Properties

Label 260.2.o.a.27.19
Level $260$
Weight $2$
Character 260.27
Analytic conductor $2.076$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [260,2,Mod(27,260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(260, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("260.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 27.19
Character \(\chi\) \(=\) 260.27
Dual form 260.2.o.a.183.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0221303 - 1.41404i) q^{2} +(-0.798638 - 0.798638i) q^{3} +(-1.99902 - 0.0625863i) q^{4} +(-1.57330 - 1.58893i) q^{5} +(-1.14698 + 1.11163i) q^{6} +(-1.30625 + 1.30625i) q^{7} +(-0.132739 + 2.82531i) q^{8} -1.72435i q^{9} +O(q^{10})\) \(q+(0.0221303 - 1.41404i) q^{2} +(-0.798638 - 0.798638i) q^{3} +(-1.99902 - 0.0625863i) q^{4} +(-1.57330 - 1.58893i) q^{5} +(-1.14698 + 1.11163i) q^{6} +(-1.30625 + 1.30625i) q^{7} +(-0.132739 + 2.82531i) q^{8} -1.72435i q^{9} +(-2.28164 + 2.18955i) q^{10} +3.52160i q^{11} +(1.54651 + 1.64648i) q^{12} +(-0.707107 + 0.707107i) q^{13} +(1.81818 + 1.87599i) q^{14} +(-0.0124834 + 2.52548i) q^{15} +(3.99217 + 0.250223i) q^{16} +(-1.96348 - 1.96348i) q^{17} +(-2.43831 - 0.0381605i) q^{18} -2.70752 q^{19} +(3.04562 + 3.27478i) q^{20} +2.08644 q^{21} +(4.97969 + 0.0779341i) q^{22} +(-4.89998 - 4.89998i) q^{23} +(2.36241 - 2.15039i) q^{24} +(-0.0494285 + 4.99976i) q^{25} +(0.984229 + 1.01553i) q^{26} +(-3.77305 + 3.77305i) q^{27} +(2.69297 - 2.52946i) q^{28} -6.90940i q^{29} +(3.57086 + 0.0735418i) q^{30} +4.15716i q^{31} +(0.442173 - 5.63955i) q^{32} +(2.81248 - 2.81248i) q^{33} +(-2.81989 + 2.73299i) q^{34} +(4.13066 + 0.0204178i) q^{35} +(-0.107921 + 3.44702i) q^{36} +(-6.10784 - 6.10784i) q^{37} +(-0.0599183 + 3.82854i) q^{38} +1.12944 q^{39} +(4.69807 - 4.23416i) q^{40} +8.91075 q^{41} +(0.0461735 - 2.95031i) q^{42} +(-7.58581 - 7.58581i) q^{43} +(0.220404 - 7.03975i) q^{44} +(-2.73989 + 2.71293i) q^{45} +(-7.03720 + 6.82033i) q^{46} +(5.48290 - 5.48290i) q^{47} +(-2.98846 - 3.38813i) q^{48} +3.58744i q^{49} +(7.06876 + 0.180540i) q^{50} +3.13622i q^{51} +(1.45778 - 1.36927i) q^{52} +(-4.55558 + 4.55558i) q^{53} +(5.25175 + 5.41874i) q^{54} +(5.59559 - 5.54055i) q^{55} +(-3.51716 - 3.86394i) q^{56} +(2.16233 + 2.16233i) q^{57} +(-9.77017 - 0.152907i) q^{58} +2.28885 q^{59} +(0.183015 - 5.04771i) q^{60} -7.76763 q^{61} +(5.87839 + 0.0919991i) q^{62} +(2.25243 + 2.25243i) q^{63} +(-7.96476 - 0.750055i) q^{64} +(2.23604 + 0.0110527i) q^{65} +(-3.91473 - 4.03921i) q^{66} +(0.898523 - 0.898523i) q^{67} +(3.80215 + 4.04792i) q^{68} +7.82662i q^{69} +(0.120284 - 5.84047i) q^{70} -14.2978i q^{71} +(4.87184 + 0.228888i) q^{72} +(3.84146 - 3.84146i) q^{73} +(-8.77190 + 8.50156i) q^{74} +(4.03247 - 3.95352i) q^{75} +(5.41239 + 0.169454i) q^{76} +(-4.60008 - 4.60008i) q^{77} +(0.0249950 - 1.59708i) q^{78} +0.766856 q^{79} +(-5.88330 - 6.73697i) q^{80} +0.853540 q^{81} +(0.197198 - 12.6002i) q^{82} +(0.727706 + 0.727706i) q^{83} +(-4.17083 - 0.130582i) q^{84} +(-0.0306909 + 6.20899i) q^{85} +(-10.8945 + 10.5588i) q^{86} +(-5.51811 + 5.51811i) q^{87} +(-9.94962 - 0.467452i) q^{88} +0.442426i q^{89} +(3.77556 + 3.93435i) q^{90} -1.84731i q^{91} +(9.48848 + 10.1018i) q^{92} +(3.32006 - 3.32006i) q^{93} +(-7.63170 - 7.87438i) q^{94} +(4.25975 + 4.30208i) q^{95} +(-4.85709 + 4.15082i) q^{96} +(5.22374 + 5.22374i) q^{97} +(5.07279 + 0.0793912i) q^{98} +6.07249 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 8 q^{6} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 8 q^{6} - 12 q^{8} - 8 q^{10} - 8 q^{12} - 8 q^{16} + 28 q^{18} - 16 q^{21} - 8 q^{22} - 20 q^{28} - 32 q^{30} - 40 q^{32} + 16 q^{33} + 32 q^{36} - 12 q^{38} - 8 q^{40} - 40 q^{42} - 8 q^{46} + 60 q^{48} + 40 q^{50} + 8 q^{52} - 48 q^{53} + 8 q^{56} - 60 q^{58} + 20 q^{60} - 64 q^{61} + 60 q^{62} + 8 q^{66} - 16 q^{68} - 60 q^{70} + 40 q^{72} - 16 q^{73} - 72 q^{76} + 48 q^{77} - 20 q^{80} + 8 q^{81} - 12 q^{82} + 48 q^{85} + 48 q^{86} + 12 q^{88} + 44 q^{90} - 36 q^{92} + 16 q^{93} + 32 q^{96} - 80 q^{97} - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0221303 1.41404i 0.0156485 0.999878i
\(3\) −0.798638 0.798638i −0.461094 0.461094i 0.437920 0.899014i \(-0.355715\pi\)
−0.899014 + 0.437920i \(0.855715\pi\)
\(4\) −1.99902 0.0625863i −0.999510 0.0312932i
\(5\) −1.57330 1.58893i −0.703603 0.710593i
\(6\) −1.14698 + 1.11163i −0.468253 + 0.453822i
\(7\) −1.30625 + 1.30625i −0.493715 + 0.493715i −0.909474 0.415760i \(-0.863516\pi\)
0.415760 + 0.909474i \(0.363516\pi\)
\(8\) −0.132739 + 2.82531i −0.0469301 + 0.998898i
\(9\) 1.72435i 0.574785i
\(10\) −2.28164 + 2.18955i −0.721517 + 0.692397i
\(11\) 3.52160i 1.06180i 0.847434 + 0.530901i \(0.178146\pi\)
−0.847434 + 0.530901i \(0.821854\pi\)
\(12\) 1.54651 + 1.64648i 0.446439 + 0.475297i
\(13\) −0.707107 + 0.707107i −0.196116 + 0.196116i
\(14\) 1.81818 + 1.87599i 0.485928 + 0.501380i
\(15\) −0.0124834 + 2.52548i −0.00322320 + 0.652077i
\(16\) 3.99217 + 0.250223i 0.998041 + 0.0625557i
\(17\) −1.96348 1.96348i −0.476214 0.476214i 0.427705 0.903919i \(-0.359322\pi\)
−0.903919 + 0.427705i \(0.859322\pi\)
\(18\) −2.43831 0.0381605i −0.574714 0.00899451i
\(19\) −2.70752 −0.621148 −0.310574 0.950549i \(-0.600521\pi\)
−0.310574 + 0.950549i \(0.600521\pi\)
\(20\) 3.04562 + 3.27478i 0.681022 + 0.732263i
\(21\) 2.08644 0.455298
\(22\) 4.97969 + 0.0779341i 1.06167 + 0.0166156i
\(23\) −4.89998 4.89998i −1.02172 1.02172i −0.999759 0.0219567i \(-0.993010\pi\)
−0.0219567 0.999759i \(-0.506990\pi\)
\(24\) 2.36241 2.15039i 0.482225 0.438947i
\(25\) −0.0494285 + 4.99976i −0.00988571 + 0.999951i
\(26\) 0.984229 + 1.01553i 0.193023 + 0.199161i
\(27\) −3.77305 + 3.77305i −0.726124 + 0.726124i
\(28\) 2.69297 2.52946i 0.508923 0.478023i
\(29\) 6.90940i 1.28304i −0.767105 0.641522i \(-0.778303\pi\)
0.767105 0.641522i \(-0.221697\pi\)
\(30\) 3.57086 + 0.0735418i 0.651947 + 0.0134268i
\(31\) 4.15716i 0.746647i 0.927701 + 0.373324i \(0.121782\pi\)
−0.927701 + 0.373324i \(0.878218\pi\)
