Properties

Label 260.2.o.a.27.11
Level $260$
Weight $2$
Character 260.27
Analytic conductor $2.076$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [260,2,Mod(27,260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(260, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("260.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 27.11
Character \(\chi\) \(=\) 260.27
Dual form 260.2.o.a.183.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.774482 - 1.18329i) q^{2} +(-2.05925 - 2.05925i) q^{3} +(-0.800354 + 1.83288i) q^{4} +(1.34695 + 1.78486i) q^{5} +(-0.841839 + 4.03155i) q^{6} +(-0.845670 + 0.845670i) q^{7} +(2.78869 - 0.472478i) q^{8} +5.48103i q^{9} +O(q^{10})\) \(q+(-0.774482 - 1.18329i) q^{2} +(-2.05925 - 2.05925i) q^{3} +(-0.800354 + 1.83288i) q^{4} +(1.34695 + 1.78486i) q^{5} +(-0.841839 + 4.03155i) q^{6} +(-0.845670 + 0.845670i) q^{7} +(2.78869 - 0.472478i) q^{8} +5.48103i q^{9} +(1.06882 - 2.97618i) q^{10} +4.19592i q^{11} +(5.42248 - 2.12622i) q^{12} +(-0.707107 + 0.707107i) q^{13} +(1.65563 + 0.345717i) q^{14} +(0.901767 - 6.44918i) q^{15} +(-2.71887 - 2.93390i) q^{16} +(-0.206069 - 0.206069i) q^{17} +(6.48565 - 4.24496i) q^{18} +4.84005 q^{19} +(-4.34946 + 1.04027i) q^{20} +3.48290 q^{21} +(4.96499 - 3.24967i) q^{22} +(-0.389358 - 0.389358i) q^{23} +(-6.71555 - 4.76965i) q^{24} +(-1.37145 + 4.80823i) q^{25} +(1.38435 + 0.289071i) q^{26} +(5.10906 - 5.10906i) q^{27} +(-0.873173 - 2.22684i) q^{28} -6.55621i q^{29} +(-8.32966 + 3.92773i) q^{30} +5.06902i q^{31} +(-1.36594 + 5.48946i) q^{32} +(8.64045 - 8.64045i) q^{33} +(-0.0842426 + 0.403436i) q^{34} +(-2.64848 - 0.370328i) q^{35} +(-10.0460 - 4.38677i) q^{36} +(8.49149 + 8.49149i) q^{37} +(-3.74853 - 5.72719i) q^{38} +2.91222 q^{39} +(4.59953 + 4.34101i) q^{40} -5.61170 q^{41} +(-2.69744 - 4.12128i) q^{42} +(3.25094 + 3.25094i) q^{43} +(-7.69060 - 3.35822i) q^{44} +(-9.78287 + 7.38267i) q^{45} +(-0.159173 + 0.762274i) q^{46} +(-8.91159 + 8.91159i) q^{47} +(-0.442809 + 11.6405i) q^{48} +5.56968i q^{49} +(6.75170 - 2.10107i) q^{50} +0.848694i q^{51} +(-0.730103 - 1.86197i) q^{52} +(0.0714058 - 0.0714058i) q^{53} +(-10.0024 - 2.08863i) q^{54} +(-7.48913 + 5.65169i) q^{55} +(-1.95875 + 2.75787i) q^{56} +(-9.96688 - 9.96688i) q^{57} +(-7.75790 + 5.07767i) q^{58} +10.9539 q^{59} +(11.0988 + 6.81446i) q^{60} -3.57989 q^{61} +(5.99812 - 3.92586i) q^{62} +(-4.63514 - 4.63514i) q^{63} +(7.55353 - 2.63518i) q^{64} +(-2.21452 - 0.309649i) q^{65} +(-16.9160 - 3.53229i) q^{66} +(6.95966 - 6.95966i) q^{67} +(0.542626 - 0.212770i) q^{68} +1.60357i q^{69} +(1.61299 + 3.42073i) q^{70} +4.61114i q^{71} +(2.58966 + 15.2849i) q^{72} +(2.57559 - 2.57559i) q^{73} +(3.47140 - 16.6244i) q^{74} +(12.7255 - 7.07720i) q^{75} +(-3.87376 + 8.87121i) q^{76} +(-3.54836 - 3.54836i) q^{77} +(-2.25546 - 3.44600i) q^{78} -2.19111 q^{79} +(1.57442 - 8.80461i) q^{80} -4.59860 q^{81} +(4.34616 + 6.64027i) q^{82} +(-11.1906 - 11.1906i) q^{83} +(-2.78755 + 6.38371i) q^{84} +(0.0902396 - 0.645368i) q^{85} +(1.32901 - 6.36460i) q^{86} +(-13.5009 + 13.5009i) q^{87} +(1.98248 + 11.7011i) q^{88} -15.0102i q^{89} +(16.3125 + 5.85823i) q^{90} -1.19596i q^{91} +(1.02527 - 0.402020i) q^{92} +(10.4384 - 10.4384i) q^{93} +(17.4469 + 3.64313i) q^{94} +(6.51931 + 8.63882i) q^{95} +(14.1170 - 8.49136i) q^{96} +(-5.51024 - 5.51024i) q^{97} +(6.59056 - 4.31362i) q^{98} -22.9980 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 8 q^{6} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 8 q^{6} - 12 q^{8} - 8 q^{10} - 8 q^{12} - 8 q^{16} + 28 q^{18} - 16 q^{21} - 8 q^{22} - 20 q^{28} - 32 q^{30} - 40 q^{32} + 16 q^{33} + 32 q^{36} - 12 q^{38} - 8 q^{40} - 40 q^{42} - 8 q^{46} + 60 q^{48} + 40 q^{50} + 8 q^{52} - 48 q^{53} + 8 q^{56} - 60 q^{58} + 20 q^{60} - 64 q^{61} + 60 q^{62} + 8 q^{66} - 16 q^{68} - 60 q^{70} + 40 q^{72} - 16 q^{73} - 72 q^{76} + 48 q^{77} - 20 q^{80} + 8 q^{81} - 12 q^{82} + 48 q^{85} + 48 q^{86} + 12 q^{88} + 44 q^{90} - 36 q^{92} + 16 q^{93} + 32 q^{96} - 80 q^{97} - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.774482 1.18329i −0.547642 0.836713i
\(3\) −2.05925 2.05925i −1.18891 1.18891i −0.977369 0.211540i \(-0.932152\pi\)
−0.211540 0.977369i \(-0.567848\pi\)
\(4\) −0.800354 + 1.83288i −0.400177 + 0.916438i
