Properties

Label 260.2.o.a.27.20
Level $260$
Weight $2$
Character 260.27
Analytic conductor $2.076$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [260,2,Mod(27,260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(260, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("260.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 27.20
Character \(\chi\) \(=\) 260.27
Dual form 260.2.o.a.183.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.203483 - 1.39950i) q^{2} +(-0.0775283 - 0.0775283i) q^{3} +(-1.91719 - 0.569548i) q^{4} +(0.871245 + 2.05935i) q^{5} +(-0.124276 + 0.0927250i) q^{6} +(2.89635 - 2.89635i) q^{7} +(-1.18720 + 2.56721i) q^{8} -2.98798i q^{9} +O(q^{10})\) \(q+(0.203483 - 1.39950i) q^{2} +(-0.0775283 - 0.0775283i) q^{3} +(-1.91719 - 0.569548i) q^{4} +(0.871245 + 2.05935i) q^{5} +(-0.124276 + 0.0927250i) q^{6} +(2.89635 - 2.89635i) q^{7} +(-1.18720 + 2.56721i) q^{8} -2.98798i q^{9} +(3.05934 - 0.800263i) q^{10} -3.20102i q^{11} +(0.104480 + 0.192792i) q^{12} +(-0.707107 + 0.707107i) q^{13} +(-3.46408 - 4.64280i) q^{14} +(0.0921119 - 0.227204i) q^{15} +(3.35123 + 2.18386i) q^{16} +(-0.217815 - 0.217815i) q^{17} +(-4.18167 - 0.608002i) q^{18} +5.01907 q^{19} +(-0.497443 - 4.44438i) q^{20} -0.449098 q^{21} +(-4.47983 - 0.651354i) q^{22} +(-4.02311 - 4.02311i) q^{23} +(0.291073 - 0.106990i) q^{24} +(-3.48186 + 3.58840i) q^{25} +(0.845710 + 1.13348i) q^{26} +(-0.464238 + 0.464238i) q^{27} +(-7.20247 + 3.90325i) q^{28} +9.89914i q^{29} +(-0.299229 - 0.175143i) q^{30} +2.20528i q^{31} +(3.73823 - 4.24566i) q^{32} +(-0.248170 + 0.248170i) q^{33} +(-0.349153 + 0.260510i) q^{34} +(8.48804 + 3.44118i) q^{35} +(-1.70180 + 5.72852i) q^{36} +(0.278378 + 0.278378i) q^{37} +(1.02129 - 7.02418i) q^{38} +0.109642 q^{39} +(-6.32113 - 0.208186i) q^{40} +5.39487 q^{41} +(-0.0913838 + 0.628512i) q^{42} +(1.36242 + 1.36242i) q^{43} +(-1.82314 + 6.13697i) q^{44} +(6.15330 - 2.60326i) q^{45} +(-6.44897 + 4.81170i) q^{46} +(-4.21558 + 4.21558i) q^{47} +(-0.0905041 - 0.429126i) q^{48} -9.77772i q^{49} +(4.31346 + 5.60304i) q^{50} +0.0337736i q^{51} +(1.75839 - 0.952927i) q^{52} +(-0.797227 + 0.797227i) q^{53} +(0.555235 + 0.744164i) q^{54} +(6.59204 - 2.78888i) q^{55} +(3.99701 + 10.8741i) q^{56} +(-0.389120 - 0.389120i) q^{57} +(13.8538 + 2.01431i) q^{58} -9.66566 q^{59} +(-0.305999 + 0.383131i) q^{60} +10.8601 q^{61} +(3.08629 + 0.448738i) q^{62} +(-8.65424 - 8.65424i) q^{63} +(-5.18113 - 6.09556i) q^{64} +(-2.07225 - 0.840119i) q^{65} +(0.296815 + 0.397812i) q^{66} +(-3.68797 + 3.68797i) q^{67} +(0.293537 + 0.541649i) q^{68} +0.623810i q^{69} +(6.54309 - 11.1788i) q^{70} +11.8869i q^{71} +(7.67077 + 3.54732i) q^{72} +(0.326289 - 0.326289i) q^{73} +(0.446235 - 0.332945i) q^{74} +(0.548145 - 0.00825971i) q^{75} +(-9.62250 - 2.85860i) q^{76} +(-9.27130 - 9.27130i) q^{77} +(0.0223102 - 0.153443i) q^{78} +6.73412 q^{79} +(-1.57760 + 8.80404i) q^{80} -8.89195 q^{81} +(1.09776 - 7.55010i) q^{82} +(2.35855 + 2.35855i) q^{83} +(0.861007 + 0.255783i) q^{84} +(0.258788 - 0.638328i) q^{85} +(2.18393 - 1.62947i) q^{86} +(0.767463 - 0.767463i) q^{87} +(8.21770 + 3.80024i) q^{88} +16.4054i q^{89} +(-2.39117 - 9.14125i) q^{90} +4.09606i q^{91} +(5.42171 + 10.0044i) q^{92} +(0.170972 - 0.170972i) q^{93} +(5.04189 + 6.75749i) q^{94} +(4.37284 + 10.3360i) q^{95} +(-0.618977 + 0.0393405i) q^{96} +(-11.5449 - 11.5449i) q^{97} +(-13.6839 - 1.98960i) q^{98} -9.56459 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 8 q^{6} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 8 q^{6} - 12 q^{8} - 8 q^{10} - 8 q^{12} - 8 q^{16} + 28 q^{18} - 16 q^{21} - 8 q^{22} - 20 q^{28} - 32 q^{30} - 40 q^{32} + 16 q^{33} + 32 q^{36} - 12 q^{38} - 8 q^{40} - 40 q^{42} - 8 q^{46} + 60 q^{48} + 40 q^{50} + 8 q^{52} - 48 q^{53} + 8 q^{56} - 60 q^{58} + 20 q^{60} - 64 q^{61} + 60 q^{62} + 8 q^{66} - 16 q^{68} - 60 q^{70} + 40 q^{72} - 16 q^{73} - 72 q^{76} + 48 q^{77} - 20 q^{80} + 8 q^{81} - 12 q^{82} + 48 q^{85} + 48 q^{86} + 12 q^{88} + 44 q^{90} - 36 q^{92} + 16 q^{93} + 32 q^{96} - 80 q^{97} - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.203483 1.39950i 0.143884 0.989595i
\(3\) −0.0775283 0.0775283i −0.0447610 0.0447610i 0.684372 0.729133i \(-0.260076\pi\)
−0.729133 + 0.684372i \(0.760076\pi\)
\(4\) −1.91719 0.569548i −0.958595 0.284774i
\(5\) 0.871245 + 2.05935i 0.389633 + 0.920970i
\(6\) −0.124276 + 0.0927250i −0.0507356 + 0.0378548i
\(7\) 2.89635 2.89635i 1.09472 1.09472i 0.0997009 0.995017i \(-0.468211\pi\)
0.995017 0.0997009i \(-0.0317886\pi\)
\(8\) −1.18720 + 2.56721i −0.419737 + 0.907646i
\(9\) 2.98798i 0.995993i
\(10\) 3.05934 0.800263i 0.967449 0.253065i
\(11\) 3.20102i 0.965145i −0.875856 0.482573i \(-0.839702\pi\)
0.875856 0.482573i \(-0.160298\pi\)
\(12\) 0.104480 + 0.192792i 0.0301609 + 0.0556544i
\(13\) −0.707107 + 0.707107i −0.196116 + 0.196116i
\(14\) −3.46408 4.64280i −0.925815 1.24084i
\(15\) 0.0921119 0.227204i 0.0237832 0.0586639i
\(16\) 3.35123 + 2.18386i 0.837808 + 0.545965i
\(17\) −0.217815 0.217815i −0.0528279 0.0528279i 0.680199 0.733027i \(-0.261893\pi\)
−0.733027 + 0.680199i \(0.761893\pi\)
\(18\) −4.18167 0.608002i −0.985629 0.143308i
\(19\) 5.01907 1.15145 0.575727 0.817642i \(-0.304719\pi\)
0.575727 + 0.817642i \(0.304719\pi\)
\(20\) −0.497443 4.44438i −0.111232 0.993795i
\(21\) −0.449098 −0.0980013
\(22\) −4.47983 0.651354i −0.955102 0.138869i
\(23\) −4.02311 4.02311i −0.838877 0.838877i 0.149834 0.988711i \(-0.452126\pi\)
−0.988711 + 0.149834i \(0.952126\pi\)
\(24\) 0.291073 0.106990i 0.0594149 0.0218393i
\(25\) −3.48186 + 3.58840i −0.696373 + 0.717680i
\(26\) 0.845710 + 1.13348i 0.165857 + 0.222293i
\(27\) −0.464238 + 0.464238i −0.0893426 + 0.0893426i
\(28\) −7.20247 + 3.90325i −1.36114 + 0.737644i
\(29\) 9.89914i 1.83822i 0.393995 + 0.919112i \(0.371093\pi\)
−0.393995 + 0.919112i \(0.628907\pi\)
\(30\) −0.299229 0.175143i −0.0546314 0.0319765i
\(31\) 2.20528i 0.396081i 0.980194 + 0.198040i \(0.0634577\pi\)
−0.980194 + 0.198040i \(0.936542\pi\)
