Properties

Label 260.2.p.b.103.1
Level $260$
Weight $2$
Character 260.103
Analytic conductor $2.076$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 103.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 260.103
Dual form 260.2.p.b.207.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(-2.00000 + 1.00000i) q^{5} +(-2.00000 + 2.00000i) q^{8} +3.00000i q^{9} +O(q^{10})\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(-2.00000 + 1.00000i) q^{5} +(-2.00000 + 2.00000i) q^{8} +3.00000i q^{9} +(-3.00000 - 1.00000i) q^{10} +(2.00000 + 3.00000i) q^{13} -4.00000 q^{16} +(5.00000 - 5.00000i) q^{17} +(-3.00000 + 3.00000i) q^{18} +(-2.00000 - 4.00000i) q^{20} +(3.00000 - 4.00000i) q^{25} +(-1.00000 + 5.00000i) q^{26} -4.00000i q^{29} +(-4.00000 - 4.00000i) q^{32} +10.0000 q^{34} -6.00000 q^{36} +(7.00000 + 7.00000i) q^{37} +(2.00000 - 6.00000i) q^{40} -10.0000i q^{41} +(-3.00000 - 6.00000i) q^{45} +7.00000i q^{49} +(7.00000 - 1.00000i) q^{50} +(-6.00000 + 4.00000i) q^{52} +(5.00000 + 5.00000i) q^{53} +(4.00000 - 4.00000i) q^{58} -12.0000 q^{61} -8.00000i q^{64} +(-7.00000 - 4.00000i) q^{65} +(10.0000 + 10.0000i) q^{68} +(-6.00000 - 6.00000i) q^{72} +(11.0000 - 11.0000i) q^{73} +14.0000i q^{74} +(8.00000 - 4.00000i) q^{80} -9.00000 q^{81} +(10.0000 - 10.0000i) q^{82} +(-5.00000 + 15.0000i) q^{85} +10.0000 q^{89} +(3.00000 - 9.00000i) q^{90} +(13.0000 + 13.0000i) q^{97} +(-7.00000 + 7.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 4 q^{5} - 4 q^{8} - 6 q^{10} + 4 q^{13} - 8 q^{16} + 10 q^{17} - 6 q^{18} - 4 q^{20} + 6 q^{25} - 2 q^{26} - 8 q^{32} + 20 q^{34} - 12 q^{36} + 14 q^{37} + 4 q^{40} - 6 q^{45} + 14 q^{50} - 12 q^{52} + 10 q^{53} + 8 q^{58} - 24 q^{61} - 14 q^{65} + 20 q^{68} - 12 q^{72} + 22 q^{73} + 16 q^{80} - 18 q^{81} + 20 q^{82} - 10 q^{85} + 20 q^{89} + 6 q^{90} + 26 q^{97} - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0 0
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 3.00000i 1.00000i
\(10\) −3.00000 1.00000i −0.948683 0.316228i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.00000i 0.554700 + 0.832050i
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 5.00000 5.00000i 1.21268 1.21268i 0.242536 0.970143i \(-0.422021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) −3.00000 + 3.00000i −0.707107 + 0.707107i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −2.00000 4.00000i −0.447214 0.894427i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) −1.00000 + 5.00000i −0.196116 + 0.980581i
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000i 0.742781i −0.928477 0.371391i \(-0.878881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) 10.0000 1.71499
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) 7.00000 + 7.00000i 1.15079 + 1.15079i 0.986394 + 0.164399i \(0.0525685\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 2.00000 6.00000i 0.316228 0.948683i
\(41\) 10.0000i 1.56174i −0.624695 0.780869i \(-0.714777\pi\)
0.624695 0.780869i \(-0.285223\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) −3.00000 6.00000i −0.447214 0.894427i
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 7.00000 1.00000i 0.989949 0.141421i
\(51\) 0 0
\(52\) −6.00000 + 4.00000i −0.832050 + 0.554700i
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 4.00000 4.00000i 0.525226 0.525226i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −12.0000 −1.53644 −0.768221 0.640184i \(-0.778858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) −7.00000 4.00000i −0.868243 0.496139i
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) 10.0000 + 10.0000i 1.21268 + 1.21268i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −6.00000 6.00000i −0.707107 0.707107i
\(73\) 11.0000 11.0000i 1.28745 1.28745i 0.351123 0.936329i \(-0.385800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 14.0000i 1.62747i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 8.00000 4.00000i 0.894427 0.447214i
\(81\) −9.00000 −1.00000
\(82\) 10.0000 10.0000i 1.10432 1.10432i
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) −5.00000 + 15.0000i −0.542326 + 1.62698i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 3.00000 9.00000i 0.316228 0.948683i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 13.0000 + 13.0000i 1.31995 + 1.31995i 0.913812 + 0.406138i \(0.133125\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) −7.00000 + 7.00000i −0.707107 + 0.707107i