\(5\) 1.34695 + 1.78486i 0.602374 + 0.798214i
\(6\) −0.841839 + 4.03155i −0.343679 + 1.64587i
\(7\) −0.845670 + 0.845670i −0.319633 + 0.319633i −0.848626 0.528993i \(-0.822570\pi\)
0.528993 + 0.848626i \(0.322570\pi\)
\(8\) 2.78869 0.472478i 0.985949 0.167046i
\(9\) 5.48103i 1.82701i
\(10\) 1.06882 2.97618i 0.337990 0.941150i
\(11\) 4.19592i 1.26512i 0.774512 + 0.632559i \(0.217995\pi\)
−0.774512 + 0.632559i \(0.782005\pi\)
\(12\) 5.42248 2.12622i 1.56534 0.613787i
\(13\) −0.707107 + 0.707107i −0.196116 + 0.196116i
\(14\) 1.65563 + 0.345717i 0.442486 + 0.0923968i
\(15\) 0.901767 6.44918i 0.232835 1.66517i
\(16\) −2.71887 2.93390i −0.679716 0.733475i
\(17\) −0.206069 0.206069i −0.0499790 0.0499790i 0.681676 0.731655i \(-0.261252\pi\)
−0.731655 + 0.681676i \(0.761252\pi\)
\(18\) 6.48565 4.24496i 1.52868 1.00055i
\(19\) 4.84005 1.11038 0.555192 0.831722i \(-0.312645\pi\)
0.555192 + 0.831722i \(0.312645\pi\)
\(20\) −4.34946 + 1.04027i −0.972570 + 0.232612i
\(21\) 3.48290 0.760030
\(22\) 4.96499 3.24967i 1.05854 0.692831i
\(23\) −0.389358 0.389358i −0.0811867 0.0811867i 0.665347 0.746534i \(-0.268283\pi\)
−0.746534 + 0.665347i \(0.768283\pi\)
\(24\) −6.71555 4.76965i −1.37081 0.973601i
\(25\) −1.37145 + 4.80823i −0.274290 + 0.961647i
\(26\) 1.38435 + 0.289071i 0.271494 + 0.0566915i
\(27\) 5.10906 5.10906i 0.983240 0.983240i
\(28\) −0.873173 2.22684i −0.165014 0.420834i
\(29\) 6.55621i 1.21746i −0.793379 0.608728i \(-0.791680\pi\)
0.793379 0.608728i \(-0.208320\pi\)
\(30\) −8.32966 + 3.92773i −1.52078 + 0.717101i
\(31\) 5.06902i 0.910423i 0.890383 + 0.455211i \(0.150436\pi\)
−0.890383 + 0.455211i \(0.849564\pi\)
\(32\) −1.36594 + 5.48946i −0.241467 + 0.970409i
\(33\) 8.64045 8.64045i 1.50411 1.50411i
\(34\) −0.0842426 + 0.403436i −0.0144475 + 0.0691887i
\(35\) −2.64848 0.370328i −0.447675 0.0625968i
\(36\) −10.0460 4.38677i −1.67434 0.731128i
\(37\) 8.49149 + 8.49149i 1.39599 + 1.39599i 0.811137 + 0.584856i \(0.198849\pi\)
0.584856 + 0.811137i \(0.301151\pi\)
\(38\) −3.74853 5.72719i −0.608093 0.929073i
\(39\) 2.91222 0.466329
\(40\) 4.59953 + 4.34101i 0.727249 + 0.686374i
\(41\) −5.61170 −0.876400 −0.438200 0.898877i \(-0.644384\pi\)
−0.438200 + 0.898877i \(0.644384\pi\)
\(42\) −2.69744 4.12128i −0.416224 0.635927i
\(43\) 3.25094 + 3.25094i 0.495763 + 0.495763i 0.910116 0.414353i \(-0.135992\pi\)
−0.414353 + 0.910116i \(0.635992\pi\)
\(44\) −7.69060 3.35822i −1.15940 0.506271i
\(45\) −9.78287 + 7.38267i −1.45834 + 1.10054i
\(46\) −0.159173 + 0.762274i −0.0234687 + 0.112391i
\(47\) −8.91159 + 8.91159i −1.29989 + 1.29989i −0.371427 + 0.928462i \(0.621131\pi\)
−0.928462 + 0.371427i \(0.878869\pi\)
\(48\) −0.442809 + 11.6405i −0.0639140 + 1.68016i
\(49\) 5.56968i 0.795669i
\(50\) 6.75170 2.10107i 0.954835 0.297136i
\(51\) 0.848694i 0.118841i
\(52\) −0.730103 1.86197i −0.101247 0.258209i
\(53\) 0.0714058 0.0714058i 0.00980834 0.00980834i −0.702186 0.711994i \(-0.747792\pi\)
0.711994 + 0.702186i \(0.247792\pi\)
\(54\) −10.0024 2.08863i −1.36115 0.284226i
\(55\) −7.48913 + 5.65169i −1.00983 + 0.762074i
\(56\) −1.95875 + 2.75787i −0.261749 + 0.368536i
\(57\) −9.96688 9.96688i −1.32015 1.32015i
\(58\) −7.75790 + 5.07767i −1.01866 + 0.666730i
\(59\) 10.9539 1.42608 0.713038 0.701125i \(-0.247319\pi\)
0.713038 + 0.701125i \(0.247319\pi\)
\(60\) 11.0988 + 6.81446i 1.43285 + 0.879743i
\(61\) −3.57989 −0.458357 −0.229179 0.973384i \(-0.573604\pi\)
−0.229179 + 0.973384i \(0.573604\pi\)
\(62\) 5.99812 3.92586i 0.761762 0.498585i
\(63\) −4.63514 4.63514i −0.583973 0.583973i
\(64\) 7.55353 2.63518i 0.944191 0.329398i
\(65\) −2.21452 0.309649i −0.274678 0.0384073i
\(66\) −16.9160 3.53229i −2.08222 0.434795i
\(67\) 6.95966 6.95966i 0.850258 0.850258i −0.139907 0.990165i \(-0.544680\pi\)
0.990165 + 0.139907i \(0.0446802\pi\)
\(68\) 0.542626 0.212770i 0.0658031 0.0258022i
\(69\) 1.60357i 0.193047i
\(70\) 1.61299 + 3.42073i 0.192790 + 0.408856i
\(71\) 4.61114i 0.547241i 0.961838 + 0.273621i \(0.0882213\pi\)
−0.961838 + 0.273621i \(0.911779\pi\)
\(72\) 2.58966 + 15.2849i 0.305195 + 1.80134i
\(73\) 2.57559 2.57559i 0.301450 0.301450i −0.540131 0.841581i \(-0.681625\pi\)
0.841581 + 0.540131i \(0.181625\pi\)
\(74\) 3.47140 16.6244i 0.403541 1.93255i
\(75\) 12.7255 7.07720i 1.46942 0.817205i