\(32\) 3.73823 4.24566i 0.660832 0.750534i
\(33\) −0.248170 + 0.248170i −0.0432008 + 0.0432008i
\(34\) −0.349153 + 0.260510i −0.0598793 + 0.0446771i
\(35\) 8.48804 + 3.44118i 1.43474 + 0.581665i
\(36\) −1.70180 + 5.72852i −0.283633 + 0.954754i
\(37\) 0.278378 + 0.278378i 0.0457651 + 0.0457651i 0.729619 0.683854i \(-0.239697\pi\)
−0.683854 + 0.729619i \(0.739697\pi\)
\(38\) 1.02129 7.02418i 0.165676 1.13947i
\(39\) 0.109642 0.0175567
\(40\) −6.32113 0.208186i −0.999458 0.0329171i
\(41\) 5.39487 0.842537 0.421268 0.906936i \(-0.361585\pi\)
0.421268 + 0.906936i \(0.361585\pi\)
\(42\) −0.0913838 + 0.628512i −0.0141008 + 0.0969815i
\(43\) 1.36242 + 1.36242i 0.207767 + 0.207767i 0.803318 0.595551i \(-0.203066\pi\)
−0.595551 + 0.803318i \(0.703066\pi\)
\(44\) −1.82314 + 6.13697i −0.274848 + 0.925183i
\(45\) 6.15330 2.60326i 0.917280 0.388071i
\(46\) −6.44897 + 4.81170i −0.950849 + 0.709447i
\(47\) −4.21558 + 4.21558i −0.614905 + 0.614905i −0.944220 0.329315i \(-0.893182\pi\)
0.329315 + 0.944220i \(0.393182\pi\)
\(48\) −0.0905041 0.429126i −0.0130631 0.0619390i
\(49\) 9.77772i 1.39682i
\(50\) 4.31346 + 5.60304i 0.610016 + 0.792389i
\(51\) 0.0337736i 0.00472926i
\(52\) 1.75839 0.952927i 0.243845 0.132147i
\(53\) −0.797227 + 0.797227i −0.109508 + 0.109508i −0.759737 0.650230i \(-0.774673\pi\)
0.650230 + 0.759737i \(0.274673\pi\)
\(54\) 0.555235 + 0.744164i 0.0755579 + 0.101268i
\(55\) 6.59204 2.78888i 0.888870 0.376052i
\(56\) 3.99701 + 10.8741i 0.534122 + 1.45311i
\(57\) −0.389120 0.389120i −0.0515401 0.0515401i
\(58\) 13.8538 + 2.01431i 1.81910 + 0.264491i
\(59\) −9.66566 −1.25836 −0.629181 0.777259i \(-0.716610\pi\)
−0.629181 + 0.777259i \(0.716610\pi\)
\(60\) −0.305999 + 0.383131i −0.0395044 + 0.0494620i
\(61\) 10.8601 1.39049 0.695244 0.718774i \(-0.255296\pi\)
0.695244 + 0.718774i \(0.255296\pi\)
\(62\) 3.08629 + 0.448738i 0.391959 + 0.0569897i
\(63\) −8.65424 8.65424i −1.09033 1.09033i
\(64\) −5.18113 6.09556i −0.647641 0.761945i
\(65\) −2.07225 0.840119i −0.257030 0.104204i
\(66\) 0.296815 + 0.397812i 0.0365354 + 0.0489672i
\(67\) −3.68797 + 3.68797i −0.450557 + 0.450557i −0.895539 0.444982i \(-0.853210\pi\)
0.444982 + 0.895539i \(0.353210\pi\)
\(68\) 0.293537 + 0.541649i 0.0355966 + 0.0656846i
\(69\) 0.623810i 0.0750979i
\(70\) 6.54309 11.1788i 0.782049 1.33612i
\(71\) 11.8869i 1.41071i 0.708854 + 0.705356i \(0.249213\pi\)
−0.708854 + 0.705356i \(0.750787\pi\)
\(72\) 7.67077 + 3.54732i 0.904009 + 0.418055i
\(73\) 0.326289 0.326289i 0.0381893 0.0381893i −0.687754 0.725944i \(-0.741403\pi\)
0.725944 + 0.687754i \(0.241403\pi\)
\(74\) 0.446235 0.332945i 0.0518738 0.0387040i
\(75\) 0.548145 0.00825971i 0.0632944 0.000953749i
\(76\) −9.62250 2.85860i −1.10378 0.327904i
\(77\) −9.27130 9.27130i −1.05656 1.05656i
\(78\) 0.0223102 0.153443i 0.00252613 0.0173740i
\(79\) 6.73412 0.757647 0.378824 0.925469i \(-0.376329\pi\)
0.378824 + 0.925469i \(0.376329\pi\)
\(80\) −1.57760 + 8.80404i −0.176381 + 0.984322i
\(81\) −8.89195 −0.987995
\(82\) 1.09776 7.55010i 0.121228 0.833770i
\(83\) 2.35855 + 2.35855i 0.258885 + 0.258885i 0.824600 0.565716i \(-0.191400\pi\)
−0.565716 + 0.824600i \(0.691400\pi\)
\(84\) 0.861007 + 0.255783i 0.0939435 + 0.0279082i
\(85\) 0.258788 0.638328i 0.0280695 0.0692364i
\(86\) 2.18393 1.62947i 0.235499 0.175710i
\(87\) 0.767463 0.767463i 0.0822807 0.0822807i
\(88\) 8.21770 + 3.80024i 0.876010 + 0.405107i
\(89\) 16.4054i 1.73897i 0.493961 + 0.869484i \(0.335549\pi\)
−0.493961 + 0.869484i \(0.664451\pi\)
\(90\) −2.39117 9.14125i −0.252051 0.963573i
\(91\) 4.09606i 0.429384i
\(92\) 5.42171 + 10.0044i 0.565253 + 1.04303i
\(93\) 0.170972 0.170972i 0.0177290 0.0177290i
\(94\) 5.04189 + 6.75749i 0.520032 + 0.696982i
\(95\) 4.37284 + 10.3360i 0.448644 + 1.06045i
\(96\) −0.618977 + 0.0393405i −0.0631741 + 0.00401517i
\(97\) −11.5449 11.5449i −1.17221 1.17221i −0.981682 0.190525i \(-0.938981\pi\)
−0.190525 0.981682i \(-0.561019\pi\)
\(98\) −13.6839 1.98960i −1.38228 0.200980i
\(99\) −9.56459 −0.961278
\(100\) 8.71916 4.89656i 0.871916 0.489656i
\(101\) 7.98198 0.794236 0.397118 0.917767i \(-0.370010\pi\)
0.397118 + 0.917767i \(0.370010\pi\)
\(102\) 0.0472662 + 0.00687236i 0.00468005 + 0.000680465i
\(103\) −4.94955 4.94955i −0.487694 0.487694i 0.419884 0.907578i \(-0.362071\pi\)
−0.907578 + 0.419884i \(0.862071\pi\)
\(104\) −0.975817 2.65477i −0.0956867 0.260321i
\(105\) −0.391275 0.924852i −0.0381845 0.0902563i
\(106\) 0.953495 + 1.27794i 0.0926117 + 0.124124i
\(107\) −10.5156 + 10.5156i −1.01658 + 1.01658i −0.0167221 + 0.999860i \(0.505323\pi\)
−0.999860 + 0.0167221i \(0.994677\pi\)
\(108\) 1.15444 0.625626i 0.111086 0.0602009i
\(109\) 0.690455i 0.0661336i −0.999453 0.0330668i \(-0.989473\pi\)
0.999453 0.0330668i \(-0.0105274\pi\)
\(110\) −2.56166 9.79303i −0.244245 0.933729i
\(111\) 0.0431643i 0.00409698i
\(112\) 16.0316 3.38111i 1.51484 0.319485i
\(113\) −3.03257 + 3.03257i −0.285280 + 0.285280i −0.835210 0.549931i \(-0.814654\pi\)
0.549931 + 0.835210i \(0.314654\pi\)
\(114\) −0.623751 + 0.465393i −0.0584197 + 0.0435880i
\(115\) 4.77989 11.7901i 0.445727 1.09943i
\(116\) 5.63803 18.9785i 0.523478 1.76211i
\(117\) 2.11282 + 2.11282i 0.195330 + 0.195330i
\(118\) −1.96680 + 13.5271i −0.181058 + 1.24527i
\(119\) −1.26174 −0.115663
\(120\) 0.473926 + 0.506206i 0.0432633 + 0.0462101i
\(121\) 0.753441 0.0684947
\(122\) 2.20984 15.1986i 0.200069 1.37602i
\(123\) −0.418255 0.418255i −0.0377127 0.0377127i
\(124\) 1.25601 4.22795i 0.112793 0.379681i
\(125\) −10.4233 4.04401i −0.932292 0.361707i
\(126\) −13.8726 + 10.3506i −1.23587 + 0.922105i
\(127\) −0.806054 + 0.806054i −0.0715257 + 0.0715257i −0.741965 0.670439i \(-0.766106\pi\)
0.670439 + 0.741965i \(0.266106\pi\)
\(128\) −9.58500 + 6.01064i −0.847202 + 0.531271i
\(129\) 0.211252i 0.0185997i
\(130\) −1.59741 + 2.72915i −0.140102 + 0.239363i
\(131\) 19.2242i 1.67962i −0.542877 0.839812i \(-0.682665\pi\)
0.542877 0.839812i \(-0.317335\pi\)
\(132\) 0.617133 0.334444i 0.0537146 0.0291096i