\(32\) 0.442173 5.63955i 0.0781658 0.996940i
\(33\) 2.81248 2.81248i 0.489591 0.489591i
\(34\) −2.81989 + 2.73299i −0.483608 + 0.468703i
\(35\) 4.13066 + 0.0204178i 0.698210 + 0.00345123i
\(36\) −0.107921 + 3.44702i −0.0179868 + 0.574503i
\(37\) −6.10784 6.10784i −1.00412 1.00412i −0.999991 0.00413068i \(-0.998685\pi\)
−0.00413068 0.999991i \(-0.501315\pi\)
\(38\) −0.0599183 + 3.82854i −0.00972003 + 0.621072i
\(39\) 1.12944 0.180856
\(40\) 4.69807 4.23416i 0.742831 0.669479i
\(41\) 8.91075 1.39162 0.695812 0.718224i \(-0.255045\pi\)
0.695812 + 0.718224i \(0.255045\pi\)
\(42\) 0.0461735 2.95031i 0.00712472 0.455242i
\(43\) −7.58581 7.58581i −1.15683 1.15683i −0.985154 0.171671i \(-0.945083\pi\)
−0.171671 0.985154i \(-0.554917\pi\)
\(44\) 0.220404 7.03975i 0.0332271 1.06128i
\(45\) −2.73989 + 2.71293i −0.408438 + 0.404420i
\(46\) −7.03720 + 6.82033i −1.03758 + 1.00560i
\(47\) 5.48290 5.48290i 0.799763 0.799763i −0.183295 0.983058i \(-0.558676\pi\)
0.983058 + 0.183295i \(0.0586763\pi\)
\(48\) −2.98846 3.38813i −0.431347 0.489035i
\(49\) 3.58744i 0.512492i
\(50\) 7.06876 + 0.180540i 0.999674 + 0.0255322i
\(51\) 3.13622i 0.439159i
\(52\) 1.45778 1.36927i 0.202157 0.189883i
\(53\) −4.55558 + 4.55558i −0.625757 + 0.625757i −0.946998 0.321241i \(-0.895900\pi\)
0.321241 + 0.946998i \(0.395900\pi\)
\(54\) 5.25175 + 5.41874i 0.714672 + 0.737398i
\(55\) 5.59559 5.54055i 0.754510 0.747087i
\(56\) −3.51716 3.86394i −0.470001 0.516341i
\(57\) 2.16233 + 2.16233i 0.286408 + 0.286408i
\(58\) −9.77017 0.152907i −1.28289 0.0200777i
\(59\) 2.28885 0.297982 0.148991 0.988839i \(-0.452397\pi\)
0.148991 + 0.988839i \(0.452397\pi\)
\(60\) 0.183015 5.04771i 0.0236272 0.651657i
\(61\) −7.76763 −0.994543 −0.497272 0.867595i \(-0.665665\pi\)
−0.497272 + 0.867595i \(0.665665\pi\)
\(62\) 5.87839 + 0.0919991i 0.746556 + 0.0116839i
\(63\) 2.25243 + 2.25243i 0.283780 + 0.283780i
\(64\) −7.96476 0.750055i −0.995595 0.0937569i
\(65\) 2.23604 + 0.0110527i 0.277347 + 0.00137092i
\(66\) −3.91473 4.03921i −0.481869 0.497192i
\(67\) 0.898523 0.898523i 0.109772 0.109772i −0.650087 0.759859i \(-0.725268\pi\)
0.759859 + 0.650087i \(0.225268\pi\)
\(68\) 3.80215 + 4.04792i 0.461078 + 0.490883i
\(69\) 7.82662i 0.942214i
\(70\) 0.120284 5.84047i 0.0143767 0.698070i
\(71\) 14.2978i 1.69683i −0.529331 0.848416i \(-0.677557\pi\)
0.529331 0.848416i \(-0.322443\pi\)
\(72\) 4.87184 + 0.228888i 0.574151 + 0.0269747i
\(73\) 3.84146 3.84146i 0.449609 0.449609i −0.445616 0.895224i \(-0.647015\pi\)
0.895224 + 0.445616i \(0.147015\pi\)
\(74\) −8.77190 + 8.50156i −1.01971 + 0.988286i
\(75\) 4.03247 3.95352i 0.465630 0.456513i
\(76\) 5.41239 + 0.169454i 0.620844 + 0.0194377i
\(77\) −4.60008 4.60008i −0.524228 0.524228i
\(78\) 0.0249950 1.59708i 0.00283012 0.180834i
\(79\) 0.766856 0.0862780 0.0431390 0.999069i \(-0.486264\pi\)
0.0431390 + 0.999069i \(0.486264\pi\)
\(80\) −5.88330 6.73697i −0.657773 0.753216i
\(81\) 0.853540 0.0948378
\(82\) 0.197198 12.6002i 0.0217768 1.39145i
\(83\) 0.727706 + 0.727706i 0.0798761 + 0.0798761i 0.745916 0.666040i \(-0.232012\pi\)
−0.666040 + 0.745916i \(0.732012\pi\)
\(84\) −4.17083 0.130582i −0.455075 0.0142477i
\(85\) −0.0306909 + 6.20899i −0.00332889 + 0.673460i
\(86\) −10.8945 + 10.5588i −1.17479 + 1.13858i
\(87\) −5.51811 + 5.51811i −0.591603 + 0.591603i
\(88\) −9.94962 0.467452i −1.06063 0.0498305i
\(89\) 0.442426i 0.0468970i 0.999725 + 0.0234485i \(0.00746458\pi\)
−0.999725 + 0.0234485i \(0.992535\pi\)
\(90\) 3.77556 + 3.93435i 0.397979 + 0.414717i
\(91\) 1.84731i 0.193651i
\(92\) 9.48848 + 10.1018i 0.989243 + 1.05319i
\(93\) 3.32006 3.32006i 0.344274 0.344274i
\(94\) −7.63170 7.87438i −0.787150 0.812180i
\(95\) 4.25975 + 4.30208i 0.437042 + 0.441384i
\(96\) −4.85709 + 4.15082i −0.495725 + 0.423641i
\(97\) 5.22374 + 5.22374i 0.530390 + 0.530390i 0.920688 0.390298i \(-0.127628\pi\)
−0.390298 + 0.920688i \(0.627628\pi\)
\(98\) 5.07279 + 0.0793912i 0.512429 + 0.00801972i
\(99\) 6.07249 0.610308
\(100\) 0.411725 9.99152i 0.0411725 0.999152i
\(101\) 3.42179 0.340481 0.170240 0.985403i \(-0.445546\pi\)
0.170240 + 0.985403i \(0.445546\pi\)
\(102\) 4.43474 + 0.0694055i 0.439105 + 0.00687217i
\(103\) 9.11709 + 9.11709i 0.898333 + 0.898333i 0.995289 0.0969555i \(-0.0309104\pi\)
−0.0969555 + 0.995289i \(0.530910\pi\)
\(104\) −1.90394 2.09166i −0.186696 0.205104i
\(105\) −3.28260 3.31521i −0.320349 0.323532i
\(106\) 6.34096 + 6.54259i 0.615888 + 0.635473i
\(107\) −0.884982 + 0.884982i −0.0855545 + 0.0855545i −0.748589 0.663034i \(-0.769268\pi\)
0.663034 + 0.748589i \(0.269268\pi\)
\(108\) 7.77854 7.30626i 0.748491 0.703045i
\(109\) 1.15044i 0.110192i 0.998481 + 0.0550959i \(0.0175465\pi\)
−0.998481 + 0.0550959i \(0.982454\pi\)
\(110\) −7.71073 8.03501i −0.735189 0.766108i
\(111\) 9.75590i 0.925989i
\(112\) −5.54160 + 4.88790i −0.523632 + 0.461863i
\(113\) 2.17872 2.17872i 0.204956 0.204956i −0.597163 0.802120i \(-0.703706\pi\)
0.802120 + 0.597163i \(0.203706\pi\)
\(114\) 3.10547 3.00977i 0.290854 0.281891i
\(115\) −0.0765909 + 15.4949i −0.00714214 + 1.44491i
\(116\) −0.432434 + 13.8120i −0.0401505 + 1.28241i
\(117\) 1.21930 + 1.21930i 0.112725 + 0.112725i
\(118\) 0.0506529 3.23652i 0.00466298 0.297946i
\(119\) 5.12958 0.470228
\(120\) −7.13362 0.370499i −0.651208 0.0338217i
\(121\) −1.40167 −0.127425
\(122\) −0.171900 + 10.9837i −0.0155631 + 0.994422i
\(123\) −7.11646 7.11646i −0.641670 0.641670i
\(124\) 0.260181 8.31024i 0.0233649 0.746282i
\(125\) 8.02205 7.78760i 0.717514 0.696544i
\(126\) 3.23488 3.13518i 0.288186 0.279304i
\(127\) −7.30276 + 7.30276i −0.648015 + 0.648015i −0.952513 0.304498i \(-0.901511\pi\)
0.304498 + 0.952513i \(0.401511\pi\)
\(128\) −1.23687 + 11.2459i −0.109325 + 0.994006i
\(129\) 12.1166i 1.06681i
\(130\) 0.0651132 3.16161i 0.00571081 0.277291i
\(131\) 4.60019i 0.401920i 0.979599 + 0.200960i \(0.0644061\pi\)
−0.979599 + 0.200960i \(0.935594\pi\)
\(132\) −5.79824 + 5.44619i −0.504672 + 0.474030i
\(133\) 3.53669 3.53669i 0.306670 0.306670i