\(99\) 0 0
\(100\) 8.00000 + 6.00000i 0.800000 + 0.600000i
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) −10.0000 2.00000i −0.980581 0.196116i
\(105\) 0 0
\(106\) 10.0000i 0.971286i
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) −20.0000 −1.91565 −0.957826 0.287348i \(-0.907226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.0000 15.0000i −1.41108 1.41108i −0.752577 0.658505i \(-0.771189\pi\)
−0.658505 0.752577i \(-0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.00000 0.742781
\(117\) −9.00000 + 6.00000i −0.832050 + 0.554700i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −12.0000 12.0000i −1.08643 1.08643i
\(123\) 0 0
\(124\) 0 0
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 0 0
\(130\) −3.00000 11.0000i −0.263117 0.964764i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 20.0000i 1.71499i
\(137\) −7.00000 7.00000i −0.598050 0.598050i 0.341743 0.939793i \(-0.388983\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 12.0000i 1.00000i
\(145\) 4.00000 + 8.00000i 0.332182 + 0.664364i
\(146\) 22.0000 1.82073
\(147\) 0 0
\(148\) −14.0000 + 14.0000i −1.15079 + 1.15079i
\(149\) −20.0000 −1.63846 −0.819232 0.573462i \(-0.805600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 15.0000 + 15.0000i 1.21268 + 1.21268i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.00000 5.00000i 0.399043 0.399043i −0.478852 0.877896i \(-0.658947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 12.0000 + 4.00000i 0.948683 + 0.316228i
\(161\) 0 0
\(162\) −9.00000 9.00000i −0.707107 0.707107i
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 20.0000 1.56174
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) −20.0000 + 10.0000i −1.53393 + 0.766965i
\(171\) 0 0
\(172\) 0 0
\(173\) −15.0000 15.0000i −1.14043 1.14043i −0.988372 0.152057i \(-0.951410\pi\)
−0.152057 0.988372i \(-0.548590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 10.0000 + 10.0000i 0.749532 + 0.749532i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 12.0000 6.00000i 0.894427 0.447214i
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −21.0000 7.00000i −1.54395 0.514650i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 19.0000 19.0000i 1.36765 1.36765i 0.503871 0.863779i \(-0.331909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) 26.0000i 1.86669i
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 13.0000 + 13.0000i 0.926212 + 0.926212i 0.997459 0.0712470i \(-0.0226979\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 2.00000 + 14.0000i 0.141421 + 0.989949i
\(201\) 0 0
\(202\) 2.00000 + 2.00000i 0.140720 + 0.140720i
\(203\) 0 0
\(204\) 0 0
\(205\) 10.0000 + 20.0000i 0.698430 + 1.39686i
\(206\) 0 0
\(207\) 0 0
\(208\) −8.00000 12.0000i −0.554700 0.832050i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −10.0000 + 10.0000i −0.686803 + 0.686803i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −20.0000 20.0000i −1.35457 1.35457i
\(219\) 0 0
\(220\) 0 0
\(221\) 25.0000 + 5.00000i 1.68168 + 0.336336i
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 12.0000 + 9.00000i 0.800000 + 0.600000i
\(226\) 30.0000i 1.99557i
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 30.0000 1.98246 0.991228 0.132164i \(-0.0421925\pi\)
0.991228 + 0.132164i \(0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.00000 + 8.00000i 0.525226 + 0.525226i
\(233\) −5.00000 5.00000i −0.327561 0.327561i 0.524097 0.851658i \(-0.324403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) −15.0000 3.00000i −0.980581 0.196116i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 30.0000i 1.93247i −0.257663 0.966235i \(-0.582952\pi\)
0.257663 0.966235i \(-0.417048\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) 0 0
\(244\) 24.0000i 1.53644i
\(245\) −7.00000 14.0000i −0.447214 0.894427i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −13.0000 + 9.00000i −0.822192 + 0.569210i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 15.0000 15.0000i 0.935674 0.935674i −0.0623783 0.998053i \(-0.519869\pi\)
0.998053 + 0.0623783i \(0.0198685\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 8.00000 14.0000i 0.496139 0.868243i
\(261\) 12.0000 0.742781
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) −15.0000 5.00000i −0.921443 0.307148i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.0000i 1.58525i −0.609711 0.792624i \(-0.708714\pi\)