\(133\) 14.5370 14.5370i 1.26052 1.26052i
\(134\) 4.41087 + 5.91175i 0.381041 + 0.510697i
\(135\) −1.36049 0.551564i −0.117093 0.0474711i
\(136\) 0.817766 0.300588i 0.0701229 0.0257752i
\(137\) −3.52426 3.52426i −0.301097 0.301097i 0.540346 0.841443i \(-0.318293\pi\)
−0.841443 + 0.540346i \(0.818293\pi\)
\(138\) 0.873021 + 0.126935i 0.0743164 + 0.0108054i
\(139\) −5.61731 −0.476454 −0.238227 0.971209i \(-0.576566\pi\)
−0.238227 + 0.971209i \(0.576566\pi\)
\(140\) −14.3133 11.4317i −1.20969 0.966158i
\(141\) 0.653652 0.0550475
\(142\) 16.6356 + 2.41877i 1.39603 + 0.202979i
\(143\) 2.26347 + 2.26347i 0.189281 + 0.189281i
\(144\) 6.52533 10.0134i 0.543778 0.834451i
\(145\) −20.3858 + 8.62458i −1.69295 + 0.716232i
\(146\) −0.390247 0.523035i −0.0322971 0.0432867i
\(147\) −0.758049 + 0.758049i −0.0625229 + 0.0625229i
\(148\) −0.375154 0.692253i −0.0308375 0.0569029i
\(149\) 5.19488i 0.425581i −0.977098 0.212791i \(-0.931745\pi\)
0.977098 0.212791i \(-0.0682552\pi\)
\(150\) 0.0999787 0.768809i 0.00816323 0.0627730i
\(151\) 2.67892i 0.218008i −0.994041 0.109004i \(-0.965234\pi\)
0.994041 0.109004i \(-0.0347661\pi\)
\(152\) −5.95862 + 12.8850i −0.483308 + 1.04511i
\(153\) −0.650827 + 0.650827i −0.0526162 + 0.0526162i
\(154\) −14.8617 + 11.0886i −1.19759 + 0.893546i
\(155\) −4.54146 + 1.92134i −0.364779 + 0.154326i
\(156\) −0.210204 0.0624461i −0.0168298 0.00499969i
\(157\) 12.4188 + 12.4188i 0.991132 + 0.991132i 0.999961 0.00882890i \(-0.00281036\pi\)
−0.00882890 + 0.999961i \(0.502810\pi\)
\(158\) 1.37028 9.42438i 0.109013 0.749764i
\(159\) 0.123615 0.00980332
\(160\) 12.0002 + 3.99932i 0.948701 + 0.316174i
\(161\) −23.3047 −1.83667
\(162\) −1.80936 + 12.4443i −0.142157 + 0.977714i
\(163\) −16.7392 16.7392i −1.31112 1.31112i −0.920594 0.390522i \(-0.872295\pi\)
−0.390522 0.920594i \(-0.627705\pi\)
\(164\) −10.3430 3.07263i −0.807651 0.239932i
\(165\) −0.727286 0.294852i −0.0566191 0.0229542i
\(166\) 3.78071 2.82086i 0.293440 0.218941i
\(167\) 1.96065 1.96065i 0.151720 0.151720i −0.627166 0.778886i \(-0.715785\pi\)
0.778886 + 0.627166i \(0.215785\pi\)
\(168\) 0.533168 1.15293i 0.0411348 0.0889504i
\(169\) 1.00000i 0.0769231i
\(170\) −0.840680 0.492062i −0.0644772 0.0377394i
\(171\) 14.9969i 1.14684i
\(172\) −1.83605 3.38797i −0.139998 0.258331i
\(173\) 9.64751 9.64751i 0.733486 0.733486i −0.237822 0.971309i \(-0.576434\pi\)
0.971309 + 0.237822i \(0.0764336\pi\)
\(174\) −0.917898 1.23023i −0.0695857 0.0932634i
\(175\) 0.308572 + 20.4780i 0.0233258 + 1.54799i
\(176\) 6.99060 10.7274i 0.526936 0.808606i
\(177\) 0.749362 + 0.749362i 0.0563255 + 0.0563255i
\(178\) 22.9593 + 3.33822i 1.72087 + 0.250210i
\(179\) 23.7480 1.77501 0.887503 0.460801i \(-0.152438\pi\)
0.887503 + 0.460801i \(0.152438\pi\)
\(180\) −13.2797 + 1.48635i −0.989812 + 0.110786i
\(181\) 7.42358 0.551791 0.275895 0.961188i \(-0.411026\pi\)
0.275895 + 0.961188i \(0.411026\pi\)
\(182\) 5.73243 + 0.833478i 0.424916 + 0.0617815i
\(183\) −0.841961 0.841961i −0.0622396 0.0622396i
\(184\) 15.1044 5.55195i 1.11351 0.409295i
\(185\) −0.330743 + 0.815814i −0.0243167 + 0.0599799i
\(186\) −0.204485 0.274065i −0.0149936 0.0200954i
\(187\) −0.697231 + 0.697231i −0.0509866 + 0.0509866i
\(188\) 10.4830 5.68109i 0.764553 0.414336i
\(189\) 2.68919i 0.195610i
\(190\) 15.3550 4.01657i 1.11397 0.291393i
\(191\) 12.9193i 0.934807i −0.884044 0.467404i \(-0.845189\pi\)
0.884044 0.467404i \(-0.154811\pi\)
\(192\) −0.0708943 + 0.874262i −0.00511636 + 0.0630945i
\(193\) 15.4343 15.4343i 1.11098 1.11098i 0.117964 0.993018i \(-0.462363\pi\)
0.993018 0.117964i \(-0.0376368\pi\)
\(194\) −18.5063 + 13.8079i −1.32867 + 0.991348i
\(195\) 0.0955246 + 0.225790i 0.00684066 + 0.0161692i
\(196\) −5.56888 + 18.7457i −0.397777 + 1.33898i
\(197\) 3.46048 + 3.46048i 0.246549 + 0.246549i 0.819553 0.573004i \(-0.194222\pi\)
−0.573004 + 0.819553i \(0.694222\pi\)
\(198\) −1.94623 + 13.3856i −0.138313 + 0.951275i
\(199\) 16.8046 1.19125 0.595624 0.803263i \(-0.296905\pi\)
0.595624 + 0.803263i \(0.296905\pi\)
\(200\) −5.07852 13.1988i −0.359106 0.933297i
\(201\) 0.571844 0.0403348
\(202\) 1.62420 11.1708i 0.114278 0.785972i
\(203\) 28.6714 + 28.6714i 2.01234 + 2.01234i
\(204\) 0.0192357 0.0647505i 0.00134677 0.00453344i
\(205\) 4.70025 + 11.1099i 0.328280 + 0.775951i
\(206\) −7.93403 + 5.91974i −0.552790 + 0.412448i
\(207\) −12.0210 + 12.0210i −0.835515 + 0.835515i
\(208\) −3.91390 + 0.825455i −0.271380 + 0.0572350i
\(209\) 16.0662i 1.11132i
\(210\) −1.37395 + 0.359397i −0.0948113 + 0.0248007i
\(211\) 15.2868i 1.05239i 0.850365 + 0.526193i \(0.176381\pi\)
−0.850365 + 0.526193i \(0.823619\pi\)
\(212\) 1.98249 1.07438i 0.136158 0.0737885i
\(213\) 0.921568 0.921568i 0.0631448 0.0631448i
\(214\) 12.5768 + 16.8563i 0.859734 + 1.15227i
\(215\) −1.61870 + 3.99270i −0.110394 + 0.272300i
\(216\) −0.640654 1.74294i −0.0435910 0.118592i
\(217\) 6.38728 + 6.38728i 0.433597 + 0.433597i
\(218\) −0.966291 0.140496i −0.0654455 0.00951558i
\(219\) −0.0505933 −0.00341878
\(220\) −14.2266 + 1.59233i −0.959156 + 0.107355i
\(221\) 0.308037 0.0207208
\(222\) −0.0604084 0.00878321i −0.00405435 0.000589490i
\(223\) −2.51119 2.51119i −0.168162 0.168162i 0.618009 0.786171i \(-0.287940\pi\)
−0.786171 + 0.618009i \(0.787940\pi\)
\(224\) −1.46971 23.1242i −0.0981990 1.54505i
\(225\) 10.7221 + 10.4037i 0.714805 + 0.693582i
\(226\) 3.62700 + 4.86115i 0.241264 + 0.323359i
\(227\) 2.16630 2.16630i 0.143783 0.143783i −0.631551 0.775334i \(-0.717582\pi\)
0.775334 + 0.631551i \(0.217582\pi\)
\(228\) 0.524394 + 0.967638i 0.0347288 + 0.0640834i
\(229\) 18.7200i 1.23705i 0.785764 + 0.618526i \(0.212270\pi\)
−0.785764 + 0.618526i \(0.787730\pi\)
\(230\) −15.5276 9.08853i −1.02386 0.599280i
\(231\) 1.43757i 0.0945855i
\(232\) −25.4132 11.7522i −1.66846 0.771571i
\(233\) −14.6417 + 14.6417i −0.959209 + 0.959209i −0.999200 0.0399907i \(-0.987267\pi\)
0.0399907 + 0.999200i \(0.487267\pi\)
\(234\) 3.38681 2.52696i 0.221403 0.165193i
\(235\) −12.3542 5.00856i −0.805896 0.326722i