\(134\) −1.25066 1.29043i −0.108041 0.111476i
\(135\) 11.9313 + 0.0589760i 1.02688 + 0.00507585i
\(136\) 5.80807 5.28681i 0.498038 0.453340i
\(137\) 11.8882 + 11.8882i 1.01568 + 1.01568i 0.999875 + 0.0158002i \(0.00502957\pi\)
0.0158002 + 0.999875i \(0.494970\pi\)
\(138\) 11.0672 + 0.173205i 0.942098 + 0.0147442i
\(139\) −10.1337 −0.859532 −0.429766 0.902940i \(-0.641404\pi\)
−0.429766 + 0.902940i \(0.641404\pi\)
\(140\) −8.25600 0.299338i −0.697760 0.0252987i
\(141\) −8.75771 −0.737532
\(142\) −20.2176 0.316414i −1.69662 0.0265528i
\(143\) −2.49015 2.49015i −0.208237 0.208237i
\(144\) 0.431472 6.88391i 0.0359560 0.573659i
\(145\) −10.9786 + 10.8706i −0.911722 + 0.902753i
\(146\) −5.34696 5.51699i −0.442518 0.456589i
\(147\) 2.86507 2.86507i 0.236307 0.236307i
\(148\) 11.8274 + 12.5920i 0.972208 + 1.03505i
\(149\) 13.1713i 1.07904i 0.841974 + 0.539519i \(0.181394\pi\)
−0.841974 + 0.539519i \(0.818606\pi\)
\(150\) −5.50120 5.78957i −0.449171 0.472716i
\(151\) 19.6586i 1.59979i −0.600137 0.799897i \(-0.704887\pi\)
0.600137 0.799897i \(-0.295113\pi\)
\(152\) 0.359392 7.64959i 0.0291506 0.620464i
\(153\) −3.38573 + 3.38573i −0.273720 + 0.273720i
\(154\) −6.60650 + 6.40290i −0.532367 + 0.515960i
\(155\) 6.60545 6.54047i 0.530562 0.525343i
\(156\) −2.25778 0.0706878i −0.180767 0.00565955i
\(157\) −10.9745 10.9745i −0.875863 0.875863i 0.117241 0.993104i \(-0.462595\pi\)
−0.993104 + 0.117241i \(0.962595\pi\)
\(158\) 0.0169708 1.08437i 0.00135012 0.0862675i
\(159\) 7.27652 0.577066
\(160\) −9.65654 + 8.17014i −0.763417 + 0.645906i
\(161\) 12.8012 1.00887
\(162\) 0.0188891 1.20694i 0.00148407 0.0948261i
\(163\) −4.24886 4.24886i −0.332796 0.332796i 0.520851 0.853648i \(-0.325615\pi\)
−0.853648 + 0.520851i \(0.825615\pi\)
\(164\) −17.8128 0.557691i −1.39094 0.0435483i
\(165\) −8.89375 0.0439616i −0.692377 0.00342240i
\(166\) 1.04511 1.01290i 0.0811163 0.0786164i
\(167\) −12.8152 + 12.8152i −0.991668 + 0.991668i −0.999966 0.00829711i \(-0.997359\pi\)
0.00829711 + 0.999966i \(0.497359\pi\)
\(168\) −0.276950 + 5.89483i −0.0213672 + 0.454796i
\(169\) 1.00000i 0.0769231i
\(170\) 8.77909 + 0.180805i 0.673325 + 0.0138671i
\(171\) 4.66873i 0.357026i
\(172\) 14.6894 + 15.6390i 1.12006 + 1.19246i
\(173\) 3.57993 3.57993i 0.272177 0.272177i −0.557799 0.829976i \(-0.688354\pi\)
0.829976 + 0.557799i \(0.188354\pi\)
\(174\) 7.68071 + 7.92495i 0.582273 + 0.600789i
\(175\) −6.46635 6.59548i −0.488810 0.498571i
\(176\) −0.881184 + 14.0588i −0.0664217 + 1.05972i
\(177\) −1.82796 1.82796i −0.137398 0.137398i
\(178\) 0.625608 + 0.00979101i 0.0468913 + 0.000733868i
\(179\) −2.63043 −0.196608 −0.0983039 0.995156i \(-0.531342\pi\)
−0.0983039 + 0.995156i \(0.531342\pi\)
\(180\) 5.64688 5.25173i 0.420894 0.391441i
\(181\) 18.4843 1.37393 0.686963 0.726692i \(-0.258943\pi\)
0.686963 + 0.726692i \(0.258943\pi\)
\(182\) −2.61217 0.0408816i −0.193627 0.00303034i
\(183\) 6.20353 + 6.20353i 0.458578 + 0.458578i
\(184\) 14.4944 13.1935i 1.06854 0.972641i
\(185\) −0.0954708 + 19.3144i −0.00701915 + 1.42003i
\(186\) −4.62123 4.76818i −0.338845 0.349620i
\(187\) 6.91459 6.91459i 0.505645 0.505645i
\(188\) −11.3036 + 10.6173i −0.824398 + 0.774344i
\(189\) 9.85706i 0.716996i
\(190\) 6.17758 5.92826i 0.448169 0.430081i
\(191\) 23.2986i 1.68582i −0.538051 0.842912i \(-0.680839\pi\)
0.538051 0.842912i \(-0.319161\pi\)
\(192\) 5.76194 + 6.95998i 0.415832 + 0.502294i
\(193\) 2.67458 2.67458i 0.192520 0.192520i −0.604264 0.796784i \(-0.706533\pi\)
0.796784 + 0.604264i \(0.206533\pi\)
\(194\) 7.50218 7.27097i 0.538625 0.522025i
\(195\) −1.77696 1.79461i −0.127251 0.128515i
\(196\) 0.224525 7.17137i 0.0160375 0.512241i
\(197\) −12.7121 12.7121i −0.905697 0.905697i 0.0902242 0.995921i \(-0.471242\pi\)
−0.995921 + 0.0902242i \(0.971242\pi\)
\(198\) 0.134386 8.58674i 0.00955040 0.610233i
\(199\) −7.65179 −0.542421 −0.271211 0.962520i \(-0.587424\pi\)
−0.271211 + 0.962520i \(0.587424\pi\)
\(200\) −14.1193 0.803311i −0.998385 0.0568027i
\(201\) −1.43519 −0.101230
\(202\) 0.0757252 4.83855i 0.00532801 0.340439i
\(203\) 9.02538 + 9.02538i 0.633457 + 0.633457i
\(204\) 0.196284 6.26937i 0.0137427 0.438944i
\(205\) −14.0193 14.1586i −0.979151 0.988879i
\(206\) 13.0937 12.6902i 0.912281 0.884166i
\(207\) −8.44929 + 8.44929i −0.587267 + 0.587267i
\(208\) −2.99982 + 2.64595i −0.208000 + 0.183464i
\(209\) 9.53481i 0.659537i
\(210\) −4.76049 + 4.56836i −0.328505 + 0.315247i
\(211\) 0.696850i 0.0479731i −0.999712 0.0239866i \(-0.992364\pi\)
0.999712 0.0239866i \(-0.00763589\pi\)
\(212\) 9.39182 8.82158i 0.645033 0.605869i
\(213\) −11.4187 + 11.4187i −0.782399 + 0.782399i
\(214\) 1.23182 + 1.27099i 0.0842052 + 0.0868828i
\(215\) −0.118573 + 23.9881i −0.00808660 + 1.63598i
\(216\) −10.1592 11.1609i −0.691247 0.759401i
\(217\) −5.43027 5.43027i −0.368631 0.368631i
\(218\) 1.62676 + 0.0254595i 0.110178 + 0.00172434i
\(219\) −6.13587 −0.414624
\(220\) −11.5325 + 10.7255i −0.777519 + 0.723111i
\(221\) 2.77678 0.186786
\(222\) 13.7952 + 0.215901i 0.925876 + 0.0144903i
\(223\) −8.11155 8.11155i −0.543190 0.543190i 0.381273 0.924463i \(-0.375486\pi\)
−0.924463 + 0.381273i \(0.875486\pi\)
\(224\) 6.78905 + 7.94422i 0.453613 + 0.530796i
\(225\) 8.62135 + 0.0852323i 0.574757 + 0.00568215i
\(226\) −3.03258 3.12901i −0.201724 0.208139i
\(227\) 16.3431 16.3431i 1.08473 1.08473i 0.0886719 0.996061i \(-0.471738\pi\)
0.996061 0.0886719i \(-0.0282623\pi\)
\(228\) −4.18721 4.45787i −0.277305 0.295230i
\(229\) 23.0298i 1.52185i 0.648838 + 0.760926i \(0.275255\pi\)
−0.648838 + 0.760926i \(0.724745\pi\)
\(230\) 21.9087 + 0.451209i 1.44462 + 0.0297519i
\(231\) 7.34760i 0.483436i
\(232\) 19.5212 + 0.917143i 1.28163 + 0.0602134i
\(233\) 12.3099 12.3099i 0.806449 0.806449i −0.177645 0.984095i \(-0.556848\pi\)
0.984095 + 0.177645i \(0.0568480\pi\)
\(234\) 1.75113 1.69716i 0.114475 0.110947i
\(235\) −17.3382 0.0857025i −1.13102 0.00559061i
\(236\) −4.57545 0.143250i −0.297837 0.00932481i
\(237\) −0.612440 0.612440i −0.0397823 0.0397823i