\(76\) −3.87376 + 8.87121i −0.444350 + 1.01760i
\(77\) −3.54836 3.54836i −0.404374 0.404374i
\(78\) −2.25546 3.44600i −0.255381 0.390183i
\(79\) −2.19111 −0.246519 −0.123259 0.992374i \(-0.539335\pi\)
−0.123259 + 0.992374i \(0.539335\pi\)
\(80\) 1.57442 8.80461i 0.176026 0.984386i
\(81\) −4.59860 −0.510955
\(82\) 4.34616 + 6.64027i 0.479953 + 0.733295i
\(83\) −11.1906 11.1906i −1.22832 1.22832i −0.964598 0.263725i \(-0.915049\pi\)
−0.263725 0.964598i \(-0.584951\pi\)
\(84\) −2.78755 + 6.38371i −0.304147 + 0.696520i
\(85\) 0.0902396 0.645368i 0.00978785 0.0700000i
\(86\) 1.32901 6.36460i 0.143311 0.686312i
\(87\) −13.5009 + 13.5009i −1.44745 + 1.44745i
\(88\) 1.98248 + 11.7011i 0.211333 + 1.24734i
\(89\) 15.0102i 1.59108i −0.605902 0.795540i \(-0.707188\pi\)
0.605902 0.795540i \(-0.292812\pi\)
\(90\) 16.3125 + 5.85823i 1.71949 + 0.617512i
\(91\) 1.19596i 0.125371i
\(92\) 1.02527 0.402020i 0.106892 0.0419135i
\(93\) 10.4384 10.4384i 1.08241 1.08241i
\(94\) 17.4469 + 3.64313i 1.79951 + 0.375761i
\(95\) 6.51931 + 8.63882i 0.668867 + 0.886324i
\(96\) 14.1170 8.49136i 1.44081 0.866646i
\(97\) −5.51024 5.51024i −0.559480 0.559480i 0.369680 0.929159i \(-0.379467\pi\)
−0.929159 + 0.369680i \(0.879467\pi\)
\(98\) 6.59056 4.31362i 0.665747 0.435742i
\(99\) −22.9980 −2.31138
\(100\) −7.71525 6.36199i −0.771525 0.636199i
\(101\) 6.35464 0.632310 0.316155 0.948708i \(-0.397608\pi\)
0.316155 + 0.948708i \(0.397608\pi\)
\(102\) 1.00425 0.657299i 0.0994358 0.0650823i
\(103\) −2.93721 2.93721i −0.289412 0.289412i 0.547436 0.836848i \(-0.315604\pi\)
−0.836848 + 0.547436i \(0.815604\pi\)
\(104\) −1.63781 + 2.30599i −0.160600 + 0.226121i
\(105\) 4.69129 + 6.21648i 0.457823 + 0.606666i
\(106\) −0.139796 0.0291913i −0.0135782 0.00283531i
\(107\) −5.50848 + 5.50848i −0.532525 + 0.532525i −0.921323 0.388798i \(-0.872890\pi\)
0.388798 + 0.921323i \(0.372890\pi\)
\(108\) 5.27522 + 13.4533i 0.507608 + 1.29455i
\(109\) 8.20270i 0.785676i 0.919608 + 0.392838i \(0.128507\pi\)
−0.919608 + 0.392838i \(0.871493\pi\)
\(110\) 12.4878 + 4.48468i 1.19066 + 0.427598i
\(111\) 34.9722i 3.31942i
\(112\) 4.78038 + 0.181848i 0.451703 + 0.0171830i
\(113\) −6.21691 + 6.21691i −0.584838 + 0.584838i −0.936229 0.351391i \(-0.885709\pi\)
0.351391 + 0.936229i \(0.385709\pi\)
\(114\) −4.07455 + 19.5129i −0.381616 + 1.82755i
\(115\) 0.170504 1.21939i 0.0158995 0.113709i
\(116\) 12.0167 + 5.24729i 1.11572 + 0.487198i
\(117\) −3.87567 3.87567i −0.358306 0.358306i
\(118\) −8.48360 12.9617i −0.780979 1.19322i
\(119\) 0.348532 0.0319499
\(120\) −0.532352 18.4108i −0.0485969 1.68067i
\(121\) −6.60574 −0.600522
\(122\) 2.77256 + 4.23605i 0.251016 + 0.383514i
\(123\) 11.5559 + 11.5559i 1.04196 + 1.04196i
\(124\) −9.29088 4.05701i −0.834346 0.364330i
\(125\) −10.4293 + 4.02860i −0.932825 + 0.360329i
\(126\) −1.89489 + 9.07456i −0.168810 + 0.808426i
\(127\) −6.13573 + 6.13573i −0.544458 + 0.544458i −0.924832 0.380375i \(-0.875795\pi\)
0.380375 + 0.924832i \(0.375795\pi\)
\(128\) −8.96826 6.89712i −0.792690 0.609625i
\(129\) 13.3890i 1.17884i
\(130\) 1.34870 + 2.86024i 0.118289 + 0.250860i
\(131\) 2.46129i 0.215043i 0.994203 + 0.107522i \(0.0342915\pi\)
−0.994203 + 0.107522i \(0.965708\pi\)
\(132\) 8.92145 + 22.7523i 0.776513 + 1.98033i
\(133\) −4.09309 + 4.09309i −0.354916 + 0.354916i
\(134\) −13.6254 2.84517i −1.17706 0.245785i
\(135\) 16.0006 + 2.23731i 1.37711 + 0.192557i
\(136\) −0.672024 0.477298i −0.0576256 0.0409280i
\(137\) −1.04589 1.04589i −0.0893561 0.0893561i 0.661016 0.750372i \(-0.270126\pi\)
−0.750372 + 0.661016i \(0.770126\pi\)
\(138\) 1.89749 1.24194i 0.161525 0.105721i
\(139\) 4.32728 0.367035 0.183517 0.983016i \(-0.441252\pi\)
0.183517 + 0.983016i \(0.441252\pi\)
\(140\) 2.79849 4.55794i 0.236515 0.385216i
\(141\) 36.7024 3.09090
\(142\) 5.45632 3.57124i 0.457884 0.299692i
\(143\) −2.96696 2.96696i −0.248110 0.248110i
\(144\) 16.0808 14.9022i 1.34007 1.24185i
\(145\) 11.7019 8.83088i 0.971791 0.733365i
\(146\) −5.04243 1.05292i −0.417314 0.0871406i
\(147\) 11.4694 11.4694i 0.945978 0.945978i
\(148\) −22.3601 + 8.76765i −1.83799 + 0.720696i
\(149\) 0.356765i 0.0292274i −0.999893 0.0146137i \(-0.995348\pi\)
0.999893 0.0146137i \(-0.00465185\pi\)
\(150\) −18.2301 9.57683i −1.48848 0.781945i
\(151\) 1.46387i 0.119128i 0.998224 + 0.0595642i \(0.0189711\pi\)