\(236\) 18.5309 + 5.50505i 1.20626 + 0.358349i
\(237\) −0.522084 0.522084i −0.0339130 0.0339130i
\(238\) −0.256742 + 1.76580i −0.0166421 + 0.114460i
\(239\) −18.2418 −1.17997 −0.589983 0.807416i \(-0.700865\pi\)
−0.589983 + 0.807416i \(0.700865\pi\)
\(240\) 0.804871 0.560254i 0.0519542 0.0361642i
\(241\) −5.90974 −0.380680 −0.190340 0.981718i \(-0.560959\pi\)
−0.190340 + 0.981718i \(0.560959\pi\)
\(242\) 0.153312 1.05444i 0.00985529 0.0677819i
\(243\) 2.08209 + 2.08209i 0.133566 + 0.133566i
\(244\) −20.8208 6.18532i −1.33291 0.395975i
\(245\) 20.1358 8.51879i 1.28643 0.544245i
\(246\) −0.670454 + 0.500239i −0.0427466 + 0.0318941i
\(247\) −3.54902 + 3.54902i −0.225819 + 0.225819i
\(248\) −5.66143 2.61811i −0.359501 0.166250i
\(249\) 0.365709i 0.0231759i
\(250\) −7.78055 + 13.7646i −0.492085 + 0.870547i
\(251\) 8.09939i 0.511229i −0.966779 0.255615i \(-0.917722\pi\)
0.966779 0.255615i \(-0.0822778\pi\)
\(252\) 11.6628 + 21.5208i 0.734688 + 1.35568i
\(253\) −12.8781 + 12.8781i −0.809638 + 0.809638i
\(254\) 0.964053 + 1.29209i 0.0604901 + 0.0810729i
\(255\) −0.0695518 + 0.0294251i −0.00435551 + 0.00184267i
\(256\) 6.46150 + 14.6372i 0.403843 + 0.914828i
\(257\) 1.70618 + 1.70618i 0.106429 + 0.106429i 0.758316 0.651887i \(-0.226022\pi\)
−0.651887 + 0.758316i \(0.726022\pi\)
\(258\) −0.295646 0.0429861i −0.0184061 0.00267620i
\(259\) 1.61256 0.100200
\(260\) 3.49440 + 2.79091i 0.216713 + 0.173085i
\(261\) 29.5784 1.83086
\(262\) −26.9042 3.91179i −1.66215 0.241671i
\(263\) 15.3744 + 15.3744i 0.948026 + 0.948026i 0.998715 0.0506886i \(-0.0161416\pi\)
−0.0506886 + 0.998715i \(0.516142\pi\)
\(264\) −0.342478 0.931730i −0.0210780 0.0573440i
\(265\) −2.33635 0.947191i −0.143521 0.0581855i
\(266\) −17.3865 23.3025i −1.06603 1.42877i
\(267\) 1.27188 1.27188i 0.0778379 0.0778379i
\(268\) 9.17101 4.97006i 0.560209 0.303595i
\(269\) 3.62354i 0.220931i 0.993880 + 0.110466i \(0.0352342\pi\)
−0.993880 + 0.110466i \(0.964766\pi\)
\(270\) −1.04875 + 1.79177i −0.0638249 + 0.109044i
\(271\) 31.3377i 1.90363i −0.306669 0.951816i \(-0.599215\pi\)
0.306669 0.951816i \(-0.400785\pi\)
\(272\) −0.254271 1.20563i −0.0154174 0.0731019i
\(273\) 0.317560 0.317560i 0.0192196 0.0192196i
\(274\) −5.64931 + 4.21506i −0.341288 + 0.254641i
\(275\) 11.4866 + 11.1455i 0.692666 + 0.672101i
\(276\) 0.355289 1.19596i 0.0213859 0.0719884i
\(277\) −17.8280 17.8280i −1.07118 1.07118i −0.997264 0.0739185i \(-0.976450\pi\)
−0.0739185 0.997264i \(-0.523550\pi\)
\(278\) −1.14303 + 7.86142i −0.0685542 + 0.471497i
\(279\) 6.58934 0.394494
\(280\) −18.9112 + 17.7052i −1.13016 + 1.05809i
\(281\) −22.1766 −1.32294 −0.661472 0.749970i \(-0.730068\pi\)
−0.661472 + 0.749970i \(0.730068\pi\)
\(282\) 0.133007 0.914785i 0.00792046 0.0544747i
\(283\) −1.53553 1.53553i −0.0912776 0.0912776i 0.659994 0.751271i \(-0.270559\pi\)
−0.751271 + 0.659994i \(0.770559\pi\)
\(284\) 6.77014 22.7894i 0.401734 1.35230i
\(285\) 0.462316 1.14035i 0.0273852 0.0675487i
\(286\) 3.62829 2.70714i 0.214545 0.160077i
\(287\) 15.6254 15.6254i 0.922340 0.922340i
\(288\) −12.6859 11.1697i −0.747527 0.658184i
\(289\) 16.9051i 0.994418i
\(290\) 7.92192 + 30.2849i 0.465191 + 1.77839i
\(291\) 1.79011i 0.104938i
\(292\) −0.811396 + 0.439721i −0.0474833 + 0.0257327i
\(293\) −16.3496 + 16.3496i −0.955155 + 0.955155i −0.999037 0.0438817i \(-0.986028\pi\)
0.0438817 + 0.999037i \(0.486028\pi\)
\(294\) 0.906638 + 1.21514i 0.0528762 + 0.0708683i
\(295\) −8.42116 19.9050i −0.490299 1.15891i
\(296\) −1.04514 + 0.384166i −0.0607478 + 0.0223292i
\(297\) 1.48604 + 1.48604i 0.0862285 + 0.0862285i
\(298\) −7.27023 1.05707i −0.421153 0.0612344i
\(299\) 5.68954 0.329035
\(300\) −1.05560 0.296360i −0.0609453 0.0171103i
\(301\) 7.89208 0.454892
\(302\) −3.74915 0.545115i −0.215739 0.0313678i
\(303\) −0.618829 0.618829i −0.0355508 0.0355508i
\(304\) 16.8201 + 10.9610i 0.964696 + 0.628654i
\(305\) 9.46177 + 22.3647i 0.541779 + 1.28060i
\(306\) 0.778399 + 1.04326i 0.0444981 + 0.0596394i
\(307\) −13.1429 + 13.1429i −0.750106 + 0.750106i −0.974499 0.224393i \(-0.927960\pi\)
0.224393 + 0.974499i \(0.427960\pi\)
\(308\) 12.4944 + 23.0553i 0.711934 + 1.31370i
\(309\) 0.767460i 0.0436593i
\(310\) 1.76481 + 6.74672i 0.100234 + 0.383188i
\(311\) 6.77287i 0.384054i −0.981390 0.192027i \(-0.938494\pi\)
0.981390 0.192027i \(-0.0615062\pi\)
\(312\) −0.130166 + 0.281473i −0.00736920 + 0.0159353i
\(313\) −3.60255 + 3.60255i −0.203628 + 0.203628i −0.801553 0.597924i \(-0.795992\pi\)
0.597924 + 0.801553i \(0.295992\pi\)
\(314\) 19.9072 14.8531i 1.12343 0.838211i
\(315\) 10.2822 25.3621i 0.579334 1.42899i
\(316\) −12.9106 3.83540i −0.726277 0.215758i
\(317\) 7.62038 + 7.62038i 0.428003 + 0.428003i 0.887948 0.459944i \(-0.152131\pi\)
−0.459944 + 0.887948i \(0.652131\pi\)
\(318\) 0.0251536 0.172999i 0.00141054 0.00970132i
\(319\) 31.6874 1.77415
\(320\) 8.03888 15.9805i 0.449387 0.893337i
\(321\) 1.63051 0.0910064
\(322\) −4.74211 + 32.6149i −0.264267 + 1.81756i
\(323\) −1.09323 1.09323i −0.0608289 0.0608289i
\(324\) 17.0476 + 5.06439i 0.947087 + 0.281355i
\(325\) −0.0753338 4.99943i −0.00417877 0.277319i
\(326\) −26.8326 + 20.0203i −1.48612 + 1.10882i
\(327\) −0.0535298 + 0.0535298i −0.00296020 + 0.00296020i
\(328\) −6.40476 + 13.8498i −0.353644 + 0.764725i
\(329\) 24.4196i 1.34630i
\(330\) −0.560636 + 0.957838i −0.0308620 + 0.0527272i
\(331\) 29.2597i 1.60826i 0.594454 + 0.804129i \(0.297368\pi\)
−0.594454 + 0.804129i \(0.702632\pi\)
\(332\) −3.17848 5.86510i −0.174442 0.321889i
\(333\) 0.831788 0.831788i 0.0455817 0.0455817i
\(334\) −2.34497 3.14289i −0.128311 0.171971i
\(335\) −10.8080 4.38170i −0.590502 0.239398i
\(336\) −1.50503 0.980769i −0.0821062 0.0535053i
\(337\) −4.14129 4.14129i −0.225591 0.225591i 0.585257 0.810848i \(-0.300994\pi\)
−0.810848 + 0.585257i \(0.800994\pi\)
\(338\) −1.39950 0.203483i −0.0761227 0.0110680i
\(339\) 0.470219 0.0255388
\(340\) −0.859703 + 1.07640i −0.0466240 + 0.0583762i
\(341\) 7.05917 0.382275
\(342\) −20.9881 3.05161i −1.13491 0.165012i