0.609711 0.792624i \(-0.291286\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −20.0000 + 20.0000i −1.21268 + 1.21268i
\(273\) 0 0
\(274\) 14.0000i 0.845771i
\(275\) 0 0
\(276\) 0 0
\(277\) −5.00000 + 5.00000i −0.300421 + 0.300421i −0.841178 0.540758i \(-0.818138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000i 0.596550i −0.954480 0.298275i \(-0.903589\pi\)
0.954480 0.298275i \(-0.0964112\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 12.0000 12.0000i 0.707107 0.707107i
\(289\) 33.0000i 1.94118i
\(290\) −4.00000 + 12.0000i −0.234888 + 0.704664i
\(291\) 0 0
\(292\) 22.0000 + 22.0000i 1.28745 + 1.28745i
\(293\) −19.0000 + 19.0000i −1.10999 + 1.10999i −0.116841 + 0.993151i \(0.537277\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −28.0000 −1.62747
\(297\) 0 0
\(298\) −20.0000 20.0000i −1.15857 1.15857i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.0000 12.0000i 1.37424 0.687118i
\(306\) 30.0000i 1.71499i
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 25.0000 + 25.0000i 1.41308 + 1.41308i 0.734803 + 0.678280i \(0.237274\pi\)
0.678280 + 0.734803i \(0.262726\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) 0 0
\(317\) −3.00000 3.00000i −0.168497 0.168497i 0.617822 0.786318i \(-0.288015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.00000 + 16.0000i 0.447214 + 0.894427i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 18.0000 + 1.00000i 0.998460 + 0.0554700i
\(326\) 0 0
\(327\) 0 0
\(328\) 20.0000 + 20.0000i 1.10432 + 1.10432i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) −21.0000 + 21.0000i −1.15079 + 1.15079i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −25.0000 + 25.0000i −1.36184 + 1.36184i −0.490261 + 0.871576i \(0.663099\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) −17.0000 + 7.00000i −0.924678 + 0.380750i
\(339\) 0 0
\(340\) −30.0000 10.0000i −1.62698 0.542326i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 30.0000i 1.61281i
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 + 9.00000i −0.479022 + 0.479022i −0.904819 0.425797i \(-0.859994\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 20.0000i 1.06000i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 18.0000 + 6.00000i 0.948683 + 0.316228i
\(361\) 19.0000 1.00000
\(362\) 18.0000 + 18.0000i 0.946059 + 0.946059i
\(363\) 0 0
\(364\) 0 0
\(365\) −11.0000 + 33.0000i −0.575766 + 1.72730i
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 30.0000 1.56174
\(370\) −14.0000 28.0000i −0.727825 1.45565i
\(371\) 0 0
\(372\) 0 0
\(373\) −25.0000 25.0000i −1.29445 1.29445i −0.932005 0.362446i \(-0.881942\pi\)
−0.362446 0.932005i \(-0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 8.00000i 0.618031 0.412021i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 38.0000 1.93415
\(387\) 0 0
\(388\) −26.0000 + 26.0000i −1.31995 + 1.31995i
\(389\) 34.0000i 1.72387i 0.507020 + 0.861934i \(0.330747\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −14.0000 14.0000i −0.707107 0.707107i
\(393\) 0 0
\(394\) 26.0000i 1.30986i
\(395\) 0 0
\(396\) 0 0
\(397\) −13.0000 13.0000i −0.652451 0.652451i 0.301131 0.953583i \(-0.402636\pi\)
−0.953583 + 0.301131i \(0.902636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −12.0000 + 16.0000i −0.600000 + 0.800000i
\(401\) 40.0000i 1.99750i 0.0499376 + 0.998752i \(0.484098\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 4.00000i 0.199007i
\(405\) 18.0000 9.00000i 0.894427 0.447214i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −40.0000 −1.97787 −0.988936 0.148340i \(-0.952607\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(410\) −10.0000 + 30.0000i −0.493865 + 1.48159i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 4.00000 20.0000i 0.196116 0.980581i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 30.0000i 1.46211i 0.682318 + 0.731055i \(0.260972\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −20.0000 −0.971286
\(425\) −5.00000 35.0000i −0.242536 1.69775i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 5.00000 + 5.00000i 0.240285 + 0.240285i 0.816968 0.576683i \(-0.195653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 40.0000i 1.91565i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −21.0000 −1.00000