−0.998224 + 0.0595642i \(0.981029\pi\)
\(152\) 13.4974 2.28682i 1.09478 0.185485i
\(153\) 1.12947 1.12947i 0.0913121 0.0913121i
\(154\) −1.45060 + 6.94689i −0.116893 + 0.559797i
\(155\) −9.04749 + 6.82771i −0.726712 + 0.548415i
\(156\) −2.33081 + 5.33774i −0.186614 + 0.427361i
\(157\) 1.76334 + 1.76334i 0.140730 + 0.140730i 0.773962 0.633232i \(-0.218272\pi\)
−0.633232 + 0.773962i \(0.718272\pi\)
\(158\) 1.69697 + 2.59272i 0.135004 + 0.206265i
\(159\) −0.294085 −0.0233225
\(160\) −11.6378 + 4.95601i −0.920047 + 0.391807i
\(161\) 0.658536 0.0518999
\(162\) 3.56153 + 5.44148i 0.279821 + 0.427523i
\(163\) 11.1949 + 11.1949i 0.876851 + 0.876851i 0.993207 0.116357i \(-0.0371216\pi\)
−0.116357 + 0.993207i \(0.537122\pi\)
\(164\) 4.49135 10.2855i 0.350715 0.803166i
\(165\) 27.0603 + 3.78374i 2.10664 + 0.294564i
\(166\) −4.57479 + 21.9086i −0.355073 + 1.70043i
\(167\) 15.3618 15.3618i 1.18873 1.18873i 0.211315 0.977418i \(-0.432226\pi\)
0.977418 0.211315i \(-0.0677745\pi\)
\(168\) 9.71270 1.64559i 0.749351 0.126960i
\(169\) 1.00000i 0.0769231i
\(170\) −0.833547 + 0.393047i −0.0639301 + 0.0301453i
\(171\) 26.5285i 2.02868i
\(172\) −8.56047 + 3.35666i −0.652730 + 0.255943i
\(173\) −7.09724 + 7.09724i −0.539593 + 0.539593i −0.923410 0.383816i \(-0.874610\pi\)
0.383816 + 0.923410i \(0.374610\pi\)
\(174\) 26.4316 + 5.51927i 2.00378 + 0.418415i
\(175\) −2.90639 5.22598i −0.219702 0.395047i
\(176\) 12.3104 11.4081i 0.927932 0.859921i
\(177\) −22.5568 22.5568i −1.69548 1.69548i
\(178\) −17.7614 + 11.6251i −1.33128 + 0.871341i
\(179\) −12.1671 −0.909411 −0.454705 0.890642i \(-0.650255\pi\)
−0.454705 + 0.890642i \(0.650255\pi\)
\(180\) −5.70176 23.8395i −0.424984 1.77689i
\(181\) 13.0663 0.971209 0.485605 0.874179i \(-0.338599\pi\)
0.485605 + 0.874179i \(0.338599\pi\)
\(182\) −1.41517 + 0.926249i −0.104899 + 0.0686581i
\(183\) 7.37188 + 7.37188i 0.544945 + 0.544945i
\(184\) −1.26976 0.901833i −0.0936078 0.0664840i
\(185\) −3.71851 + 26.5937i −0.273390 + 1.95521i
\(186\) −20.4360 4.26730i −1.49844 0.312894i
\(187\) 0.864648 0.864648i 0.0632293 0.0632293i
\(188\) −9.20141 23.4663i −0.671082 1.71145i
\(189\) 8.64117i 0.628552i
\(190\) 5.17314 14.4048i 0.375299 1.04504i
\(191\) 13.9391i 1.00860i −0.863529 0.504300i \(-0.831751\pi\)
0.863529 0.504300i \(-0.168249\pi\)
\(192\) −20.9811 10.1281i −1.51418 0.730933i
\(193\) 4.56547 4.56547i 0.328630 0.328630i −0.523435 0.852065i \(-0.675350\pi\)
0.852065 + 0.523435i \(0.175350\pi\)
\(194\) −2.25263 + 10.7878i −0.161729 + 0.774518i
\(195\) 3.92262 + 5.19791i 0.280904 + 0.372230i
\(196\) −10.2085 4.45772i −0.729181 0.318409i
\(197\) −13.4201 13.4201i −0.956144 0.956144i 0.0429337 0.999078i \(-0.486330\pi\)
−0.999078 + 0.0429337i \(0.986330\pi\)
\(198\) 17.8115 + 27.2133i 1.26581 + 1.93396i
\(199\) 8.20575 0.581690 0.290845 0.956770i \(-0.406064\pi\)
0.290845 + 0.956770i \(0.406064\pi\)
\(200\) −1.55276 + 14.0566i −0.109797 + 0.993954i
\(201\) −28.6634 −2.02176
\(202\) −4.92156 7.51939i −0.346279 0.529062i
\(203\) 5.54439 + 5.54439i 0.389140 + 0.389140i
\(204\) −1.55555 0.679256i −0.108910 0.0475575i
\(205\) −7.55868 10.0161i −0.527921 0.699555i
\(206\) −1.20076 + 5.75040i −0.0836608 + 0.400649i
\(207\) 2.13408 2.13408i 0.148329 0.148329i
\(208\) 3.99711 + 0.152052i 0.277150 + 0.0105429i
\(209\) 20.3085i 1.40477i
\(210\) 3.72259 10.3657i 0.256883 0.715302i
\(211\) 9.25421i 0.637086i −0.947908 0.318543i \(-0.896806\pi\)
0.947908 0.318543i \(-0.103194\pi\)
\(212\) 0.0737280 + 0.188028i 0.00506366 + 0.0129138i
\(213\) 9.49549 9.49549i 0.650620 0.650620i
\(214\) 10.7843 + 2.25191i 0.737203 + 0.153938i
\(215\) −1.42362 + 10.1813i −0.0970900 + 0.694360i
\(216\) 11.8337 16.6615i 0.805178 1.13367i
\(217\) −4.28672 4.28672i −0.291001 0.291001i
\(218\) 9.70618 6.35285i 0.657385 0.430269i
\(219\) −10.6076 −0.716794
\(220\) −4.36490 18.2500i −0.294281 1.23041i
\(221\) 0.291425 0.0196034
\(222\) −41.3823 + 27.0854i −2.77740 + 1.81785i
\(223\) 0.454255 + 0.454255i 0.0304191 + 0.0304191i 0.722153 0.691734i \(-0.243153\pi\)
−0.691734 + 0.722153i \(0.743153\pi\)
\(224\) −3.48714 5.79741i −0.232994 0.387356i
\(225\) −26.3541 7.51696i −1.75694 0.501131i
\(226\) 12.1713 + 2.54153i 0.809623 + 0.169060i
\(227\) 17.6950 17.6950i 1.17446 1.17446i 0.193327 0.981134i \(-0.438072\pi\)