\(343\) −8.04525 8.04525i −0.434403 0.434403i
\(344\) −5.11507 + 1.88015i −0.275786 + 0.101371i
\(345\) −1.28464 + 0.543491i −0.0691629 + 0.0292606i
\(346\) −11.5386 15.4648i −0.620317 0.831391i
\(347\) 12.3111 12.3111i 0.660893 0.660893i −0.294698 0.955591i \(-0.595219\pi\)
0.955591 + 0.294698i \(0.0952189\pi\)
\(348\) −1.90848 + 1.03427i −0.102305 + 0.0554425i
\(349\) 3.85153i 0.206167i 0.994673 + 0.103084i \(0.0328710\pi\)
−0.994673 + 0.103084i \(0.967129\pi\)
\(350\) 28.7217 + 3.73507i 1.53524 + 0.199648i
\(351\) 0.656531i 0.0350430i
\(352\) −13.5905 11.9662i −0.724374 0.637799i
\(353\) 13.2758 13.2758i 0.706599 0.706599i −0.259219 0.965818i \(-0.583465\pi\)
0.965818 + 0.259219i \(0.0834653\pi\)
\(354\) 1.20121 0.896248i 0.0638437 0.0476350i
\(355\) −24.4792 + 10.3564i −1.29922 + 0.549659i
\(356\) 9.34365 31.4522i 0.495213 1.66697i
\(357\) 0.0978204 + 0.0978204i 0.00517720 + 0.00517720i
\(358\) 4.83230 33.2352i 0.255395 1.75654i
\(359\) −8.57461 −0.452550 −0.226275 0.974063i \(-0.572655\pi\)
−0.226275 + 0.974063i \(0.572655\pi\)
\(360\) −0.622055 + 18.8874i −0.0327852 + 0.995453i
\(361\) 6.19104 0.325844
\(362\) 1.51057 10.3893i 0.0793939 0.546049i
\(363\) −0.0584130 0.0584130i −0.00306589 0.00306589i
\(364\) 2.33290 7.85293i 0.122277 0.411605i
\(365\) 0.956222 + 0.387667i 0.0500510 + 0.0202914i
\(366\) −1.34965 + 1.00700i −0.0705472 + 0.0526366i
\(367\) 4.72502 4.72502i 0.246644 0.246644i −0.572948 0.819592i \(-0.694200\pi\)
0.819592 + 0.572948i \(0.194200\pi\)
\(368\) −4.69646 22.2683i −0.244820 1.16082i
\(369\) 16.1197i 0.839160i
\(370\) 1.07443 + 0.628878i 0.0558570 + 0.0326938i
\(371\) 4.61810i 0.239760i
\(372\) −0.425162 + 0.230409i −0.0220436 + 0.0119461i
\(373\) 14.0378 14.0378i 0.726850 0.726850i −0.243141 0.969991i \(-0.578178\pi\)
0.969991 + 0.243141i \(0.0781777\pi\)
\(374\) 0.833899 + 1.11765i 0.0431199 + 0.0577922i
\(375\) 0.494579 + 1.12163i 0.0255399 + 0.0579206i
\(376\) −5.81755 15.8270i −0.300017 0.816214i
\(377\) −6.99975 6.99975i −0.360506 0.360506i
\(378\) 3.76352 + 0.547204i 0.193574 + 0.0281452i
\(379\) 4.73069 0.242999 0.121500 0.992591i \(-0.461230\pi\)
0.121500 + 0.992591i \(0.461230\pi\)
\(380\) −2.49670 22.3067i −0.128078 1.14431i
\(381\) 0.124984 0.00640312
\(382\) −18.0805 2.62885i −0.925080 0.134504i
\(383\) −16.3407 16.3407i −0.834968 0.834968i 0.153223 0.988192i \(-0.451035\pi\)
−0.988192 + 0.153223i \(0.951035\pi\)
\(384\) 1.20910 + 0.277114i 0.0617018 + 0.0141414i
\(385\) 11.0153 27.1704i 0.561391 1.38473i
\(386\) −18.4596 24.7408i −0.939569 1.25927i
\(387\) 4.07087 4.07087i 0.206934 0.206934i
\(388\) 15.5584 + 28.7091i 0.789858 + 1.45749i
\(389\) 6.94354i 0.352051i −0.984386 0.176026i \(-0.943676\pi\)
0.984386 0.176026i \(-0.0563242\pi\)
\(390\) 0.335431 0.0877421i 0.0169852 0.00444299i
\(391\) 1.75259i 0.0886322i
\(392\) 25.1014 + 11.6081i 1.26781 + 0.586296i
\(393\) −1.49042 + 1.49042i −0.0751816 + 0.0751816i
\(394\) 5.54708 4.13879i 0.279458 0.208509i
\(395\) 5.86707 + 13.8679i 0.295204 + 0.697771i
\(396\) 18.3371 + 5.44749i 0.921476 + 0.273747i
\(397\) 15.4365 + 15.4365i 0.774734 + 0.774734i 0.978930 0.204196i \(-0.0654581\pi\)
−0.204196 + 0.978930i \(0.565458\pi\)
\(398\) 3.41945 23.5180i 0.171402 1.17885i
\(399\) −2.25405 −0.112844
\(400\) −19.5051 + 4.42165i −0.975255 + 0.221083i
\(401\) −2.06489 −0.103116 −0.0515578 0.998670i \(-0.516419\pi\)
−0.0515578 + 0.998670i \(0.516419\pi\)
\(402\) 0.116360 0.800294i 0.00580353 0.0399151i
\(403\) −1.55937 1.55937i −0.0776778 0.0776778i
\(404\) −15.3030 4.54612i −0.761351 0.226178i
\(405\) −7.74707 18.3117i −0.384955 0.909914i
\(406\) 45.9597 34.2914i 2.28094 1.70186i
\(407\) 0.891095 0.891095i 0.0441700 0.0441700i
\(408\) −0.0867040 0.0400959i −0.00429249 0.00198505i
\(409\) 5.10061i 0.252209i −0.992017 0.126104i \(-0.959753\pi\)
0.992017 0.126104i \(-0.0402474\pi\)
\(410\) 16.5047 4.31731i 0.815111 0.213217i
\(411\) 0.546459i 0.0269548i
\(412\) 6.67022 + 12.3082i 0.328618 + 0.606383i
\(413\) −27.9952 + 27.9952i −1.37755 + 1.37755i
\(414\) 14.3773 + 19.2694i 0.706604 + 0.947039i
\(415\) −2.80221 + 6.91197i −0.137555 + 0.339295i
\(416\) 0.358810 + 5.64546i 0.0175921 + 0.276792i
\(417\) 0.435500 + 0.435500i 0.0213266 + 0.0213266i
\(418\) −22.4846 3.26919i −1.09976 0.159901i
\(419\) −14.0619 −0.686969 −0.343484 0.939158i \(-0.611607\pi\)
−0.343484 + 0.939158i \(0.611607\pi\)
\(420\) 0.223401 + 1.99597i 0.0109008 + 0.0973931i
\(421\) 4.35784 0.212388 0.106194 0.994345i \(-0.466133\pi\)
0.106194 + 0.994345i \(0.466133\pi\)
\(422\) 21.3938 + 3.11060i 1.04143 + 0.151422i
\(423\) 12.5961 + 12.5961i 0.612441 + 0.612441i
\(424\) −1.10018 2.99311i −0.0534297 0.145358i
\(425\) 1.54001 0.0232056i 0.0747015 0.00112564i
\(426\) −1.10221 1.47726i −0.0534022 0.0715733i
\(427\) 31.4546 31.4546i 1.52219 1.52219i
\(428\) 26.1496 14.1713i 1.26399 0.684994i
\(429\) 0.350965i 0.0169448i
\(430\) 5.25839 + 3.07781i 0.253582 + 0.148425i
\(431\) 27.0992i 1.30532i 0.757649 + 0.652662i \(0.226348\pi\)
−0.757649 + 0.652662i \(0.773652\pi\)
\(432\) −2.56960 + 0.541937i −0.123630 + 0.0260739i
\(433\) −6.46531 + 6.46531i −0.310703 + 0.310703i −0.845182 0.534479i \(-0.820508\pi\)
0.534479 + 0.845182i \(0.320508\pi\)
\(434\) 10.2387 7.63929i 0.491473 0.366697i
\(435\) 2.24913 + 0.911829i 0.107837 + 0.0437188i
\(436\) −0.393247 + 1.32373i −0.0188331 + 0.0633953i
\(437\) −20.1923 20.1923i −0.965927 0.965927i
\(438\) −0.0102949 + 0.0708052i −0.000491908 + 0.00338320i
\(439\) −25.2613 −1.20566 −0.602829 0.797870i \(-0.705960\pi\)
−0.602829 + 0.797870i \(0.705960\pi\)
\(440\) −0.666408 + 20.2341i −0.0317698 + 0.964622i
\(441\) −29.2156 −1.39122
\(442\) 0.0626803 0.431097i 0.00298140 0.0205052i
\(443\) −4.83303 4.83303i −0.229624 0.229624i 0.582912 0.812536i \(-0.301913\pi\)
−0.812536 + 0.582912i \(0.801913\pi\)
\(444\) −0.0245842 + 0.0827542i −0.00116671 + 0.00392734i
\(445\) −33.7845 + 14.2931i −1.60154 + 0.677559i
\(446\) −4.02540 + 3.00343i −0.190608 + 0.142216i
\(447\) −0.402750 + 0.402750i −0.0190494 + 0.0190494i