\(442\) 20.0000 + 30.0000i 0.951303 + 1.42695i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) −20.0000 + 10.0000i −0.948091 + 0.474045i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.0000 1.88772 0.943858 0.330350i \(-0.107167\pi\)
0.943858 + 0.330350i \(0.107167\pi\)
\(450\) 3.00000 + 21.0000i 0.141421 + 0.989949i
\(451\) 0 0
\(452\) 30.0000 30.0000i 1.41108 1.41108i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.0000 17.0000i −0.795226 0.795226i 0.187112 0.982339i \(-0.440087\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 30.0000 + 30.0000i 1.40181 + 1.40181i
\(459\) 0 0
\(460\) 0 0
\(461\) 20.0000i 0.931493i −0.884918 0.465746i \(-0.845786\pi\)
0.884918 0.465746i \(-0.154214\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 16.0000i 0.742781i
\(465\) 0 0
\(466\) 10.0000i 0.463241i
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) −12.0000 18.0000i −0.554700 0.832050i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.0000 + 15.0000i −0.686803 + 0.686803i
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −7.00000 + 35.0000i −0.319173 + 1.59586i
\(482\) 30.0000 30.0000i 1.36646 1.36646i
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) −39.0000 13.0000i −1.77090 0.590300i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 24.0000 24.0000i 1.08643 1.08643i
\(489\) 0 0
\(490\) 7.00000 21.0000i 0.316228 0.948683i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −20.0000 20.0000i −0.900755 0.900755i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −22.0000 4.00000i −0.983870 0.178885i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) −4.00000 + 2.00000i −0.177998 + 0.0889988i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) 30.0000 1.32324
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 22.0000 6.00000i 0.964764 0.263117i
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 12.0000 + 12.0000i 0.525226 + 0.525226i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) −10.0000 20.0000i −0.434372 0.868744i
\(531\) 0 0
\(532\) 0 0
\(533\) 30.0000 20.0000i 1.29944 0.866296i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 26.0000 26.0000i 1.12094 1.12094i
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000i 0.859867i −0.902861 0.429934i \(-0.858537\pi\)
0.902861 0.429934i \(-0.141463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −40.0000 −1.71499
\(545\) 40.0000 20.0000i 1.71341 0.856706i
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 14.0000 14.0000i 0.598050 0.598050i
\(549\) 36.0000i 1.53644i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) 0 0
\(557\) −33.0000 33.0000i −1.39825 1.39825i −0.805056 0.593199i \(-0.797865\pi\)
−0.593199 0.805056i \(-0.702135\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 10.0000 10.0000i 0.421825 0.421825i
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) 45.0000 + 15.0000i 1.89316 + 0.631055i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.0000i 1.08998i 0.838444 + 0.544988i \(0.183466\pi\)
−0.838444 + 0.544988i \(0.816534\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 24.0000 1.00000
\(577\) −23.0000 23.0000i −0.957503 0.957503i 0.0416305 0.999133i \(-0.486745\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) 33.0000 33.0000i 1.37262 1.37262i
\(579\) 0 0
\(580\) −16.0000 + 8.00000i −0.664364 + 0.332182i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 44.0000i 1.82073i
\(585\) 12.0000 21.0000i 0.496139 0.868243i
\(586\) −38.0000 −1.56977
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −28.0000 28.0000i −1.15079 1.15079i
\(593\) −31.0000 + 31.0000i −1.27302 + 1.27302i −0.328521 + 0.944497i \(0.606550\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 40.0000i 1.63846i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −48.0000 −1.95796 −0.978980 0.203954i \(-0.934621\pi\)
−0.978980 + 0.203954i \(0.934621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.0000 11.0000i 0.894427 0.447214i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 36.0000 + 12.0000i 1.45760 + 0.485866i
\(611\) 0 0
\(612\) −30.0000 + 30.0000i −1.21268 + 1.21268i
\(613\) −1.00000 + 1.00000i −0.0403896 + 0.0403896i −0.727013 0.686624i \(-0.759092\pi\)
0.686624 + 0.727013i \(0.259092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 + 3.00000i 0.120775 + 0.120775i 0.764911 0.644136i \(-0.222783\pi\)
−0.644136 + 0.764911i \(0.722783\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 50.0000i 1.99840i
\(627\) 0 0