0.981134 0.193327i \(-0.0619279\pi\)
\(228\) 26.2451 10.2910i 1.73812 0.681539i
\(229\) 2.81751i 0.186186i −0.995657 0.0930932i \(-0.970325\pi\)
0.995657 0.0930932i \(-0.0296755\pi\)
\(230\) −1.57495 + 0.742644i −0.103849 + 0.0489685i
\(231\) 14.6139i 0.961527i
\(232\) −3.09766 18.2832i −0.203371 1.20035i
\(233\) −11.0313 + 11.0313i −0.722685 + 0.722685i −0.969151 0.246466i \(-0.920731\pi\)
0.246466 + 0.969151i \(0.420731\pi\)
\(234\) −1.58441 + 7.58769i −0.103576 + 0.496023i
\(235\) −27.9094 3.90248i −1.82061 0.254569i
\(236\) −8.76700 + 20.0771i −0.570683 + 1.30691i
\(237\) 4.51204 + 4.51204i 0.293088 + 0.293088i
\(238\) −0.269932 0.412415i −0.0174971 0.0267329i
\(239\) −0.438609 −0.0283713 −0.0141856 0.999899i \(-0.504516\pi\)
−0.0141856 + 0.999899i \(0.504516\pi\)
\(240\) −21.3730 + 14.8888i −1.37962 + 0.961066i
\(241\) −6.48281 −0.417594 −0.208797 0.977959i \(-0.566955\pi\)
−0.208797 + 0.977959i \(0.566955\pi\)
\(242\) 5.11603 + 7.81652i 0.328871 + 0.502465i
\(243\) −5.85752 5.85752i −0.375760 0.375760i
\(244\) 2.86518 6.56148i 0.183424 0.420056i
\(245\) −9.94111 + 7.50209i −0.635114 + 0.479291i
\(246\) 4.72415 22.6238i 0.301201 1.44244i
\(247\) −3.42243 + 3.42243i −0.217764 + 0.217764i
\(248\) 2.39500 + 14.1359i 0.152083 + 0.897630i
\(249\) 46.0883i 2.92073i
\(250\) 12.8443 + 9.22082i 0.812346 + 0.583176i
\(251\) 17.3721i 1.09652i −0.836309 0.548259i \(-0.815291\pi\)
0.836309 0.548259i \(-0.184709\pi\)
\(252\) 12.2054 4.78589i 0.768868 0.301482i
\(253\) 1.63371 1.63371i 0.102711 0.102711i
\(254\) 12.0124 + 2.50834i 0.753722 + 0.157387i
\(255\) −1.51480 + 1.14315i −0.0948605 + 0.0715868i
\(256\) −1.21554 + 15.9538i −0.0759710 + 0.997110i
\(257\) 12.8863 + 12.8863i 0.803824 + 0.803824i 0.983691 0.179867i \(-0.0575666\pi\)
−0.179867 + 0.983691i \(0.557567\pi\)
\(258\) −15.8431 + 10.3695i −0.986347 + 0.645579i
\(259\) −14.3620 −0.892412
\(260\) 2.33995 3.81112i 0.145118 0.236356i
\(261\) 35.9348 2.22431
\(262\) 2.91242 1.90622i 0.179930 0.117767i
\(263\) 17.7105 + 17.7105i 1.09208 + 1.09208i 0.995307 + 0.0967688i \(0.0308507\pi\)
0.0967688 + 0.995307i \(0.469149\pi\)
\(264\) 20.0131 28.1779i 1.23172 1.73423i
\(265\) 0.223629 + 0.0312693i 0.0137374 + 0.00192086i
\(266\) 8.01334 + 1.67329i 0.491329 + 0.102596i
\(267\) −30.9098 + 30.9098i −1.89165 + 1.89165i
\(268\) 7.18600 + 18.3264i 0.438955 + 1.11946i
\(269\) 9.90226i 0.603752i 0.953347 + 0.301876i \(0.0976128\pi\)
−0.953347 + 0.301876i \(0.902387\pi\)
\(270\) −9.74481 20.6661i −0.593050 1.25770i
\(271\) 23.2048i 1.40959i −0.709409 0.704797i \(-0.751038\pi\)
0.709409 0.704797i \(-0.248962\pi\)
\(272\) −0.0443118 + 1.16486i −0.00268680 + 0.0706299i
\(273\) −2.46278 + 2.46278i −0.149054 + 0.149054i
\(274\) −0.427567 + 2.04761i −0.0258303 + 0.123701i
\(275\) −20.1750 5.75450i −1.21660 0.347009i
\(276\) −2.93914 1.28342i −0.176916 0.0772530i
\(277\) 14.8259 + 14.8259i 0.890802 + 0.890802i 0.994599 0.103797i \(-0.0330992\pi\)
−0.103797 + 0.994599i \(0.533099\pi\)
\(278\) −3.35140 5.12043i −0.201004 0.307103i
\(279\) −27.7834 −1.66335
\(280\) −7.56075 + 0.218620i −0.451841 + 0.0130651i
\(281\) −0.130168 −0.00776516 −0.00388258 0.999992i \(-0.501236\pi\)
−0.00388258 + 0.999992i \(0.501236\pi\)
\(282\) −28.4254 43.4296i −1.69271 2.58620i
\(283\) −10.2040 10.2040i −0.606564 0.606564i 0.335482 0.942047i \(-0.391101\pi\)
−0.942047 + 0.335482i \(0.891101\pi\)
\(284\) −8.45164 3.69054i −0.501513 0.218994i
\(285\) 4.36460 31.2144i 0.258536 1.84898i
\(286\) −1.21292 + 5.80864i −0.0717215 + 0.343472i
\(287\) 4.74565 4.74565i 0.280127 0.280127i
\(288\) −30.0879 7.48678i −1.77295 0.441163i
\(289\) 16.9151i 0.995004i
\(290\) −19.5124 7.00740i −1.14581 0.411489i
\(291\) 22.6939i 1.33034i
\(292\) 2.65935 + 6.78213i 0.155627 + 0.396894i
\(293\) 11.9053 11.9053i 0.695514 0.695514i −0.267926 0.963440i \(-0.586338\pi\)
0.963440 + 0.267926i \(0.0863382\pi\)
\(294\) −22.4544 4.68878i −1.30957 0.273455i
\(295\) 14.7544 + 19.5512i 0.859032 + 1.13831i
\(296\) 27.6921 + 19.6681i 1.60957 + 1.14318i
\(297\) 21.4372 + 21.4372i 1.24391 + 1.24391i
\(298\) −0.422157 + 0.276309i −0.0244549 + 0.0160061i
\(299\) 0.550635 0.0318440
\(300\) 2.78670 + 28.9886i 0.160890 + 1.67366i
\(301\) −5.49844 −0.316925
\(302\) 1.73219 1.13374i 0.0996763 0.0652397i
