) 0 0
\(607\) −12.3482 + 21.3877i −0.501198 + 0.868100i 0.498801 + 0.866716i \(0.333774\pi\)
−0.999999 + 0.00138384i \(0.999560\pi\)
\(608\) 0 0
\(609\) −2.70216 + 1.56009i −0.109497 + 0.0632182i
\(610\) 0 0
\(611\) −1.14776 12.4371i −0.0464335 0.503153i
\(612\) 0 0
\(613\) −14.4155 + 8.32277i −0.582235 + 0.336154i −0.762021 0.647552i \(-0.775793\pi\)
0.179786 + 0.983706i \(0.442459\pi\)
\(614\) 0 0
\(615\) 6.03240 10.4484i 0.243250 0.421321i
\(616\) 0 0
\(617\) −1.39918 0.807820i −0.0563291 0.0325216i 0.471571 0.881828i \(-0.343687\pi\)
−0.527900 + 0.849307i \(0.677020\pi\)
\(618\) 0 0
\(619\) 23.3922i 0.940213i 0.882610 + 0.470106i \(0.155784\pi\)
−0.882610 + 0.470106i \(0.844216\pi\)
\(620\) 0 0
\(621\) −22.0005 38.1060i −0.882851 1.52914i
\(622\) 0 0
\(623\) 11.5727 0.463649
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −2.61799 4.53449i −0.104552 0.181090i
\(628\) 0 0
\(629\) 35.3701i 1.41030i
\(630\) 0 0
\(631\) 2.77458 + 1.60190i 0.110454 + 0.0637708i 0.554209 0.832377i \(-0.313021\pi\)
−0.443755 + 0.896148i \(0.646354\pi\)
\(632\) 0 0
\(633\) 5.90893 10.2346i 0.234859 0.406787i
\(634\) 0 0
\(635\) 0.786022 0.453810i 0.0311923 0.0180089i
\(636\) 0 0
\(637\) 5.43813 + 7.68834i 0.215467 + 0.304623i
\(638\) 0 0
\(639\) 61.2442 35.3593i 2.42278 1.39879i
\(640\) 0 0
\(641\) −9.98794 + 17.2996i −0.394500 + 0.683294i −0.993037 0.117801i \(-0.962416\pi\)
0.598537 + 0.801095i \(0.295749\pi\)
\(642\) 0 0
\(643\) −24.7136 14.2684i −0.974607 0.562690i −0.0739696 0.997260i \(-0.523567\pi\)
−0.900638 + 0.434571i \(0.856900\pi\)
\(644\) 0 0
\(645\) 26.4161i 1.04013i
\(646\) 0 0
\(647\) 3.04325 + 5.27107i 0.119643 + 0.207227i 0.919626 0.392795i \(-0.128492\pi\)
−0.799983 + 0.600022i \(0.795158\pi\)
\(648\) 0 0
\(649\) −2.43127 −0.0954359
\(650\) 0 0
\(651\) 34.6016 1.35614
\(652\) 0 0
\(653\) −9.81499 17.0001i −0.384090 0.665264i 0.607552 0.794280i \(-0.292152\pi\)
−0.991643 + 0.129016i \(0.958818\pi\)
\(654\) 0 0
\(655\) 13.1626i 0.514306i
\(656\) 0 0
\(657\) 11.4313 + 6.59985i 0.445976 + 0.257485i
\(658\) 0 0
\(659\) 9.79752 16.9698i 0.381657 0.661049i −0.609642 0.792677i \(-0.708687\pi\)
0.991299 + 0.131627i \(0.0420202\pi\)
\(660\) 0 0
\(661\) 30.0735 17.3630i 1.16972 0.675341i 0.216109 0.976369i \(-0.430663\pi\)
0.953615 + 0.301029i \(0.0973300\pi\)
\(662\) 0 0
\(663\) −36.8241 + 3.39831i −1.43013 + 0.131980i
\(664\) 0 0