\(448\) −32.6613 2.64852i −1.54310 0.125131i
\(449\) 30.4670i 1.43783i −0.695099 0.718914i \(-0.744640\pi\)
0.695099 0.718914i \(-0.255360\pi\)
\(450\) 16.7418 12.8885i 0.789214 0.607571i
\(451\) 17.2691i 0.813170i
\(452\) 7.54120 4.08681i 0.354708 0.192228i
\(453\) −0.207692 + 0.207692i −0.00975823 + 0.00975823i
\(454\) −2.59093 3.47254i −0.121599 0.162975i
\(455\) −8.43523 + 3.56867i −0.395450 + 0.167302i
\(456\) 1.46091 0.536990i 0.0684135 0.0251469i
\(457\) 1.84860 + 1.84860i 0.0864737 + 0.0864737i 0.749021 0.662547i \(-0.230524\pi\)
−0.662547 + 0.749021i \(0.730524\pi\)
\(458\) 26.1986 + 3.80920i 1.22418 + 0.177992i
\(459\) 0.202236 0.00943956
\(460\) −15.8790 + 19.8815i −0.740362 + 0.926981i
\(461\) −20.6755 −0.962955 −0.481477 0.876458i \(-0.659900\pi\)
−0.481477 + 0.876458i \(0.659900\pi\)
\(462\) 2.01188 + 0.292522i 0.0936013 + 0.0136093i
\(463\) 15.8454 + 15.8454i 0.736400 + 0.736400i 0.971879 0.235479i \(-0.0756660\pi\)
−0.235479 + 0.971879i \(0.575666\pi\)
\(464\) −21.6184 + 33.1743i −1.00361 + 1.54008i
\(465\) 0.501050 + 0.203133i 0.0232356 + 0.00942006i
\(466\) 17.5117 + 23.4704i 0.811213 + 1.08724i
\(467\) −21.5873 + 21.5873i −0.998941 + 0.998941i −0.999999 0.00105852i \(-0.999663\pi\)
0.00105852 + 0.999999i \(0.499663\pi\)
\(468\) −2.84732 5.25403i −0.131618 0.242868i
\(469\) 21.3633i 0.986467i
\(470\) −9.52332 + 16.2705i −0.439278 + 0.750500i
\(471\) 1.92562i 0.0887281i
\(472\) 11.4750 24.8138i 0.528181 1.14215i
\(473\) 4.36113 4.36113i 0.200525 0.200525i
\(474\) −0.836891 + 0.624421i −0.0384397 + 0.0286806i
\(475\) −17.4757 + 18.0104i −0.801841 + 0.826375i
\(476\) 2.41899 + 0.718620i 0.110874 + 0.0329379i
\(477\) 2.38210 + 2.38210i 0.109069 + 0.109069i
\(478\) −3.71190 + 25.5294i −0.169778 + 1.16769i
\(479\) −26.2847 −1.20098 −0.600488 0.799634i \(-0.705027\pi\)
−0.600488 + 0.799634i \(0.705027\pi\)
\(480\) −0.620297 1.24042i −0.0283125 0.0566170i
\(481\) −0.393686 −0.0179505
\(482\) −1.20253 + 8.27067i −0.0547738 + 0.376719i
\(483\) 1.80677 + 1.80677i 0.0822110 + 0.0822110i
\(484\) −1.44449 0.429121i −0.0656586 0.0195055i
\(485\) 13.7166 33.8335i 0.622838 1.53630i
\(486\) 3.33755 2.49021i 0.151394 0.112958i
\(487\) 12.3060 12.3060i 0.557639 0.557639i −0.370996 0.928635i \(-0.620984\pi\)
0.928635 + 0.370996i \(0.120984\pi\)
\(488\) −12.8930 + 27.8800i −0.583639 + 1.26207i
\(489\) 2.59552i 0.117374i
\(490\) −7.82475 29.9134i −0.353486 1.35135i
\(491\) 8.98739i 0.405595i −0.979221 0.202798i \(-0.934997\pi\)
0.979221 0.202798i \(-0.0650034\pi\)
\(492\) 0.563657 + 1.04009i 0.0254116 + 0.0468908i
\(493\) 2.15618 2.15618i 0.0971096 0.0971096i
\(494\) 4.24468 + 5.68901i 0.190977 + 0.255960i
\(495\) −8.33311 19.6969i −0.374545 0.885308i
\(496\) −4.81604 + 7.39042i −0.216246 + 0.331840i
\(497\) 34.4286 + 34.4286i 1.54433 + 1.54433i
\(498\) −0.511809 0.0744155i −0.0229347 0.00333464i
\(499\) 1.43936 0.0644347 0.0322173 0.999481i \(-0.489743\pi\)
0.0322173 + 0.999481i \(0.489743\pi\)
\(500\) 17.6803 + 13.6897i 0.790685 + 0.612223i
\(501\) −0.304012 −0.0135823
\(502\) −11.3351 1.64809i −0.505910 0.0735578i
\(503\) 22.4761 + 22.4761i 1.00216 + 1.00216i 0.999998 + 0.00216153i \(0.000688036\pi\)
0.00216153 + 0.999998i \(0.499312\pi\)
\(504\) 32.4915 11.9430i 1.44729 0.531982i
\(505\) 6.95426 + 16.4377i 0.309460 + 0.731468i
\(506\) 15.4024 + 20.6433i 0.684719 + 0.917707i
\(507\) −0.0775283 + 0.0775283i −0.00344315 + 0.00344315i
\(508\) 2.00445 1.08627i 0.0889329 0.0481955i
\(509\) 25.4007i 1.12587i −0.826502 0.562934i \(-0.809673\pi\)
0.826502 0.562934i \(-0.190327\pi\)
\(510\) 0.0270278 + 0.103325i 0.00119681 + 0.00457532i
\(511\) 1.89010i 0.0836130i
\(512\) 21.7996 6.06442i 0.963416 0.268012i
\(513\) −2.33004 + 2.33004i −0.102874 + 0.102874i
\(514\) 2.73497 2.04062i 0.120635 0.0900078i
\(515\) 5.88060 14.5051i 0.259130 0.639173i
\(516\) −0.120318 + 0.405009i −0.00529670 + 0.0178295i
\(517\) 13.4942 + 13.4942i 0.593473 + 0.593473i
\(518\) 0.328129 2.25678i 0.0144172 0.0991571i
\(519\) −1.49591 −0.0656631
\(520\) 4.61692 4.32250i 0.202465 0.189554i
\(521\) −9.27032 −0.406140 −0.203070 0.979164i \(-0.565092\pi\)
−0.203070 + 0.979164i \(0.565092\pi\)
\(522\) 6.01870 41.3950i 0.263432 1.81181i
\(523\) −16.5690 16.5690i −0.724513 0.724513i 0.245008 0.969521i \(-0.421209\pi\)
−0.969521 + 0.245008i \(0.921209\pi\)
\(524\) −10.9491 + 36.8564i −0.478313 + 1.61008i
\(525\) 1.56370 1.61155i 0.0682454 0.0703336i
\(526\) 24.6449 18.3880i 1.07457 0.801755i
\(527\) 0.480344 0.480344i 0.0209241 0.0209241i
\(528\) −1.37364 + 0.289706i −0.0597801 + 0.0126078i
\(529\) 9.37086i 0.407429i
\(530\) −1.80100 + 3.07698i −0.0782304 + 0.133656i
\(531\) 28.8808i 1.25332i
\(532\) −36.1497 + 19.5907i −1.56729 + 0.849363i
\(533\) −3.81475 + 3.81475i −0.165235 + 0.165235i
\(534\) −1.52119 2.03880i −0.0658283 0.0882276i
\(535\) −30.8170 12.4937i −1.33234 0.540148i
\(536\) −5.08945 13.8461i −0.219831 0.598062i
\(537\) −1.84114 1.84114i −0.0794510 0.0794510i
\(538\) 5.07114 + 0.737329i 0.218632 + 0.0317885i
\(539\) −31.2987 −1.34813
\(540\) 2.29418 + 1.83232i 0.0987259 + 0.0788504i
\(541\) −12.4118 −0.533626 −0.266813 0.963748i \(-0.585971\pi\)
−0.266813 + 0.963748i \(0.585971\pi\)
\(542\) −43.8571 6.37669i −1.88382 0.273902i
\(543\) −0.575537 0.575537i −0.0246987 0.0246987i
\(544\) −1.73901 + 0.110527i −0.0745595 + 0.00473880i
\(545\) 1.42189 0.601556i 0.0609071 0.0257678i
\(546\) −0.379807 0.509043i −0.0162542 0.0217850i
\(547\) −9.71112 + 9.71112i −0.415217 + 0.415217i −0.883551 0.468334i \(-0.844854\pi\)
0.468334 + 0.883551i \(0.344854\pi\)
\(548\) 4.74943 + 8.76390i 0.202886 + 0.374375i
\(549\) 32.4496i 1.38492i
\(550\) 17.9355 13.8075i 0.764771 0.588754i
\(551\) 49.6845i 2.11663i
\(552\) −1.60145 0.740585i −0.0681623 0.0315214i
\(553\) 19.5044 19.5044i 0.829410 0.829410i
\(554\) −28.5780 + 21.3226i −1.21416 + 0.905910i
\(555\) 0.0888906 0.0376067i 0.00377320 0.00159632i
\(556\) 10.7695 + 3.19933i 0.456727 + 0.135682i
\(557\) 2.86118 + 2.86118i 0.121232 + 0.121232i 0.765120 0.643888i \(-0.222680\pi\)