\(303\) −13.0858 13.0858i −0.751759 0.751759i
\(304\) −13.1595 14.2002i −0.754746 0.814439i
\(305\) −4.82193 6.38959i −0.276103 0.365867i
\(306\) −2.21124 0.461736i −0.126408 0.0263957i
\(307\) 24.2442 24.2442i 1.38369 1.38369i 0.545721 0.837967i \(-0.316256\pi\)
0.837967 0.545721i \(-0.183744\pi\)
\(308\) 9.34366 3.66376i 0.532404 0.208762i
\(309\) 12.0969i 0.688170i
\(310\) 15.0863 + 5.41787i 0.856844 + 0.307714i
\(311\) 11.5941i 0.657443i −0.944427 0.328721i \(-0.893382\pi\)
0.944427 0.328721i \(-0.106618\pi\)
\(312\) 8.12127 1.37596i 0.459776 0.0778984i
\(313\) 22.6331 22.6331i 1.27930 1.27930i 0.338235 0.941062i \(-0.390170\pi\)
0.941062 0.338235i \(-0.109830\pi\)
\(314\) 0.720869 3.45222i 0.0406810 0.194820i
\(315\) 2.02978 14.5164i 0.114365 0.817906i
\(316\) 1.75366 4.01603i 0.0986512 0.225919i
\(317\) −0.866886 0.866886i −0.0486892 0.0486892i 0.682343 0.731032i \(-0.260961\pi\)
−0.731032 + 0.682343i \(0.760961\pi\)
\(318\) 0.227764 + 0.347988i 0.0127724 + 0.0195142i
\(319\) 27.5093 1.54023
\(320\) 14.8777 + 9.93253i 0.831687 + 0.555245i
\(321\) 22.6867 1.26625
\(322\) −0.510025 0.779240i −0.0284226 0.0434253i
\(323\) −0.997383 0.997383i −0.0554959 0.0554959i
\(324\) 3.68051 8.42866i 0.204473 0.468259i
\(325\) −2.43017 4.36970i −0.134802 0.242387i
\(326\) 4.57656 21.9170i 0.253472 1.21387i
\(327\) 16.8914 16.8914i 0.934098 0.934098i
\(328\) −15.6493 + 2.65140i −0.864086 + 0.146399i
\(329\) 15.0725i 0.830976i
\(330\) −16.4804 34.9506i −0.907217 1.92397i
\(331\) 6.91111i 0.379869i 0.981797 + 0.189935i \(0.0608276\pi\)
−0.981797 + 0.189935i \(0.939172\pi\)
\(332\) 29.4673 11.5545i 1.61723 0.634135i
\(333\) −46.5421 + 46.5421i −2.55049 + 2.55049i
\(334\) −30.0749 6.28004i −1.64563 0.343628i
\(335\) 21.7963 + 3.04771i 1.19086 + 0.166514i
\(336\) −9.46952 10.2185i −0.516605 0.557463i
\(337\) −3.31953 3.31953i −0.180826 0.180826i 0.610889 0.791716i \(-0.290812\pi\)
−0.791716 + 0.610889i \(0.790812\pi\)
\(338\) −1.18329 + 0.774482i −0.0643625 + 0.0421263i
\(339\) 25.6044 1.39064
\(340\) 1.11066 + 0.681921i 0.0602338 + 0.0369824i
\(341\) −21.2692 −1.15179
\(342\) 31.3909 20.5458i 1.69743 1.11099i
\(343\) −10.6298 10.6298i −0.573956 0.573956i
\(344\) 10.6018 + 7.52985i 0.571613 + 0.405982i
\(345\) −2.86215 + 2.15993i −0.154093 + 0.116287i
\(346\) 13.8948 + 2.90141i 0.746989 + 0.155981i
\(347\) 0.298469 0.298469i 0.0160226 0.0160226i −0.699050 0.715073i \(-0.746394\pi\)
0.715073 + 0.699050i \(0.246394\pi\)
\(348\) −13.9399 35.5509i −0.747259 1.90573i
\(349\) 28.4804i 1.52452i 0.647271 + 0.762260i \(0.275910\pi\)
−0.647271 + 0.762260i \(0.724090\pi\)
\(350\) −3.93291 + 7.48653i −0.210223 + 0.400172i
\(351\) 7.22531i 0.385658i
\(352\) −23.0333 5.73139i −1.22768 0.305484i
\(353\) −12.3525 + 12.3525i −0.657459 + 0.657459i −0.954778 0.297320i \(-0.903907\pi\)
0.297320 + 0.954778i \(0.403907\pi\)
\(354\) −9.22143 + 44.1612i −0.490113 + 2.34714i
\(355\) −8.23024 + 6.21097i −0.436816 + 0.329644i
\(356\) 27.5118 + 12.0135i 1.45812 + 0.636713i
\(357\) −0.717716 0.717716i −0.0379855 0.0379855i
\(358\) 9.42319 + 14.3972i 0.498031 + 0.760916i
\(359\) 28.4805 1.50314 0.751572 0.659651i \(-0.229296\pi\)
0.751572 + 0.659651i \(0.229296\pi\)
\(360\) −23.7932 + 25.2101i −1.25401 + 1.32869i
\(361\) 4.42610 0.232953
\(362\) −10.1196 15.4612i −0.531875 0.812624i
\(363\) 13.6029 + 13.6029i 0.713966 + 0.713966i
\(364\) 2.19204 + 0.957191i 0.114894 + 0.0501704i
\(365\) 8.06627 + 1.12788i 0.422208 + 0.0590358i
\(366\) 3.01369 14.4325i 0.157528 0.754398i
\(367\) −15.7149 + 15.7149i −0.820313 + 0.820313i −0.986153 0.165840i \(-0.946966\pi\)
0.165840 + 0.986153i \(0.446966\pi\)
\(368\) −0.0837251 + 2.20095i −0.00436447 + 0.114732i
\(369\) 30.7579i 1.60119i
\(370\) 34.3481 16.1963i 1.78567 0.842006i
\(371\) 0.120772i 0.00627015i
\(372\) 10.7778 + 27.4867i 0.558805 + 1.42512i
\(373\) 4.87930 4.87930i 0.252641 0.252641i −0.569412 0.822052i \(-0.692829\pi\)
0.822052 + 0.569412i \(0.192829\pi\)
\(374\) −1.69278 0.353475i −0.0875318 0.0182778i
\(375\) 29.7725 + 13.1806i 1.53744 + 0.680646i
\(376\) −20.6411 + 29.0622i −1.06448 + 1.49877i
\(377\) 4.63594 + 4.63594i 0.238763 + 0.238763i
\(378\) 10.2250 6.69243i 0.525918 0.344221i
\(379\) 0.333137 0.0171121 0.00855604 0.999963i \(-0.497276\pi\)