\(238\) 0.113519 7.25343i 0.00735835 0.470170i
\(239\) −12.2710 −0.793744 −0.396872 0.917874i \(-0.629904\pi\)
−0.396872 + 0.917874i \(0.629904\pi\)
\(240\) −0.681769 + 10.0790i −0.0440080 + 0.650599i
\(241\) −25.1592 −1.62065 −0.810325 0.585981i \(-0.800709\pi\)
−0.810325 + 0.585981i \(0.800709\pi\)
\(242\) −0.0310194 + 1.98202i −0.00199400 + 0.127409i
\(243\) 10.6375 + 10.6375i 0.682395 + 0.682395i
\(244\) 15.5277 + 0.486147i 0.994056 + 0.0311224i
\(245\) 5.70021 5.64413i 0.364173 0.360591i
\(246\) −10.2205 + 9.90547i −0.651632 + 0.631550i
\(247\) 1.91451 1.91451i 0.121817 0.121817i
\(248\) −11.7453 0.551815i −0.745825 0.0350403i
\(249\) 1.16235i 0.0736608i
\(250\) −10.8344 11.5158i −0.685231 0.728326i
\(251\) 21.2328i 1.34020i −0.742269 0.670102i \(-0.766250\pi\)
0.742269 0.670102i \(-0.233750\pi\)
\(252\) −4.36169 4.64363i −0.274760 0.292521i
\(253\) 17.2558 17.2558i 1.08486 1.08486i
\(254\) 10.1648 + 10.4880i 0.637795 + 0.658076i
\(255\) 4.98325 4.93423i 0.312063 0.308993i
\(256\) 15.8748 + 1.99786i 0.992174 + 0.124866i
\(257\) −1.09013 1.09013i −0.0680006 0.0680006i 0.672289 0.740289i \(-0.265311\pi\)
−0.740289 + 0.672289i \(0.765311\pi\)
\(258\) 17.1334 + 0.268145i 1.06668 + 0.0166940i
\(259\) 15.9567 0.991500
\(260\) −4.46920 0.162040i −0.277168 0.0100493i
\(261\) −11.9143 −0.737474
\(262\) 6.50485 + 0.101804i 0.401871 + 0.00628944i
\(263\) −12.5796 12.5796i −0.775689 0.775689i 0.203405 0.979095i \(-0.434799\pi\)
−0.979095 + 0.203405i \(0.934799\pi\)
\(264\) 7.57282 + 8.31947i 0.466075 + 0.512028i
\(265\) 14.4058 + 0.0712077i 0.884943 + 0.00437425i
\(266\) −4.92275 5.07929i −0.301833 0.311431i
\(267\) 0.353338 0.353338i 0.0216239 0.0216239i
\(268\) −1.85240 + 1.73993i −0.113153 + 0.106283i
\(269\) 19.7683i 1.20529i −0.798008 0.602647i \(-0.794113\pi\)
0.798008 0.602647i \(-0.205887\pi\)
\(270\) 0.347438 16.8700i 0.0211444 1.02668i
\(271\) 21.2849i 1.29296i 0.762929 + 0.646482i \(0.223761\pi\)
−0.762929 + 0.646482i \(0.776239\pi\)
\(272\) −7.34723 8.32984i −0.445491 0.505071i
\(273\) −1.47533 + 1.47533i −0.0892912 + 0.0892912i
\(274\) 17.0734 16.5473i 1.03144 0.999657i
\(275\) −17.6071 0.174068i −1.06175 0.0104967i
\(276\) 0.489839 15.6456i 0.0294848 0.941752i
\(277\) −13.0098 13.0098i −0.781685 0.781685i 0.198430 0.980115i \(-0.436416\pi\)
−0.980115 + 0.198430i \(0.936416\pi\)
\(278\) −0.224263 + 14.3295i −0.0134504 + 0.859426i
\(279\) 7.16841 0.429161
\(280\) −0.605985 + 11.6677i −0.0362145 + 0.697278i
\(281\) 12.4347 0.741790 0.370895 0.928675i \(-0.379051\pi\)
0.370895 + 0.928675i \(0.379051\pi\)
\(282\) −0.193811 + 12.3837i −0.0115413 + 0.737442i
\(283\) 13.2718 + 13.2718i 0.788926 + 0.788926i 0.981318 0.192393i \(-0.0616247\pi\)
−0.192393 + 0.981318i \(0.561625\pi\)
\(284\) −0.894843 + 28.5815i −0.0530992 + 1.69600i
\(285\) 0.0337991 6.83780i 0.00200209 0.405037i
\(286\) −3.57628 + 3.46606i −0.211470 + 0.204953i
\(287\) −11.6396 + 11.6396i −0.687066 + 0.687066i
\(288\) −9.72458 0.762462i −0.573026 0.0449285i
\(289\) 9.28949i 0.546441i
\(290\) 15.1285 + 15.7647i 0.888375 + 0.925737i
\(291\) 8.34375i 0.489119i
\(292\) −7.91957 + 7.43873i −0.463458 + 0.435319i
\(293\) −6.94563 + 6.94563i −0.405768 + 0.405768i −0.880260 0.474492i \(-0.842632\pi\)
0.474492 + 0.880260i \(0.342632\pi\)
\(294\) −3.98792 4.11473i −0.232580 0.239976i
\(295\) −3.60105 3.63683i −0.209661 0.211744i
\(296\) 18.0673 16.4458i 1.05014 0.955892i
\(297\) −13.2872 13.2872i −0.771000 0.771000i
\(298\) 18.6248 + 0.291486i 1.07891 + 0.0168853i
\(299\) 6.92961 0.400750
\(300\) −8.30843 + 7.65079i −0.479687 + 0.441719i
\(301\) 19.8179 1.14228
\(302\) −27.7981 0.435051i −1.59960 0.0250344i
\(303\) −2.73277 2.73277i −0.156994 0.156994i
\(304\) −10.8089 0.677483i −0.619931 0.0388563i
\(305\) 12.2208 + 12.3423i 0.699764 + 0.706716i
\(306\) 4.71264 + 4.86249i 0.269404 + 0.277970i
\(307\) −4.02072 + 4.02072i −0.229474 + 0.229474i −0.812473 0.582999i \(-0.801879\pi\)
0.582999 + 0.812473i \(0.301879\pi\)
\(308\) 8.90775 + 9.48355i 0.507566 + 0.540376i
\(309\) 14.5625i 0.828432i
\(310\) −9.10231 9.48512i −0.516976 0.538718i
\(311\) 25.4676i 1.44413i −0.691823 0.722067i \(-0.743192\pi\)
0.691823 0.722067i \(-0.256808\pi\)
\(312\) −0.149921 + 3.19103i −0.00848760 + 0.180657i
\(313\) 8.61361 8.61361i 0.486870 0.486870i −0.420447 0.907317i \(-0.638127\pi\)
0.907317 + 0.420447i \(0.138127\pi\)
\(314\) −15.7613 + 15.2756i −0.889461 + 0.862050i
\(315\) 0.0352075 7.12273i 0.00198372 0.401320i
\(316\) −1.53296 0.0479947i −0.0862358 0.00269991i
\(317\) 13.0464 + 13.0464i 0.732757 + 0.732757i 0.971165 0.238408i \(-0.0766257\pi\)
−0.238408 + 0.971165i \(0.576626\pi\)
\(318\) 0.161032 10.2893i 0.00903021 0.576995i
\(319\) 24.3321 1.36234
\(320\) 11.3392 + 13.8356i 0.633881 + 0.773431i
\(321\) 1.41356 0.0788973
\(322\) 0.283293 18.1013i 0.0157873 1.00875i
\(323\) 5.31616 + 5.31616i 0.295799 + 0.295799i
\(324\) −1.70624 0.0534199i −0.0947913 0.00296777i
\(325\) −3.50041 3.57031i −0.194168 0.198045i
\(326\) −6.10209 + 5.91403i −0.337963 + 0.327548i
\(327\) 0.918783 0.918783i 0.0508088 0.0508088i
\(328\) −1.18280 + 25.1756i −0.0653092 + 1.39009i
\(329\) 14.3240i 0.789710i
\(330\) −0.258985 + 12.5751i −0.0142566 + 0.692239i
\(331\) 22.5223i 1.23794i 0.785415 + 0.618970i \(0.212450\pi\)
−0.785415 + 0.618970i \(0.787550\pi\)
\(332\) −1.40916 1.50024i −0.0773374 0.0823366i
\(333\) −10.5321 + 10.5321i −0.577154 + 0.577154i
\(334\) 17.8376 + 18.4048i 0.976029 + 1.00707i
\(335\) −2.84134 0.0140447i −0.155239 0.000767343i
\(336\) 8.32940 + 0.522074i 0.454406 + 0.0284814i
\(337\) 18.5334 + 18.5334i 1.00958 + 1.00958i 0.999954 + 0.00962269i \(0.00306304\pi\)
0.00962269 + 0.999954i \(0.496937\pi\)
\(338\) −1.41404 0.0221303i −0.0769137 0.00120373i
\(339\) −3.48001 −0.189008
\(340\) 0.449950 12.4100i 0.0244019 0.673026i
\(341\) −14.6398 −0.792792
\(342\) 6.60177 + 0.103320i 0.356983 + 0.00558692i
\(343\) −13.8298 13.8298i −0.746739 0.746739i
\(344\) 22.4392 20.4253i 1.20984 1.10126i