\(628\) 10.0000 + 10.0000i 0.399043 + 0.399043i
\(629\) 70.0000 2.79108
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 6.00000i 0.238290i
\(635\) 0 0
\(636\) 0 0
\(637\) −21.0000 + 14.0000i −0.832050 + 0.554700i
\(638\) 0 0
\(639\) 0 0
\(640\) −8.00000 + 24.0000i −0.316228 + 0.948683i
\(641\) −8.00000 −0.315981 −0.157991 0.987441i \(-0.550502\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 18.0000 18.0000i 0.707107 0.707107i
\(649\) 0 0
\(650\) 17.0000 + 19.0000i 0.666795 + 0.745241i
\(651\) 0 0
\(652\) 0 0
\(653\) 35.0000 + 35.0000i 1.36966 + 1.36966i 0.860927 + 0.508729i \(0.169885\pi\)
0.508729 + 0.860927i \(0.330115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 40.0000i 1.56174i
\(657\) 33.0000 + 33.0000i 1.28745 + 1.28745i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 50.0000i 1.94477i 0.233373 + 0.972387i \(0.425024\pi\)
−0.233373 + 0.972387i \(0.574976\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −42.0000 −1.62747
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 35.0000 + 35.0000i 1.34915 + 1.34915i 0.886585 + 0.462566i \(0.153071\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(674\) −50.0000 −1.92593
\(675\) 0 0
\(676\) −24.0000 10.0000i −0.923077 0.384615i
\(677\) 25.0000 25.0000i 0.960828 0.960828i −0.0384331 0.999261i \(-0.512237\pi\)
0.999261 + 0.0384331i \(0.0122367\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −20.0000 40.0000i −0.766965 1.53393i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) 21.0000 + 7.00000i 0.802369 + 0.267456i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.00000 + 25.0000i −0.190485 + 0.952424i
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 30.0000 30.0000i 1.14043 1.14043i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −50.0000 50.0000i −1.89389 1.89389i
\(698\) −10.0000 10.0000i −0.378506 0.378506i
\(699\) 0 0
\(700\) 0 0
\(701\) 52.0000 1.96401 0.982006 0.188847i \(-0.0604752\pi\)
0.982006 + 0.188847i \(0.0604752\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) 0 0
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −20.0000 + 20.0000i −0.749532 + 0.749532i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 12.0000 + 24.0000i 0.447214 + 0.894427i
\(721\) 0 0
\(722\) 19.0000 + 19.0000i 0.707107 + 0.707107i
\(723\) 0 0
\(724\) 36.0000i 1.33793i
\(725\) −16.0000 12.0000i −0.594225 0.445669i
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) −44.0000 + 22.0000i −1.62851 + 0.814257i
\(731\) 0 0
\(732\) 0 0
\(733\) 29.0000 29.0000i 1.07114 1.07114i 0.0738717 0.997268i \(-0.476464\pi\)
0.997268 0.0738717i \(-0.0235355\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 30.0000 + 30.0000i 1.10432 + 1.10432i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 14.0000 42.0000i 0.514650 1.54395i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) 40.0000 20.0000i 1.46549 0.732743i
\(746\) 50.0000i 1.83063i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 20.0000 + 4.00000i 0.728357 + 0.145671i
\(755\) 0 0
\(756\) 0 0
\(757\) 35.0000 35.0000i 1.27210 1.27210i 0.327111 0.944986i \(-0.393925\pi\)
0.944986 0.327111i \(-0.106075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.0000i 1.45000i 0.688749 + 0.724999i \(0.258160\pi\)
−0.688749 + 0.724999i \(0.741840\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −45.0000 15.0000i −1.62698 0.542326i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −50.0000 −1.80305 −0.901523 0.432731i \(-0.857550\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 38.0000 + 38.0000i 1.36765 + 1.36765i
\(773\) −39.0000 + 39.0000i −1.40273 + 1.40273i −0.611448 + 0.791285i \(0.709412\pi\)
−0.791285 + 0.611448i \(0.790588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −52.0000 −1.86669
\(777\) 0 0
\(778\) −34.0000 + 34.0000i −1.21896 + 1.21896i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000i 1.00000i
\(785\) −5.00000 + 15.0000i −0.178458 + 0.535373i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) −26.0000 + 26.0000i −0.926212 + 0.926212i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −24.0000 36.0000i −0.852265 1.27840i
\(794\) 26.0000i 0.922705i
\(795\) 0 0
\(796\) 0 0
\(797\) −15.0000 + 15.0000i −0.531327 + 0.531327i −0.920967 0.389640i \(-0.872599\pi\)
0.389640 + 0.920967i \(0.372599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −28.0000 + 4.00000i −0.989949 + 0.141421i
\(801\)