0.00855604 + 0.999963i \(0.497276\pi\)
\(380\) −21.0516 + 5.03497i −1.07993 + 0.258288i
\(381\) 25.2700 1.29462
\(382\) −16.4940 + 10.7956i −0.843909 + 0.552351i
\(383\) 8.70979 + 8.70979i 0.445050 + 0.445050i 0.893705 0.448655i \(-0.148097\pi\)
−0.448655 + 0.893705i \(0.648097\pi\)
\(384\) 4.26501 + 32.6708i 0.217648 + 1.66723i
\(385\) 1.55386 11.1128i 0.0791923 0.566361i
\(386\) −8.93816 1.86641i −0.454941 0.0949975i
\(387\) −17.8185 + 17.8185i −0.905765 + 0.905765i
\(388\) 14.5097 5.68944i 0.736619 0.288837i
\(389\) 15.7397i 0.798036i −0.916943 0.399018i \(-0.869351\pi\)
0.916943 0.399018i \(-0.130649\pi\)
\(390\) 3.11264 8.66728i 0.157615 0.438885i
\(391\) 0.160469i 0.00811526i
\(392\) 2.63155 + 15.5321i 0.132913 + 0.784489i
\(393\) 5.06840 5.06840i 0.255667 0.255667i
\(394\) −5.48626 + 26.2736i −0.276394 + 1.32364i
\(395\) −2.95131 3.91082i −0.148497 0.196775i
\(396\) 18.4065 42.1524i 0.924962 2.11824i
\(397\) 17.4901 + 17.4901i 0.877805 + 0.877805i 0.993307 0.115502i \(-0.0368478\pi\)
−0.115502 + 0.993307i \(0.536848\pi\)
\(398\) −6.35521 9.70979i −0.318558 0.486708i
\(399\) 16.8574 0.843925
\(400\) 17.8357 9.04925i 0.891784 0.452462i
\(401\) 1.23996 0.0619204 0.0309602 0.999521i \(-0.490143\pi\)
0.0309602 + 0.999521i \(0.490143\pi\)
\(402\) 22.1993 + 33.9171i 1.10720 + 1.69163i
\(403\) −3.58434 3.58434i −0.178549 0.178549i
\(404\) −5.08596 + 11.6473i −0.253036 + 0.579473i
\(405\) −6.19408 8.20786i −0.307786 0.407852i
\(406\) 2.26659 10.8547i 0.112489 0.538707i
\(407\) −35.6296 + 35.6296i −1.76610 + 1.76610i
\(408\) 0.400989 + 2.36674i 0.0198519 + 0.117171i
\(409\) 13.6662i 0.675749i −0.941191 0.337875i \(-0.890292\pi\)
0.941191 0.337875i \(-0.109708\pi\)
\(410\) −5.99789 + 16.7014i −0.296215 + 0.824824i
\(411\) 4.30749i 0.212473i
\(412\) 7.73436 3.03274i 0.381045 0.149412i
\(413\) −9.26339 + 9.26339i −0.455822 + 0.455822i
\(414\) −4.17804 0.872430i −0.205340 0.0428776i
\(415\) 4.90046 35.0467i 0.240554 1.72037i
\(416\) −2.91577 4.84750i −0.142957 0.237668i
\(417\) −8.91095 8.91095i −0.436371 0.436371i
\(418\) 24.0308 15.7285i 1.17539 0.769309i
\(419\) 30.4429 1.48723 0.743617 0.668605i \(-0.233108\pi\)
0.743617 + 0.668605i \(0.233108\pi\)
\(420\) −15.1487 + 3.62316i −0.739182 + 0.176792i
\(421\) −30.0550 −1.46479 −0.732396 0.680878i \(-0.761598\pi\)
−0.732396 + 0.680878i \(0.761598\pi\)
\(422\) −10.9504 + 7.16722i −0.533058 + 0.348895i
\(423\) −48.8447 48.8447i −2.37491 2.37491i
\(424\) 0.165391 0.232866i 0.00803208 0.0113090i
\(425\) 1.27344 0.708214i 0.0617709 0.0343534i
\(426\) −18.5900 3.88184i −0.900689 0.188076i
\(427\) 3.02740 3.02740i 0.146506 0.146506i
\(428\) −5.68762 14.5051i −0.274922 0.701130i
\(429\) 12.2194i 0.589960i
\(430\) 13.1500 6.20070i 0.634151 0.299024i
\(431\) 29.7403i 1.43254i 0.697822 + 0.716271i \(0.254153\pi\)
−0.697822 + 0.716271i \(0.745847\pi\)
\(432\) −28.8803 1.09862i −1.38951 0.0528575i
\(433\) 0.932973 0.932973i 0.0448358 0.0448358i −0.684333 0.729169i \(-0.739907\pi\)
0.729169 + 0.684333i \(0.239907\pi\)
\(434\) −1.75245 + 8.39242i −0.0841201 + 0.402849i
\(435\) −42.2822 5.91217i −2.02727 0.283467i
\(436\) −15.0345 6.56507i −0.720023 0.314410i
\(437\) −1.88451 1.88451i −0.0901484 0.0901484i
\(438\) 8.21539 + 12.5519i 0.392546 + 0.599751i
\(439\) 18.8341 0.898901 0.449450 0.893305i \(-0.351620\pi\)
0.449450 + 0.893305i \(0.351620\pi\)
\(440\) −18.2145 + 19.2992i −0.868343 + 0.920055i
\(441\) −30.5276 −1.45370
\(442\) −0.225704 0.344841i −0.0107356 0.0164024i
\(443\) 12.6851 + 12.6851i 0.602687 + 0.602687i 0.941025 0.338338i \(-0.109865\pi\)
−0.338338 + 0.941025i \(0.609865\pi\)
\(444\) 64.0998 + 27.9902i 3.04204 + 1.32836i
\(445\) 26.7911 20.2180i 1.27002 0.958425i
\(446\) 0.185703 0.889327i 0.00879330 0.0421109i
\(447\) −0.734670 + 0.734670i −0.0347487 + 0.0347487i
\(448\) −4.15930 + 8.61629i −0.196508 + 0.407082i
\(449\) 15.8773i 0.749297i −0.927167 0.374648i \(-0.877763\pi\)
0.927167 0.374648i \(-0.122237\pi\)
\(450\) 11.5160 + 37.0063i 0.542870 + 1.74449i
\(451\) 23.5462i 1.10875i
\(452\) −6.41909 16.3706i −0.301929 0.770006i
\(453\) 3.01448 3.01448i 0.141633 0.141633i
\(454\) −34.6429 7.23389i −1.62587 0.339503i
\(455\) 2.13462 1.61090i 0.100072 0.0755200i
\(456\) −32.5036 23.0854i −1.52212 1.08107i