\(345\) 12.4360 12.3136i 0.669531 0.662944i
\(346\) −4.98295 5.14140i −0.267885 0.276403i
\(347\) −19.0075 + 19.0075i −1.02038 + 1.02038i −0.0205887 + 0.999788i \(0.506554\pi\)
−0.999788 + 0.0205887i \(0.993446\pi\)
\(348\) 11.3762 10.6855i 0.609827 0.572801i
\(349\) 7.56368i 0.404874i 0.979295 + 0.202437i \(0.0648862\pi\)
−0.979295 + 0.202437i \(0.935114\pi\)
\(350\) −9.46938 + 8.99772i −0.506159 + 0.480948i
\(351\) 5.33590i 0.284809i
\(352\) 19.8602 + 1.55716i 1.05855 + 0.0829967i
\(353\) −21.5167 + 21.5167i −1.14522 + 1.14522i −0.157740 + 0.987481i \(0.550421\pi\)
−0.987481 + 0.157740i \(0.949579\pi\)
\(354\) −2.62526 + 2.54436i −0.139531 + 0.135231i
\(355\) −22.7182 + 22.4947i −1.20576 + 1.19390i
\(356\) 0.0276898 0.884418i 0.00146756 0.0468740i
\(357\) −4.09668 4.09668i −0.216819 0.216819i
\(358\) −0.0582123 + 3.71954i −0.00307661 + 0.196584i
\(359\) −25.3560 −1.33824 −0.669120 0.743155i \(-0.733329\pi\)
−0.669120 + 0.743155i \(0.733329\pi\)
\(360\) −7.30119 8.10114i −0.384807 0.426968i
\(361\) −11.6693 −0.614175
\(362\) 0.409063 26.1375i 0.0214999 1.37376i
\(363\) 1.11943 + 1.11943i 0.0587547 + 0.0587547i
\(364\) −0.115616 + 3.69281i −0.00605995 + 0.193556i
\(365\) −12.1476 0.0600453i −0.635835 0.00314292i
\(366\) 8.90932 8.63475i 0.465698 0.451346i
\(367\) −0.233912 + 0.233912i −0.0122101 + 0.0122101i −0.713185 0.700975i \(-0.752748\pi\)
0.700975 + 0.713185i \(0.252748\pi\)
\(368\) −18.3354 20.7876i −0.955800 1.08363i
\(369\) 15.3653i 0.799885i
\(370\) 27.3093 + 0.562434i 1.41974 + 0.0292396i
\(371\) 11.9014i 0.617891i
\(372\) −6.84466 + 6.42908i −0.354879 + 0.333332i
\(373\) −13.6778 + 13.6778i −0.708208 + 0.708208i −0.966158 0.257950i \(-0.916953\pi\)
0.257950 + 0.966158i \(0.416953\pi\)
\(374\) −9.62449 9.93053i −0.497671 0.513496i
\(375\) −12.6262 0.187245i −0.652014 0.00966929i
\(376\) 14.7631 + 16.2187i 0.761349 + 0.836415i
\(377\) 4.88568 + 4.88568i 0.251625 + 0.251625i
\(378\) −13.9383 0.218140i −0.716908 0.0112199i
\(379\) 27.2977 1.40219 0.701093 0.713070i \(-0.252696\pi\)
0.701093 + 0.713070i \(0.252696\pi\)
\(380\) −8.24609 8.86654i −0.423015 0.454844i
\(381\) 11.6645 0.597591
\(382\) −32.9451 0.515604i −1.68562 0.0263806i
\(383\) 10.7069 + 10.7069i 0.547095 + 0.547095i 0.925599 0.378505i \(-0.123562\pi\)
−0.378505 + 0.925599i \(0.623562\pi\)
\(384\) 9.96921 7.99359i 0.508739 0.407921i
\(385\) −0.0719032 + 14.5465i −0.00366453 + 0.741361i
\(386\) −3.72277 3.84115i −0.189484 0.195509i
\(387\) −13.0806 + 13.0806i −0.664926 + 0.664926i
\(388\) −10.1154 10.7693i −0.513533 0.546728i
\(389\) 1.85990i 0.0943006i −0.998888 0.0471503i \(-0.984986\pi\)
0.998888 0.0471503i \(-0.0150140\pi\)
\(390\) −2.57698 + 2.47298i −0.130491 + 0.125224i
\(391\) 19.2420i 0.973110i
\(392\) −10.1356 0.476191i −0.511927 0.0240513i
\(393\) 3.67388 3.67388i 0.185323 0.185323i
\(394\) −18.2567 + 17.6941i −0.919759 + 0.891414i
\(395\) −1.20650 1.21848i −0.0607055 0.0613086i
\(396\) −12.1390 0.380054i −0.610009 0.0190985i
\(397\) 1.54829 + 1.54829i 0.0777066 + 0.0777066i 0.744892 0.667185i \(-0.232501\pi\)
−0.667185 + 0.744892i \(0.732501\pi\)
\(398\) −0.169337 + 10.8199i −0.00848807 + 0.542355i
\(399\) −5.64907 −0.282807
\(400\) −1.44838 + 19.9475i −0.0724189 + 0.997374i
\(401\) −25.1569 −1.25628 −0.628139 0.778101i \(-0.716183\pi\)
−0.628139 + 0.778101i \(0.716183\pi\)
\(402\) −0.0317612 + 2.02941i −0.00158410 + 0.101218i
\(403\) −2.93955 2.93955i −0.146430 0.146430i
\(404\) −6.84023 0.214157i −0.340314 0.0106547i
\(405\) −1.34288 1.35622i −0.0667281 0.0673911i
\(406\) 12.9620 12.5625i 0.643292 0.623467i
\(407\) 21.5094 21.5094i 1.06618 1.06618i
\(408\) −8.86079 0.416297i −0.438675 0.0206098i
\(409\) 17.0509i 0.843112i −0.906802 0.421556i \(-0.861484\pi\)
0.906802 0.421556i \(-0.138516\pi\)
\(410\) −20.3311 + 19.5105i −1.00408 + 0.963557i
\(411\) 18.9887i 0.936644i
\(412\) −17.6546 18.7958i −0.869782 0.926005i
\(413\) −2.98980 + 2.98980i −0.147118 + 0.147118i
\(414\) 11.7607 + 12.1346i 0.578005 + 0.596384i
\(415\) 0.0113747 2.30118i 0.000558361 0.112961i
\(416\) 3.67510 + 4.30042i 0.180187 + 0.210846i
\(417\) 8.09318 + 8.09318i 0.396325 + 0.396325i
\(418\) −13.4826 0.211008i −0.659456 0.0103208i
\(419\) −33.8791 −1.65510 −0.827551 0.561391i \(-0.810266\pi\)
−0.827551 + 0.561391i \(0.810266\pi\)
\(420\) 6.35450 + 6.83262i 0.310068 + 0.333398i
\(421\) −25.0338 −1.22007 −0.610036 0.792374i \(-0.708845\pi\)
−0.610036 + 0.792374i \(0.708845\pi\)
\(422\) −0.985374 0.0154215i −0.0479672 0.000750707i
\(423\) −9.45446 9.45446i −0.459692 0.459692i
\(424\) −12.2662 13.4756i −0.595701 0.654434i
\(425\) 9.91397 9.71987i 0.480898 0.471483i
\(426\) 15.8938 + 16.3992i 0.770059 + 0.794546i
\(427\) 10.1464 10.1464i 0.491021 0.491021i
\(428\) 1.82449 1.71371i 0.0881898 0.0828353i
\(429\) 3.97745i 0.192033i
\(430\) 33.9176 + 0.698532i 1.63565 + 0.0336862i
\(431\) 15.0689i 0.725844i 0.931820 + 0.362922i \(0.118221\pi\)
−0.931820 + 0.362922i \(0.881779\pi\)
\(432\) −16.0067 + 14.1185i −0.770125 + 0.679278i
\(433\) −5.58575 + 5.58575i −0.268434 + 0.268434i −0.828469 0.560035i \(-0.810788\pi\)
0.560035 + 0.828469i \(0.310788\pi\)
\(434\) −7.79879 + 7.55845i −0.374354 + 0.362817i
\(435\) 17.4496 + 0.0862528i 0.836643 + 0.00413551i
\(436\) 0.0720016 2.29975i 0.00344825 0.110138i
\(437\) 13.2668 + 13.2668i 0.634637 + 0.634637i
\(438\) −0.135789 + 8.67637i −0.00648823 + 0.414573i
\(439\) 29.6737 1.41625 0.708124 0.706088i \(-0.249542\pi\)
0.708124 + 0.706088i \(0.249542\pi\)
\(440\) 14.9110 + 16.5447i 0.710855 + 0.788739i
\(441\) 6.18602 0.294572
\(442\) 0.0614510 3.92648i 0.00292293 0.186764i
\(443\) 1.89262 + 1.89262i 0.0899213 + 0.0899213i 0.750637 0.660715i \(-0.229747\pi\)
−0.660715 + 0.750637i \(0.729747\pi\)
\(444\) 0.610586 19.5022i 0.0289771 0.925536i
\(445\) 0.702985 0.696070i 0.0333247 0.0329969i
\(446\) −11.6496 + 11.2906i −0.551623 + 0.534623i
\(447\) 10.5191 10.5191i 0.497538 0.497538i
\(448\) 11.3837 9.42418i 0.537829 0.445251i