\(665\) −1.94002 + 1.12007i −0.0752308 + 0.0434345i
\(666\) 0 0
\(667\) 2.05967 3.56745i 0.0797506 0.138132i
\(668\) 0 0
\(669\) 25.7030 + 14.8396i 0.993736 + 0.573734i
\(670\) 0 0
\(671\) 19.2410i 0.742790i
\(672\) 0 0
\(673\) −17.0051 29.4538i −0.655500 1.13536i −0.981768 0.190082i \(-0.939125\pi\)
0.326268 0.945277i \(-0.394209\pi\)
\(674\) 0 0
\(675\) −5.62828 −0.216633
\(676\) 0 0
\(677\) 29.9209 1.14995 0.574977 0.818169i \(-0.305011\pi\)
0.574977 + 0.818169i \(0.305011\pi\)
\(678\) 0 0
\(679\) 15.9147 + 27.5651i 0.610751 + 1.05785i
\(680\) 0 0
\(681\) 44.0584i 1.68832i
\(682\) 0 0
\(683\) 24.1251 + 13.9286i 0.923121 + 0.532964i 0.884629 0.466295i \(-0.154411\pi\)
0.0384916 + 0.999259i \(0.487745\pi\)
\(684\) 0 0
\(685\) 6.03240 10.4484i 0.230486 0.399214i
\(686\) 0 0
\(687\) −47.1786 + 27.2386i −1.79998 + 1.03922i
\(688\) 0 0
\(689\) −45.2158 + 4.17274i −1.72258 + 0.158969i
\(690\) 0 0
\(691\) 31.4550 18.1606i 1.19661 0.690860i 0.236809 0.971556i \(-0.423899\pi\)
0.959797 + 0.280696i \(0.0905652\pi\)
\(692\) 0 0
\(693\) 9.05440 15.6827i 0.343948 0.595736i
\(694\) 0 0
\(695\) −4.86002 2.80593i −0.184351 0.106435i
\(696\) 0 0
\(697\) 15.4853i 0.586548i
\(698\) 0 0
\(699\) −3.51651 6.09077i −0.133007 0.230374i
\(700\) 0 0
\(701\) 2.16156 0.0816411 0.0408206 0.999166i \(-0.487003\pi\)
0.0408206 + 0.999166i \(0.487003\pi\)
\(702\) 0 0
\(703\) 10.4249 0.393183
\(704\) 0 0
\(705\) −4.89623 8.48052i −0.184403 0.319395i
\(706\) 0 0
\(707\) 7.67250i 0.288554i
\(708\) 0 0
\(709\) −41.2371 23.8082i −1.54869 0.894137i −0.998242 0.0592680i \(-0.981123\pi\)
−0.550449 0.834869i \(-0.685543\pi\)
\(710\) 0 0
\(711\) −33.8713 + 58.6668i −1.27027 + 2.20018i
\(712\) 0 0
\(713\) −39.5615 + 22.8408i −1.48159 + 0.855396i
\(714\) 0 0
\(715\) 3.60628 + 5.09850i 0.134867 + 0.190673i
\(716\) 0 0
\(717\) −41.0733 + 23.7137i −1.53391 + 0.885603i
\(718\) 0 0
\(719\) −10.1469 + 17.5749i −0.378414 + 0.655433i −0.990832 0.135102i \(-0.956864\pi\)
0.612417 + 0.790535i \(0.290197\pi\)
\(720\) 0 0
\(721\) −24.9996 14.4335i −0.931035 0.537533i
\(722\) 0 0
\(723\) 82.2029i 3.05716i
\(724\) 0 0
\(725\) −0.263457 0.456321i −0.00978454 0.0169473i
\(726\) 0 0
\(727\) 11.0681 0.410494 0.205247 0.978710i \(-0.434200\pi\)
0.205247 + 0.978710i \(0.434200\pi\)
\(728\) 0 0
\(729\) −43.0532 −1.59456
\(730\) 0 0
\(731\) 16.9527 + 29.3630i 0.627019 + 1.08603i