−0.643888 + 0.765120i \(0.722680\pi\)
\(558\) 1.34082 9.22177i 0.0567614 0.390389i
\(559\) −1.92675 −0.0814928
\(560\) 20.9303 + 30.0689i 0.884468 + 1.27064i
\(561\) 0.108110 0.00456442
\(562\) −4.51256 + 31.0361i −0.190351 + 1.30918i
\(563\) −12.8341 12.8341i −0.540893 0.540893i 0.382898 0.923791i \(-0.374926\pi\)
−0.923791 + 0.382898i \(0.874926\pi\)
\(564\) −1.25318 0.372286i −0.0527682 0.0156761i
\(565\) −8.88723 3.60301i −0.373889 0.151580i
\(566\) −2.46142 + 1.83651i −0.103461 + 0.0771945i
\(567\) −25.7542 + 25.7542i −1.08158 + 1.08158i
\(568\) −30.5161 14.1120i −1.28043 0.592128i
\(569\) 12.1495i 0.509334i −0.967029 0.254667i \(-0.918034\pi\)
0.967029 0.254667i \(-0.0819658\pi\)
\(570\) −1.50185 0.879052i −0.0629055 0.0368194i
\(571\) 19.5871i 0.819695i 0.912154 + 0.409848i \(0.134418\pi\)
−0.912154 + 0.409848i \(0.865582\pi\)
\(572\) −3.05034 5.62865i −0.127541 0.235345i
\(573\) −1.00161 + 1.00161i −0.0418429 + 0.0418429i
\(574\) −18.6883 25.0473i −0.780033 1.04545i
\(575\) 28.4445 0.428615i 1.18622 0.0178745i
\(576\) −18.2134 + 15.4811i −0.758892 + 0.645046i
\(577\) −3.41237 3.41237i −0.142059 0.142059i 0.632501 0.774560i \(-0.282028\pi\)
−0.774560 + 0.632501i \(0.782028\pi\)
\(578\) −23.6587 3.43990i −0.984071 0.143081i
\(579\) −2.39318 −0.0994572
\(580\) 43.9956 4.92426i 1.82682 0.204469i
\(581\) 13.6624 0.566812
\(582\) 2.50526 + 0.364257i 0.103846 + 0.0150989i
\(583\) 2.55194 + 2.55194i 0.105691 + 0.105691i
\(584\) 0.450284 + 1.22502i 0.0186329 + 0.0506918i
\(585\) −2.51026 + 6.19183i −0.103786 + 0.256000i
\(586\) 19.5544 + 26.2081i 0.807785 + 1.08265i
\(587\) 15.6384 15.6384i 0.645467 0.645467i −0.306427 0.951894i \(-0.599133\pi\)
0.951894 + 0.306427i \(0.0991335\pi\)
\(588\) 1.88507 1.02158i 0.0777390 0.0421292i
\(589\) 11.0685i 0.456068i
\(590\) −29.5706 + 7.73507i −1.21740 + 0.318448i
\(591\) 0.536570i 0.0220715i
\(592\) 0.324970 + 1.54085i 0.0133562 + 0.0633285i
\(593\) 10.9939 10.9939i 0.451467 0.451467i −0.444374 0.895841i \(-0.646574\pi\)
0.895841 + 0.444374i \(0.146574\pi\)
\(594\) 2.38209 1.77732i 0.0977382 0.0729244i
\(595\) −1.09928 2.59836i −0.0450662 0.106523i
\(596\) −2.95873 + 9.95957i −0.121194 + 0.407960i
\(597\) −1.30283 1.30283i −0.0533214 0.0533214i
\(598\) 1.15772 7.96250i 0.0473428 0.325611i
\(599\) 24.3473 0.994804 0.497402 0.867520i \(-0.334287\pi\)
0.497402 + 0.867520i \(0.334287\pi\)
\(600\) −0.629552 + 1.41701i −0.0257013 + 0.0578492i
\(601\) −25.3047 −1.03220 −0.516099 0.856529i \(-0.672617\pi\)
−0.516099 + 0.856529i \(0.672617\pi\)
\(602\) 1.60590 11.0450i 0.0654517 0.450159i
\(603\) 11.0196 + 11.0196i 0.448752 + 0.448752i
\(604\) −1.52577 + 5.13600i −0.0620829 + 0.208981i
\(605\) 0.656432 + 1.55160i 0.0266878 + 0.0630816i
\(606\) −0.991971 + 0.740129i −0.0402961 + 0.0300657i
\(607\) −30.7450 + 30.7450i −1.24790 + 1.24790i −0.291255 + 0.956646i \(0.594073\pi\)
−0.956646 + 0.291255i \(0.905927\pi\)
\(608\) 18.7624 21.3093i 0.760917 0.864205i
\(609\) 4.44569i 0.180148i
\(610\) 33.2246 8.69090i 1.34523 0.351884i
\(611\) 5.96172i 0.241186i
\(612\) 1.61844 0.877081i 0.0654214 0.0354539i
\(613\) −20.1332 + 20.1332i −0.813171 + 0.813171i −0.985108 0.171937i \(-0.944997\pi\)
0.171937 + 0.985108i \(0.444997\pi\)
\(614\) 15.7191 + 21.0678i 0.634372 + 0.850229i
\(615\) 0.496931 1.22574i 0.0200382 0.0494264i
\(616\) 34.8082 12.7945i 1.40246 0.515506i
\(617\) 12.0443 + 12.0443i 0.484885 + 0.484885i 0.906688 0.421803i \(-0.138603\pi\)
−0.421803 + 0.906688i \(0.638603\pi\)
\(618\) 1.07406 + 0.156165i 0.0432050 + 0.00628188i
\(619\) −7.68371 −0.308834 −0.154417 0.988006i \(-0.549350\pi\)
−0.154417 + 0.988006i \(0.549350\pi\)
\(620\) 9.80113 1.09700i 0.393623 0.0440567i
\(621\) 3.73536 0.149895
\(622\) −9.47862 1.37816i −0.380058 0.0552593i
\(623\) 47.5158 + 47.5158i 1.90368 + 1.90368i
\(624\) 0.367434 + 0.239442i 0.0147091 + 0.00958535i
\(625\) −0.753252 24.9886i −0.0301301 0.999546i
\(626\) 4.30870 + 5.77482i 0.172210 + 0.230808i
\(627\) −1.24558 + 1.24558i −0.0497437 + 0.0497437i
\(628\) −16.7362 30.8824i −0.667845 1.23234i
\(629\) 0.121270i 0.00483535i
\(630\) −33.4020 19.5506i −1.33077 0.778915i
\(631\) 26.5327i 1.05625i 0.849166 + 0.528126i \(0.177105\pi\)
−0.849166 + 0.528126i \(0.822895\pi\)
\(632\) −7.99472 + 17.2879i −0.318013 + 0.687675i
\(633\) 1.18516 1.18516i 0.0471058 0.0471058i
\(634\) 12.2153 9.11409i 0.485133 0.361967i
\(635\) −2.36222 0.957679i −0.0937419 0.0380043i
\(636\) −0.236994 0.0704048i −0.00939742 0.00279173i
\(637\) 6.91389 + 6.91389i 0.273938 + 0.273938i
\(638\) 6.44784 44.3465i 0.255273 1.75569i
\(639\) 35.5177 1.40506
\(640\) −20.7289 14.5021i −0.819382 0.573248i
\(641\) 1.48587 0.0586882 0.0293441 0.999569i \(-0.490658\pi\)
0.0293441 + 0.999569i \(0.490658\pi\)
\(642\) 0.331782 2.28190i 0.0130944 0.0900594i
\(643\) −15.8763 15.8763i −0.626098 0.626098i 0.320986 0.947084i \(-0.395986\pi\)
−0.947084 + 0.320986i \(0.895986\pi\)
\(644\) 44.6795 + 13.2731i 1.76062 + 0.523035i
\(645\) 0.435042 0.184052i 0.0171297 0.00724704i
\(646\) −1.75242 + 1.30752i −0.0689482 + 0.0514436i
\(647\) 16.6915 16.6915i 0.656209 0.656209i −0.298272 0.954481i \(-0.596410\pi\)
0.954481 + 0.298272i \(0.0964103\pi\)
\(648\) 10.5565 22.8275i 0.414698 0.896749i
\(649\) 30.9400i 1.21450i
\(650\) −7.01202 0.911869i −0.275034 0.0357665i
\(651\) 0.990390i 0.0388164i
\(652\) 22.5584 + 41.6260i 0.883457 + 1.63020i
\(653\) −7.63408 + 7.63408i −0.298745 + 0.298745i −0.840522 0.541777i \(-0.817752\pi\)
0.541777 + 0.840522i \(0.317752\pi\)
\(654\) 0.0640224 + 0.0858072i 0.00250348 + 0.00335533i
\(655\) 39.5894 16.7490i 1.54688 0.654437i
\(656\) 18.0794 + 11.7816i 0.705884 + 0.459996i
\(657\) −0.974945 0.974945i −0.0380362 0.0380362i
\(658\) 34.1752 + 4.96897i 1.33229 + 0.193711i
\(659\) −17.4766 −0.680792 −0.340396 0.940282i \(-0.610561\pi\)
−0.340396 + 0.940282i \(0.610561\pi\)
\(660\) 1.22641 + 0.979512i 0.0477380 + 0.0381274i
\(661\) −6.43375 −0.250244 −0.125122 0.992141i \(-0.539932\pi\)