\(449\) 12.5398i 0.591791i −0.955220 0.295895i \(-0.904382\pi\)
0.955220 0.295895i \(-0.0956180\pi\)
\(450\) 0.311315 12.1891i 0.0146755 0.574597i
\(451\) 31.3801i 1.47763i
\(452\) −4.49166 + 4.21894i −0.211270 + 0.198442i
\(453\) −15.7001 + 15.7001i −0.737655 + 0.737655i
\(454\) −22.7482 23.4715i −1.06763 1.10157i
\(455\) −2.93526 + 2.90638i −0.137607 + 0.136253i
\(456\) −6.39628 + 5.82223i −0.299533 + 0.272651i
\(457\) 12.2710 + 12.2710i 0.574015 + 0.574015i 0.933248 0.359233i \(-0.116962\pi\)
−0.359233 + 0.933248i \(0.616962\pi\)
\(458\) 32.5651 + 0.509657i 1.52167 + 0.0238147i
\(459\) 14.8166 0.691580
\(460\) 1.12287 30.9698i 0.0523543 1.44398i
\(461\) 6.10051 0.284129 0.142065 0.989857i \(-0.454626\pi\)
0.142065 + 0.989857i \(0.454626\pi\)
\(462\) 10.3898 + 0.162605i 0.483377 + 0.00756505i
\(463\) 23.1386 + 23.1386i 1.07534 + 1.07534i 0.996920 + 0.0784197i \(0.0249874\pi\)
0.0784197 + 0.996920i \(0.475013\pi\)
\(464\) 1.72889 27.5835i 0.0802616 1.28053i
\(465\) −10.4988 0.0518955i −0.486872 0.00240659i
\(466\) −17.1343 17.6791i −0.793731 0.818970i
\(467\) 12.2124 12.2124i 0.565122 0.565122i −0.365636 0.930758i \(-0.619149\pi\)
0.930758 + 0.365636i \(0.119149\pi\)
\(468\) −2.36110 2.51372i −0.109142 0.116197i
\(469\) 2.34738i 0.108392i
\(470\) −0.504887 + 24.5151i −0.0232887 + 1.13080i
\(471\) 17.5294i 0.807710i
\(472\) −0.303818 + 6.46670i −0.0139844 + 0.297654i
\(473\) 26.7142 26.7142i 1.22832 1.22832i
\(474\) −0.879569 + 0.852462i −0.0403999 + 0.0391549i
\(475\) 0.133829 13.5369i 0.00614049 0.621118i
\(476\) −10.2541 0.321041i −0.469997 0.0147149i
\(477\) 7.85543 + 7.85543i 0.359676 + 0.359676i
\(478\) −0.271561 + 17.3517i −0.0124209 + 0.793646i
\(479\) −21.9564 −1.00321 −0.501607 0.865096i \(-0.667258\pi\)
−0.501607 + 0.865096i \(0.667258\pi\)
\(480\) 14.2371 + 1.18710i 0.649830 + 0.0541835i
\(481\) 8.63779 0.393849
\(482\) −0.556782 + 35.5762i −0.0253607 + 1.62045i
\(483\) −10.2235 10.2235i −0.465185 0.465185i
\(484\) 2.80197 + 0.0877254i 0.127362 + 0.00398752i
\(485\) 0.0816515 16.5187i 0.00370760 0.750076i
\(486\) 15.2772 14.8064i 0.692989 0.671633i
\(487\) 19.5227 19.5227i 0.884659 0.884659i −0.109345 0.994004i \(-0.534875\pi\)
0.994004 + 0.109345i \(0.0348753\pi\)
\(488\) 1.03106 21.9460i 0.0466741 0.993448i
\(489\) 6.78660i 0.306901i
\(490\) −7.85489 8.18523i −0.354848 0.369771i
\(491\) 5.37843i 0.242725i 0.992608 + 0.121363i \(0.0387264\pi\)
−0.992608 + 0.121363i \(0.961274\pi\)
\(492\) 13.7806 + 14.6713i 0.621276 + 0.661435i
\(493\) −13.5665 + 13.5665i −0.611003 + 0.611003i
\(494\) −2.66482 2.74956i −0.119896 0.123708i
\(495\) −9.55387 9.64879i −0.429414 0.433681i
\(496\) −1.04021 + 16.5961i −0.0467070 + 0.745185i
\(497\) 18.6764 + 18.6764i 0.837750 + 0.837750i
\(498\) −1.64361 0.0257231i −0.0736518 0.00115268i
\(499\) 25.0685 1.12222 0.561111 0.827740i \(-0.310374\pi\)
0.561111 + 0.827740i \(0.310374\pi\)
\(500\) −16.5236 + 15.0655i −0.738960 + 0.673749i
\(501\) 20.4694 0.914505
\(502\) −30.0241 0.469889i −1.34004 0.0209722i
\(503\) 16.4098 + 16.4098i 0.731676 + 0.731676i 0.970952 0.239276i \(-0.0769099\pi\)
−0.239276 + 0.970952i \(0.576910\pi\)
\(504\) −6.66280 + 6.06483i −0.296785 + 0.270149i
\(505\) −5.38351 5.43700i −0.239563 0.241943i
\(506\) −24.0185 24.7822i −1.06775 1.10170i
\(507\) −0.798638 + 0.798638i −0.0354688 + 0.0354688i
\(508\) 15.0554 14.1413i 0.667976 0.627419i
\(509\) 14.9919i 0.664503i −0.943191 0.332252i \(-0.892192\pi\)
0.943191 0.332252i \(-0.107808\pi\)
\(510\) −6.86692 7.15571i −0.304072 0.316860i
\(511\) 10.0358i 0.443957i
\(512\) 3.17637 22.4034i 0.140377 0.990098i
\(513\) 10.2156 10.2156i 0.451030 0.451030i
\(514\) −1.56562 + 1.51737i −0.0690564 + 0.0669282i
\(515\) 0.142508 28.8304i 0.00627965 1.27042i
\(516\) 0.758335 24.2214i 0.0333839 1.06629i
\(517\) 19.3086 + 19.3086i 0.849190 + 0.849190i
\(518\) 0.353126 22.5634i 0.0155155 0.991378i
\(519\) −5.71814 −0.250999
\(520\) −0.328036 + 6.31604i −0.0143853 + 0.276977i
\(521\) 13.2279 0.579524 0.289762 0.957099i \(-0.406424\pi\)
0.289762 + 0.957099i \(0.406424\pi\)
\(522\) −0.263666 + 16.8472i −0.0115404 + 0.737383i
\(523\) 13.5227 + 13.5227i 0.591304 + 0.591304i 0.937984 0.346679i \(-0.112691\pi\)
−0.346679 + 0.937984i \(0.612691\pi\)
\(524\) 0.287909 9.19586i 0.0125773 0.401723i
\(525\) −0.103130 + 10.4317i −0.00450094 + 0.455276i
\(526\) −18.0664 + 17.5096i −0.787733 + 0.763456i
\(527\) 8.16249 8.16249i 0.355564 0.355564i
\(528\) 11.9317 10.5242i 0.519259 0.458005i
\(529\) 25.0195i 1.08781i
\(530\) 0.419496 20.3689i 0.0182217 0.884767i
\(531\) 3.94678i 0.171276i
\(532\) −7.29126 + 6.84857i −0.316116 + 0.296923i
\(533\) −6.30085 + 6.30085i −0.272920 + 0.272920i
\(534\) −0.491815 0.507454i −0.0212829 0.0219597i
\(535\) 2.79853 + 0.0138330i 0.120991 + 0.000598055i
\(536\) 2.41934 + 2.65787i 0.104499 + 0.114803i
\(537\) 2.10076 + 2.10076i 0.0906546 + 0.0906546i
\(538\) −27.9532 0.437479i −1.20515 0.0188610i
\(539\) −12.6335 −0.544165
\(540\) −23.8472 0.864629i −1.02622 0.0372077i
\(541\) 18.3005 0.786799 0.393400 0.919368i \(-0.371299\pi\)
0.393400 + 0.919368i \(0.371299\pi\)
\(542\) 30.0977 + 0.471041i 1.29281 + 0.0202330i
\(543\) −14.7623 14.7623i −0.633509 0.633509i
\(544\) −11.9413 + 10.2049i −0.511980 + 0.437533i
\(545\) 1.82797 1.80999i 0.0783016 0.0775313i
\(546\) 2.05353 + 2.11883i 0.0878830 + 0.0906776i
\(547\) 23.1342 23.1342i 0.989147 0.989147i −0.0107946 0.999942i \(-0.503436\pi\)
0.999942 + 0.0107946i \(0.00343608\pi\)
\(548\) −23.0207 24.5087i −0.983394 1.04696i
\(549\) 13.3941i 0.571648i
\(550\) −0.635790 + 24.8934i −0.0271102 + 1.06146i
\(551\) 18.7073i 0.796960i
\(552\) −22.1126 1.03889i −0.941176 0.0442182i
\(553\) −1.00170 + 1.00170i −0.0425967 + 0.0425967i
\(554\) −18.6844 + 18.1085i −0.793822 + 0.769358i
\(555\) 15.5015 15.3490i 0.658002 0.651529i
\(556\) 20.2575 + 0.634233i 0.859111 + 0.0268975i
\(557\) −12.7940 12.7940i −0.542100 0.542100i 0.382044 0.924144i \(-0.375220\pi\)
−0.924144 + 0.382044i \(0.875220\pi\)
\(558\) 0.158639 10.1364i 0.00671573 0.429109i