\(732\) 0 0
\(733\) 23.4002i 0.864304i −0.901801 0.432152i \(-0.857754\pi\)
0.901801 0.432152i \(-0.142246\pi\)
\(734\) 0 0
\(735\) 6.39414 + 3.69166i 0.235852 + 0.136169i
\(736\) 0 0
\(737\) −9.38201 + 16.2501i −0.345591 + 0.598581i
\(738\) 0 0
\(739\) −22.1617 + 12.7951i −0.815232 + 0.470675i −0.848770 0.528763i \(-0.822656\pi\)
0.0335372 + 0.999437i \(0.489323\pi\)
\(740\) 0 0
\(741\) 1.00161 + 10.8534i 0.0367951 + 0.398711i
\(742\) 0 0
\(743\) 7.28694 4.20712i 0.267332 0.154344i −0.360343 0.932820i \(-0.617340\pi\)
0.627675 + 0.778476i \(0.284007\pi\)
\(744\) 0 0
\(745\) 10.4943 18.1767i 0.384482 0.665942i
\(746\) 0 0
\(747\) −68.2605 39.4102i −2.49752 1.44194i
\(748\) 0 0
\(749\) 6.78106i 0.247775i
\(750\) 0 0
\(751\) 20.2595 + 35.0905i 0.739279 + 1.28047i 0.952820 + 0.303535i \(0.0981671\pi\)
−0.213541 + 0.976934i \(0.568500\pi\)
\(752\) 0 0
\(753\) −54.0514 −1.96974
\(754\) 0 0
\(755\) 6.99102 0.254429
\(756\) 0 0
\(757\) 5.67593 + 9.83100i 0.206295 + 0.357314i 0.950545 0.310588i \(-0.100526\pi\)
−0.744249 + 0.667902i \(0.767193\pi\)
\(758\) 0 0
\(759\) 38.2780i 1.38940i
\(760\) 0 0
\(761\) −5.86364 3.38538i −0.212557 0.122720i 0.389942 0.920839i \(-0.372495\pi\)
−0.602499 + 0.798120i \(0.705828\pi\)
\(762\) 0 0
\(763\) −9.56249 + 16.5627i −0.346185 + 0.599611i
\(764\) 0 0
\(765\) −15.6827 + 9.05440i −0.567008 + 0.327362i
\(766\) 0 0
\(767\) 4.59704 + 2.11707i 0.165990 + 0.0764428i
\(768\) 0 0
\(769\) −20.0563 + 11.5795i −0.723250 + 0.417569i −0.815948 0.578126i \(-0.803784\pi\)
0.0926975 + 0.995694i \(0.470451\pi\)
\(770\) 0 0
\(771\) 19.3766 33.5613i 0.697833 1.20868i
\(772\) 0 0
\(773\) 36.3333 + 20.9770i 1.30682 + 0.754491i 0.981564 0.191136i \(-0.0612172\pi\)
0.325253 + 0.945627i \(0.394551\pi\)
\(774\) 0 0
\(775\) 5.84325i 0.209896i
\(776\) 0 0
\(777\) 28.8634 + 49.9928i 1.03547 + 1.79348i
\(778\) 0 0
\(779\) −4.56410 −0.163526
\(780\) 0 0
\(781\) −24.5418 −0.878174
\(782\) 0 0
\(783\) 1.48281 + 2.56830i 0.0529913 + 0.0917835i
\(784\) 0 0
\(785\) 3.74761i 0.133758i
\(786\) 0 0
\(787\) 32.4026 + 18.7076i 1.15503 + 0.666856i 0.950107 0.311923i \(-0.100973\pi\)
0.204920 + 0.978779i \(0.434306\pi\)
\(788\) 0 0
\(789\) 16.8388 29.1656i 0.599476 1.03832i
\(790\) 0 0
\(791\) −19.8714 + 11.4727i −0.706544 + 0.407923i
\(792\) 0 0
\(793\) −16.7544 + 36.3808i −0.594965 + 1.29192i
\(794\) 0 0
\(795\) −30.8313 + 17.8005i