−0.125122 + 0.992141i \(0.539932\pi\)
\(662\) 40.9489 + 5.95385i 1.59152 + 0.231403i
\(663\) −0.0238816 0.0238816i −0.000927484 0.000927484i
\(664\) −8.85496 + 3.25483i −0.343639 + 0.126312i
\(665\) 42.6021 + 17.2715i 1.65204 + 0.669760i
\(666\) −0.994831 1.33334i −0.0385489 0.0516659i
\(667\) 39.8254 39.8254i 1.54204 1.54204i
\(668\) −4.87563 + 2.64226i −0.188644 + 0.102232i
\(669\) 0.389377i 0.0150542i
\(670\) −8.33142 + 14.2341i −0.321871 + 0.549912i
\(671\) 34.7633i 1.34202i
\(672\) −1.67883 + 1.90672i −0.0647624 + 0.0735533i
\(673\) 31.2053 31.2053i 1.20288 1.20288i 0.229589 0.973288i \(-0.426262\pi\)
0.973288 0.229589i \(-0.0737381\pi\)
\(674\) −6.63841 + 4.95305i −0.255702 + 0.190784i
\(675\) −0.0494590 3.28228i −0.00190368 0.126335i
\(676\) −0.569548 + 1.91719i −0.0219057 + 0.0737381i
\(677\) −21.5552 21.5552i −0.828434 0.828434i 0.158866 0.987300i \(-0.449216\pi\)
−0.987300 + 0.158866i \(0.949216\pi\)
\(678\) 0.0956815 0.658071i 0.00367463 0.0252731i
\(679\) −66.8762 −2.56647
\(680\) 1.33149 + 1.42218i 0.0510604 + 0.0545382i
\(681\) −0.335900 −0.0128717
\(682\) 1.43642 9.87929i 0.0550034 0.378298i
\(683\) −7.68769 7.68769i −0.294161 0.294161i 0.544560 0.838722i \(-0.316697\pi\)
−0.838722 + 0.544560i \(0.816697\pi\)
\(684\) −8.54143 + 28.7518i −0.326590 + 1.09935i
\(685\) 4.18719 10.3282i 0.159984 0.394619i
\(686\) −12.8964 + 9.62224i −0.492386 + 0.367379i
\(687\) 1.45133 1.45133i 0.0553716 0.0553716i
\(688\) 1.59044 + 7.54110i 0.0606351 + 0.287502i
\(689\) 1.12745i 0.0429524i
\(690\) 0.499212 + 1.90845i 0.0190047 + 0.0726534i
\(691\) 29.0242i 1.10413i 0.833800 + 0.552067i \(0.186161\pi\)
−0.833800 + 0.552067i \(0.813839\pi\)
\(692\) −23.9908 + 13.0014i −0.911994 + 0.494238i
\(693\) −27.7024 + 27.7024i −1.05233 + 1.05233i
\(694\) −14.7242 19.7344i −0.558924 0.749108i
\(695\) −4.89406 11.5680i −0.185642 0.438800i
\(696\) 1.05911 + 2.88137i 0.0401455 + 0.109218i
\(697\) −1.17508 1.17508i −0.0445095 0.0445095i
\(698\) 5.39020 + 0.783720i 0.204022 + 0.0296642i
\(699\) 2.27029 0.0858703
\(700\) 11.0716 39.4359i 0.418467 1.49054i
\(701\) 28.0124 1.05801 0.529007 0.848617i \(-0.322565\pi\)
0.529007 + 0.848617i \(0.322565\pi\)
\(702\) −0.918814 0.133593i −0.0346784 0.00504214i
\(703\) 1.39720 + 1.39720i 0.0526964 + 0.0526964i
\(704\) −19.5120 + 16.5849i −0.735388 + 0.625068i
\(705\) 0.569492 + 1.34610i 0.0214483 + 0.0506971i
\(706\) −15.8780 21.2808i −0.597578 0.800915i
\(707\) 23.1186 23.1186i 0.869465 0.869465i
\(708\) −1.00987 1.86347i −0.0379533 0.0700333i
\(709\) 13.6438i 0.512402i 0.966624 + 0.256201i \(0.0824709\pi\)
−0.966624 + 0.256201i \(0.917529\pi\)
\(710\) 9.51262 + 36.3660i 0.357002 + 1.36479i
\(711\) 20.1214i 0.754611i
\(712\) −42.1161 19.4764i −1.57837 0.729910i
\(713\) 8.87211 8.87211i 0.332263 0.332263i
\(714\) 0.156804 0.116995i 0.00586825 0.00437842i
\(715\) −2.68924 + 6.63331i −0.100572 + 0.248072i
\(716\) −45.5294 13.5256i −1.70151 0.505475i
\(717\) 1.41426 + 1.41426i 0.0528164 + 0.0528164i
\(718\) −1.74479 + 12.0001i −0.0651148 + 0.447841i
\(719\) −19.0497 −0.710433 −0.355217 0.934784i \(-0.615593\pi\)
−0.355217 + 0.934784i \(0.615593\pi\)
\(720\) 26.3063 + 4.71383i 0.980378 + 0.175674i
\(721\) −28.6713 −1.06777
\(722\) 1.25977 8.66435i 0.0468838 0.322454i
\(723\) 0.458172 + 0.458172i 0.0170396 + 0.0170396i
\(724\) −14.2324 4.22808i −0.528944 0.157136i
\(725\) −35.5221 34.4675i −1.31926 1.28009i
\(726\) −0.0936349 + 0.0698628i −0.00347512 + 0.00259285i
\(727\) 28.3966 28.3966i 1.05317 1.05317i 0.0546675 0.998505i \(-0.482590\pi\)
0.998505 0.0546675i \(-0.0174099\pi\)
\(728\) −10.5154 4.86283i −0.389728 0.180228i
\(729\) 26.3530i 0.976038i
\(730\) 0.737113 1.25935i 0.0272818 0.0466106i
\(731\) 0.593510i 0.0219518i
\(732\) 1.13466 + 2.09374i 0.0419383 + 0.0773867i
\(733\) −6.90352 + 6.90352i −0.254987 + 0.254987i −0.823012 0.568024i \(-0.807708\pi\)
0.568024 + 0.823012i \(0.307708\pi\)
\(734\) −5.65120 7.57412i −0.208590 0.279566i
\(735\) −2.22154 0.900644i −0.0819426 0.0332207i
\(736\) −32.1201 + 2.04146i −1.18396 + 0.0752494i
\(737\) 11.8053 + 11.8053i 0.434853 + 0.434853i
\(738\) −22.5596 3.28009i −0.830429 0.120742i
\(739\) 30.9143 1.13720 0.568601 0.822614i \(-0.307485\pi\)
0.568601 + 0.822614i \(0.307485\pi\)
\(740\) 1.09874 1.37570i 0.0403906 0.0505716i
\(741\) 0.550298 0.0202157
\(742\) 6.46302 + 0.939704i 0.237265 + 0.0344976i
\(743\) −31.0812 31.0812i −1.14026 1.14026i −0.988402 0.151858i \(-0.951475\pi\)
−0.151858 0.988402i \(-0.548525\pi\)
\(744\) 0.235943 + 0.641898i 0.00865011 + 0.0235331i
\(745\) 10.6981 4.52602i 0.391948 0.165820i
\(746\) −16.7894 22.5023i −0.614705 0.823869i
\(747\) 7.04730 7.04730i 0.257847 0.257847i
\(748\) 1.73383 0.939618i 0.0633952 0.0343558i
\(749\) 60.9138i 2.22574i
\(750\) 1.67035 0.463930i 0.0609927 0.0169403i
\(751\) 1.26768i 0.0462582i −0.999732 0.0231291i \(-0.992637\pi\)
0.999732 0.0231291i \(-0.00736287\pi\)
\(752\) −23.3336 + 4.92113i −0.850889 + 0.179455i
\(753\) −0.627932 + 0.627932i −0.0228831 + 0.0228831i
\(754\) −11.2205 + 8.37181i −0.408625 + 0.304883i
\(755\) 5.51685 2.33400i 0.200779 0.0849429i
\(756\) 1.53162 5.15569i 0.0557046 0.187511i
\(757\) −6.66924 6.66924i −0.242398 0.242398i 0.575444 0.817841i \(-0.304829\pi\)
−0.817841 + 0.575444i \(0.804829\pi\)
\(758\) 0.962613 6.62059i 0.0349637 0.240470i
\(759\) 1.99683 0.0724804
\(760\) −31.7262 1.04490i −1.15083 0.0379025i
\(761\) 17.3878 0.630309 0.315155 0.949040i \(-0.397944\pi\)
0.315155 + 0.949040i \(0.397944\pi\)
\(762\) 0.0254321 0.174915i 0.000921308 0.00633649i
\(763\) −1.99980 1.99980i −0.0723977 0.0723977i
\(764\) −7.35815 + 24.7687i −0.266209 + 0.896101i
\(765\) −1.90731 0.773252i −0.0689590 0.0279570i
\(766\) −26.1938 + 19.5437i −0.946419 + 0.706141i
\(767\) 6.83465 6.83465i 0.246785 0.246785i
\(768\) 0.633852 1.63575i 0.0228722 0.0590250i
\(769\) 7.24605i 0.261299i 0.991429 + 0.130650i \(0.0417063\pi\)
−0.991429 + 0.130650i \(0.958294\pi\)
\(770\) −35.7835 20.9446i −1.28955 0.754791i
\(771\) 0.264554i 0.00952769i
\(772\)