\(559\) 10.7280 0.453744
\(560\) 16.4852 + 1.11510i 0.696626 + 0.0471214i
\(561\) −11.0445 −0.466300
\(562\) 0.275183 17.5831i 0.0116079 0.741699i
\(563\) 25.0765 + 25.0765i 1.05685 + 1.05685i 0.998284 + 0.0585642i \(0.0186522\pi\)
0.0585642 + 0.998284i \(0.481348\pi\)
\(564\) 17.5068 + 0.548112i 0.737171 + 0.0230797i
\(565\) −6.88962 0.0340552i −0.289849 0.00143271i
\(566\) 19.0605 18.4731i 0.801174 0.776483i
\(567\) −1.11493 + 1.11493i −0.0468228 + 0.0468228i
\(568\) 40.3956 + 1.89786i 1.69496 + 0.0796325i
\(569\) 3.78598i 0.158716i −0.996846 0.0793582i \(-0.974713\pi\)
0.996846 0.0793582i \(-0.0252871\pi\)
\(570\) −9.66818 0.199116i −0.404956 0.00834005i
\(571\) 25.5130i 1.06769i −0.845583 0.533843i \(-0.820747\pi\)
0.845583 0.533843i \(-0.179253\pi\)
\(572\) 4.82201 + 5.13371i 0.201618 + 0.214651i
\(573\) −18.6071 + 18.6071i −0.777324 + 0.777324i
\(574\) 16.2013 + 16.7165i 0.676230 + 0.697733i
\(575\) 24.7409 24.2565i 1.03177 1.01157i
\(576\) −1.29336 + 13.7341i −0.0538900 + 0.572253i
\(577\) 4.42706 + 4.42706i 0.184301 + 0.184301i 0.793227 0.608926i \(-0.208399\pi\)
−0.608926 + 0.793227i \(0.708399\pi\)
\(578\) −13.1357 0.205579i −0.546374 0.00855098i
\(579\) −4.27204 −0.177540
\(580\) 22.6268 21.0434i 0.939525 0.873780i
\(581\) −1.90113 −0.0788721
\(582\) −11.7984 0.184650i −0.489059 0.00765398i
\(583\) −16.0429 16.0429i −0.664430 0.664430i
\(584\) 10.3434 + 11.3632i 0.428013 + 0.470213i
\(585\) 0.0190588 3.85573i 0.000787983 0.159415i
\(586\) 9.66769 + 9.97511i 0.399369 + 0.412068i
\(587\) 23.6571 23.6571i 0.976431 0.976431i −0.0232972 0.999729i \(-0.507416\pi\)
0.999729 + 0.0232972i \(0.00741642\pi\)
\(588\) −5.90664 + 5.54801i −0.243586 + 0.228796i
\(589\) 11.2556i 0.463778i
\(590\) −5.22232 + 5.01155i −0.214999 + 0.206322i
\(591\) 20.3047i 0.835223i
\(592\) −22.8552 25.9118i −0.939342 1.06497i
\(593\) −9.21789 + 9.21789i −0.378534 + 0.378534i −0.870573 0.492039i \(-0.836252\pi\)
0.492039 + 0.870573i \(0.336252\pi\)
\(594\) −19.0826 + 18.4946i −0.782971 + 0.758841i
\(595\) −8.07038 8.15056i −0.330853 0.334141i
\(596\) 0.824345 26.3298i 0.0337665 1.07851i
\(597\) 6.11101 + 6.11101i 0.250107 + 0.250107i
\(598\) 0.153354 9.79875i 0.00627113 0.400701i
\(599\) 2.77755 0.113488 0.0567438 0.998389i \(-0.481928\pi\)
0.0567438 + 0.998389i \(0.481928\pi\)
\(600\) 10.6347 + 11.9178i 0.434158 + 0.486541i
\(601\) −40.0680 −1.63441 −0.817205 0.576348i \(-0.804477\pi\)
−0.817205 + 0.576348i \(0.804477\pi\)
\(602\) 0.438576 28.0233i 0.0178750 1.14214i
\(603\) −1.54937 1.54937i −0.0630953 0.0630953i
\(604\) −1.23036 + 39.2979i −0.0500626 + 1.59901i
\(605\) 2.20525 + 2.22716i 0.0896563 + 0.0905471i
\(606\) −3.92473 + 3.80377i −0.159431 + 0.154518i
\(607\) −15.4132 + 15.4132i −0.625602 + 0.625602i −0.946958 0.321356i \(-0.895861\pi\)
0.321356 + 0.946958i \(0.395861\pi\)
\(608\) −1.19719 + 15.2692i −0.0485526 + 0.619248i
\(609\) 14.4160i 0.584167i
\(610\) 17.7229 17.0076i 0.717580 0.688619i
\(611\) 7.75399i 0.313693i
\(612\) 6.98005 6.55625i 0.282152 0.265021i
\(613\) 24.1149 24.1149i 0.973991 0.973991i −0.0256796 0.999670i \(-0.508175\pi\)
0.999670 + 0.0256796i \(0.00817496\pi\)
\(614\) 5.59647 + 5.77443i 0.225855 + 0.233037i
\(615\) −0.111236 + 22.5040i −0.00448549 + 0.907447i
\(616\) 13.6073 12.3860i 0.548252 0.499048i
\(617\) −9.31246 9.31246i −0.374905 0.374905i 0.494355 0.869260i \(-0.335404\pi\)
−0.869260 + 0.494355i \(0.835404\pi\)
\(618\) −20.5920 0.322273i −0.828331 0.0129637i
\(619\) −20.6325 −0.829290 −0.414645 0.909983i \(-0.636094\pi\)
−0.414645 + 0.909983i \(0.636094\pi\)
\(620\) −13.6138 + 12.6611i −0.546742 + 0.508483i
\(621\) 36.9757 1.48378
\(622\) −36.0122 0.563605i −1.44396 0.0225985i
\(623\) −0.577917 0.577917i −0.0231537 0.0231537i
\(624\) 4.50893 + 0.282613i 0.180502 + 0.0113136i
\(625\) −24.9951 0.494261i −0.999805 0.0197705i
\(626\) −11.9894 12.3706i −0.479192 0.494429i
\(627\) −7.61486 + 7.61486i −0.304108 + 0.304108i
\(628\) 21.2515 + 22.6252i 0.848025 + 0.902842i
\(629\) 23.9852i 0.956354i
\(630\) −10.0710 0.207413i −0.401240 0.00826353i
\(631\) 0.761372i 0.0303098i −0.999885 0.0151549i \(-0.995176\pi\)
0.999885 0.0151549i \(-0.00482413\pi\)
\(632\) −0.101791 + 2.16661i −0.00404904 + 0.0861830i
\(633\) −0.556531 + 0.556531i −0.0221201 + 0.0221201i
\(634\) 18.7368 18.1594i 0.744133 0.721200i
\(635\) 23.0931 + 0.114148i 0.916420 + 0.00452984i
\(636\) −14.5459 0.455410i −0.576783 0.0180582i
\(637\) −2.53670 2.53670i −0.100508 0.100508i
\(638\) 0.538478 34.4066i 0.0213185 1.36217i
\(639\) −24.6544 −0.975313
\(640\) 19.8150 15.7279i 0.783255 0.621700i
\(641\) −46.1859 −1.82423 −0.912117 0.409930i \(-0.865553\pi\)
−0.912117 + 0.409930i \(0.865553\pi\)
\(642\) 0.0312825 1.99883i 0.00123462 0.0788876i
\(643\) −24.2799 24.2799i −0.957507 0.957507i 0.0416264 0.999133i \(-0.486746\pi\)
−0.999133 + 0.0416264i \(0.986746\pi\)
\(644\) −25.5898 0.801177i −1.00838 0.0315708i
\(645\) 19.2525 19.0632i 0.758068 0.750611i
\(646\) 7.63492 7.39962i 0.300392 0.291134i
\(647\) −0.561905 + 0.561905i −0.0220907 + 0.0220907i −0.718066 0.695975i \(-0.754972\pi\)
0.695975 + 0.718066i \(0.254972\pi\)
\(648\) −0.113298 + 2.41152i −0.00445075 + 0.0947333i
\(649\) 8.06040i 0.316399i
\(650\) −5.12603 + 4.87071i −0.201059 + 0.191045i
\(651\) 8.67364i 0.339947i
\(652\) 8.22764 + 8.75948i 0.322219 + 0.343048i
\(653\) 9.91131 9.91131i 0.387860 0.387860i −0.486064 0.873923i \(-0.661568\pi\)
0.873923 + 0.486064i \(0.161568\pi\)
\(654\) −1.27886 1.31953i −0.0500075 0.0515977i
\(655\) 7.30940 7.23749i 0.285602 0.282792i
\(656\) 35.5732 + 2.22967i 1.38890 + 0.0870540i
\(657\) −6.62403 6.62403i −0.258428 0.258428i
\(658\) 20.2548 + 0.316995i 0.789613 + 0.0123578i
\(659\) −30.2716 −1.17922 −0.589608 0.807690i \(-0.700718\pi\)
−0.589608 + 0.807690i \(0.700718\pi\)
\(660\) 17.7760 + 0.644507i 0.691931 + 0.0250874i
\(661\) 1.99460 0.0775808 0.0387904 0.999247i \(-0.487650\pi\)
0.0387904 + 0.999247i \(0.487650\pi\)
\(662\) 31.8475 + 0.498426i 1.23779 + 0.0193719i
\(663\) −2.21764 2.21764i −0.0861261 0.0861261i
\(664\) −2.15259 + 1.95940i −0.0835367 + 0.0760395i
\(665\) −11.1839 0.0552815i −0.433691 0.00214373i
\(666\) 14.6597 + 15.1259i 0.568052 + 0.586115i
\(667\) −33.8559 + 33.8559i −1.31091 + 1.31091i
\(668\) 26.4199 24.8158i 1.02222 0.960150i
\(669\) 12.9564i 0.500923i
\(670\) −0.0827396 + 4.01746i −0.00319651 + 0.155208i
\(671\) 27.3545i 1.05601i
\(672\) 0.922565 11.7666i 0.0355887 0.453905i
\(673\) −4.18463 + 4.18463i −0.161306 + 0.161306i −0.783145 0.621839i \(-0.786386\pi\)
0.621839 + 0.783145i \(0.286386\pi\)
\(674\) 26.6171 25.7968i 1.02525 0.993654i
\(675\) −18.6778 19.0508i −0.718910 0.733266i
\(676\) −0.0625863 + 1.99902i −0.00240717 + 0.0768854i
\(677\) −21.7743 21.7743i −0.836853 0.836853i 0.151590 0.988443i \(-0.451561\pi\)
−0.988443 + 0.151590i \(0.951561\pi\)
\(678\) −0.0770138 + 4.92088i −0.00295770 + 0.188985i
\(679\) −13.6470 −0.523723
\(680\) −17.5383 0.910884i −0.672562 0.0349308i
\(681\) −26.1045 −1.00033
\(682\) −0.323984 + 20.7013i −0.0124060 + 0.792695i
\(683\) −23.8214 23.8214i −0.911500 0.911500i 0.0848900 0.996390i \(-0.472946\pi\)
−0.996390 + 0.0848900i \(0.972946\pi\)
\(684\) 0.292198 9.33288i 0.0111725 0.356852i
\(685\) 0.185823 37.5933i 0.00709991 1.43636i
\(686\) −19.8620 + 19.2498i −0.758333 + 0.734963i
\(687\) 18.3925 18.3925i 0.701717 0.701717i
\(688\) −28.3857 32.1820i −1.08219 1.22693i
\(689\) 6.44256i 0.245442i
\(690\) −17.1368 17.8575i −0.652386 0.679823i
\(691\) 22.6733i 0.862534i 0.902224 + 0.431267i \(0.141933\pi\)
−0.902224 + 0.431267i \(0.858067\pi\)
\(692\) −7.38042 + 6.93231i −0.280561 + 0.263527i
\(693\) −7.93216 + 7.93216i −0.301318 + 0.301318i
\(694\) 26.4567 + 27.2980i 1.00428 + 1.03622i
\(695\) 15.9434 + 16.1018i 0.604769 + 0.610777i
\(696\) −14.8579 16.3228i −0.563188 0.618716i
\(697\) −17.4961 17.4961i −0.662711 0.662711i
\(698\) 10.6953 + 0.167387i 0.404825 + 0.00633567i
\(699\) −19.6623 −0.743698
\(700\) 12.5136 + 13.5892i 0.472969 + 0.513624i
\(701\) −4.26882 −0.161231 −0.0806155 0.996745i \(-0.525689\pi\)
−0.0806155 + 0.996745i \(0.525689\pi\)
\(702\) −7.54518 0.118085i −0.284774 0.00445683i
\(703\) 16.5371 + 16.5371i 0.623708 + 0.623708i
\(704\) 2.64139 28.0487i 0.0995513 1.05713i
\(705\) 13.7785 + 13.9154i 0.518930 + 0.524085i
\(706\) 29.9494 + 30.9017i 1.12716 + 1.16300i
\(707\) −4.46970 + 4.46970i −0.168100 + 0.168100i
\(708\) 3.53973 + 3.76854i 0.133031 + 0.141630i
\(709\) 25.6567i 0.963558i 0.876293 + 0.481779i \(0.160009\pi\)
−0.876293 + 0.481779i \(0.839991\pi\)
\(710\) 31.3057 + 32.6223i 1.17488 + 1.22429i
\(711\) 1.32233i 0.0495913i
\(712\) −1.24999 0.0587269i −0.0468453 0.00220088i
\(713\) 20.3700 20.3700i 0.762861 0.762861i
\(714\) −5.88353 + 5.70220i −0.220185 + 0.213400i
\(715\) −0.0389232 + 7.87444i −0.00145564 + 0.294487i
\(716\) 5.25829 + 0.164629i 0.196511 + 0.00615248i
\(717\) 9.80007 + 9.80007i 0.365990 + 0.365990i
\(718\) −0.561137 + 35.8544i −0.0209414 + 1.33808i
\(719\) 44.8441 1.67240 0.836201 0.548422i \(-0.184771\pi\)
0.836201 + 0.548422i \(0.184771\pi\)
\(720\) −11.6169 + 10.1449i −0.432937 + 0.378078i
\(721\) −23.8183 −0.887041
\(722\) −0.258246 + 16.5009i −0.00961091 + 0.614100i
\(723\) 20.0931 + 20.0931i 0.747272 + 0.747272i
\(724\) −36.9505 1.15686i −1.37325 0.0429945i
\(725\) 34.5453 + 0.341522i 1.28298 + 0.0126838i
\(726\) 1.60769 1.55814i 0.0596669 0.0578281i
\(727\) 4.22306 4.22306i 0.156625 0.156625i −0.624444 0.781069i \(-0.714675\pi\)
0.781069 + 0.624444i \(0.214675\pi\)
\(728\) 5.21923 + 0.245209i 0.193437 + 0.00908806i
\(729\) 19.5516i 0.724134i
\(730\) −0.353737 + 17.1759i −0.0130924 + 0.635708i
\(731\) 29.7892i 1.10179i
\(732\) −12.0127 12.7892i −0.444003 0.472704i
\(733\) 10.7917 10.7917i 0.398601 0.398601i −0.479139 0.877739i \(-0.659051\pi\)
0.877739 + 0.479139i \(0.159051\pi\)
\(734\) 0.325584 + 0.335937i 0.0120175 + 0.0123997i
\(735\) −9.06003 0.0447835i −0.334184 0.00165186i
\(736\) −29.8003 + 25.4670i −1.09845 + 0.938726i
\(737\) 3.16424 + 3.16424i 0.116556 + 0.116556i
\(738\) −21.7271 0.340038i −0.799787 0.0125170i
\(739\) −40.5731 −1.49250 −0.746252 0.665663i \(-0.768149\pi\)
−0.746252 + 0.665663i \(0.768149\pi\)
\(740\) 1.39967 38.6040i 0.0514528 1.41911i
\(741\) −3.05800 −0.112338
\(742\) −16.8291 0.263382i −0.617815 0.00966906i
\(743\) 2.78875 + 2.78875i 0.102309 + 0.102309i 0.756409 0.654099i \(-0.226952\pi\)
−0.654099 + 0.756409i \(0.726952\pi\)
\(744\) 8.93951 + 9.82091i 0.327738 + 0.360052i
\(745\) 20.9284 20.7225i 0.766757 0.759214i
\(746\) 19.0382 + 19.6436i 0.697039 + 0.719203i
\(747\) 1.25482 1.25482i 0.0459116 0.0459116i
\(748\) −14.2552 + 13.3897i −0.521221 + 0.489574i
\(749\) 2.31201i 0.0844790i
\(750\) −0.544194 + 17.8498i −0.0198711 + 0.651782i
\(751\) 17.6843i 0.645308i −0.946517 0.322654i \(-0.895425\pi\)
0.946517 0.322654i \(-0.104575\pi\)
\(752\) 23.2606 20.5167i 0.848226 0.748167i
\(753\) −16.9573 + 16.9573i −0.617960 + 0.617960i
\(754\) 7.01667 6.80043i 0.255532 0.247657i
\(755\) −31.2362 + 30.9290i −1.13680 + 1.12562i
\(756\) −0.616917 + 19.7045i −0.0224371 + 0.716645i
\(757\) 21.2020 + 21.2020i 0.770600 + 0.770600i 0.978211 0.207611i \(-0.0665689\pi\)
−0.207611 + 0.978211i \(0.566569\pi\)
\(758\) 0.604106 38.6000i 0.0219421 1.40201i
\(759\) −27.5622 −1.00044
\(760\) −12.7201 + 11.4641i −0.461408 + 0.415846i
\(761\) −10.5601 −0.382804 −0.191402 0.981512i \(-0.561303\pi\)
−0.191402 + 0.981512i \(0.561303\pi\)
\(762\) 0.258139 16.4941i 0.00935141 0.597518i
\(763\) −1.50275 1.50275i −0.0544033 0.0544033i
\(764\) −1.45817 + 46.5743i −0.0527548 + 1.68500i
\(765\) 10.7065 + 0.0529220i 0.387094 + 0.00191340i
\(766\) 15.3769 14.9030i 0.555589 0.538466i
\(767\) −1.61846 + 1.61846i −0.0584392 + 0.0584392i
\(768\) −11.0826 14.2738i −0.399910 0.515060i
\(769\) 1.08776i 0.0392255i 0.999808 + 0.0196128i \(0.00624333\pi\)
−0.999808 + 0.0196128i \(0.993757\pi\)
\(770\) 20.5678 + 0.423594i 0.741213 + 0.0152653i
\(771\) 1.74124i 0.0627094i
\(772\) −5.51393 +