\(457\) 14.5221 + 14.5221i 0.679317 + 0.679317i 0.959846 0.280529i \(-0.0905099\pi\)
−0.280529 + 0.959846i \(0.590510\pi\)
\(458\) −3.33394 + 2.18211i −0.155785 + 0.101963i
\(459\) −2.10564 −0.0982827
\(460\) 2.09853 + 1.28846i 0.0978446 + 0.0600747i
\(461\) 6.30338 0.293578 0.146789 0.989168i \(-0.453106\pi\)
0.146789 + 0.989168i \(0.453106\pi\)
\(462\) 17.2926 11.3182i 0.804522 0.526572i
\(463\) 20.4903 + 20.4903i 0.952265 + 0.952265i 0.998911 0.0466465i \(-0.0148534\pi\)
−0.0466465 + 0.998911i \(0.514853\pi\)
\(464\) −19.2352 + 17.8254i −0.892974 + 0.827525i
\(465\) 32.6910 + 4.57107i 1.51601 + 0.211978i
\(466\) 21.5968 + 4.50969i 1.00045 + 0.208908i
\(467\) −11.3954 + 11.3954i −0.527315 + 0.527315i −0.919771 0.392456i \(-0.871626\pi\)
0.392456 + 0.919771i \(0.371626\pi\)
\(468\) 10.2055 4.00172i 0.471751 0.184979i
\(469\) 11.7712i 0.543542i
\(470\) 16.9976 + 36.0473i 0.784040 + 1.66274i
\(471\) 7.26233i 0.334630i
\(472\) 30.5470 5.17547i 1.40604 0.238221i
\(473\) −13.6407 + 13.6407i −0.627199 + 0.627199i
\(474\) 1.84456 8.83355i 0.0847235 0.405738i
\(475\) −6.63789 + 23.2721i −0.304567 + 1.06780i
\(476\) −0.278949 + 0.638817i −0.0127856 + 0.0292801i
\(477\) 0.391377 + 0.391377i 0.0179199 + 0.0179199i
\(478\) 0.339695 + 0.519002i 0.0155373 + 0.0237386i
\(479\) −27.1128 −1.23881 −0.619407 0.785070i \(-0.712627\pi\)
−0.619407 + 0.785070i \(0.712627\pi\)
\(480\) 34.1708 + 13.7594i 1.55968 + 0.628029i
\(481\) −12.0088 −0.547554
\(482\) 5.02082 + 7.67105i 0.228692 + 0.349407i
\(483\) −1.35609 1.35609i −0.0617043 0.0617043i
\(484\) 5.28694 12.1075i 0.240315 0.550341i
\(485\) 2.41299 17.2570i 0.109568 0.783601i
\(486\) −2.39460 + 11.4677i −0.108621 + 0.520185i
\(487\) −6.08398 + 6.08398i −0.275692 + 0.275692i −0.831386 0.555695i \(-0.812452\pi\)
0.555695 + 0.831386i \(0.312452\pi\)
\(488\) −9.98317 + 1.69142i −0.451917 + 0.0765668i
\(489\) 46.1061i 2.08499i
\(490\) 16.5764 + 5.95299i 0.748844 + 0.268929i
\(491\) 28.1664i 1.27113i −0.772046 0.635567i \(-0.780767\pi\)
0.772046 0.635567i \(-0.219233\pi\)
\(492\) −30.4293 + 11.9317i −1.37186 + 0.537923i
\(493\) −1.35103 + 1.35103i −0.0608473 + 0.0608473i
\(494\) 6.70035 + 1.39912i 0.301463 + 0.0629494i
\(495\) −30.9771 41.0481i −1.39232 1.84498i
\(496\) 14.8720 13.7820i 0.667772 0.618829i
\(497\) −3.89950 3.89950i −0.174917 0.174917i
\(498\) 54.5359 35.6946i 2.44381 1.59951i
\(499\) −19.3231 −0.865023 −0.432511 0.901629i \(-0.642372\pi\)
−0.432511 + 0.901629i \(0.642372\pi\)
\(500\) 0.963208 22.3399i 0.0430760 0.999072i
\(501\) −63.2677 −2.82659
\(502\) −20.5563 + 13.4544i −0.917471 + 0.600499i
\(503\) −5.39116 5.39116i −0.240380 0.240380i 0.576627 0.817007i \(-0.304368\pi\)
−0.817007 + 0.576627i \(0.804368\pi\)
\(504\) −15.1160 10.7360i −0.673318 0.478217i
\(505\) 8.55938 + 11.3421i 0.380887 + 0.504719i
\(506\) −3.19844 0.667876i −0.142188 0.0296907i
\(507\) −2.05925 + 2.05925i −0.0914546 + 0.0914546i
\(508\) −6.33527 16.1568i −0.281082 0.716841i
\(509\) 14.1691i 0.628033i −0.949417 0.314017i \(-0.898325\pi\)
0.949417 0.314017i \(-0.101675\pi\)
\(510\) 2.52586 + 0.907101i 0.111847 + 0.0401671i
\(511\) 4.35620i 0.192707i
\(512\) 19.8193 10.9176i 0.875900 0.482493i
\(513\) 24.7281 24.7281i 1.09177 1.09177i
\(514\) 5.26802 25.2284i 0.232363 1.11278i
\(515\) 1.28624 9.19880i 0.0566783 0.405347i
\(516\) 24.5404 + 10.7159i 1.08033 + 0.471743i
\(517\) −37.3923 37.3923i −1.64451 1.64451i
\(518\) 11.1231 + 16.9944i 0.488722 + 0.746693i
\(519\) 29.2300 1.28306
\(520\) −6.32191 + 0.182799i −0.277234 + 0.00801628i
\(521\) 18.4923 0.810164 0.405082 0.914280i \(-0.367243\pi\)
0.405082 + 0.914280i \(0.367243\pi\)
\(522\) −27.8308 42.5213i −1.21812 1.86111i
\(523\) −3.63846 3.63846i −0.159099 0.159099i 0.623069 0.782167i \(-0.285886\pi\)
−0.782167 + 0.623069i \(0.785886\pi\)
\(524\) −4.51123 1.96990i −0.197074 0.0860555i
\(525\) −4.77662 + 16.7466i −0.208469 + 0.730881i
\(526\) 7.24020 34.6731i 0.315688 1.51182i
\(527\) 1.04457 1.04457i 0.0455020 0.0455020i
\(528\) −48.8425 1.85799i −2.12559 0.0808587i
\(529\) 22.6968i 0.986817i
\(530\) −0.136196 0.288836i −0.00591599 0.0125462i
\(531\) 60.0387i 2.60546i
\(532\) −4.22620 10.7780i −0.183229 0.467287i
\(533\) 3.96807 3.96807i 0.171876 0.171876i
\(534\) 60.5144 + 12.6362i 2.61871 + 0.546821i
\(535\) −17.2515 2.41222i −0.745848 0.104289i
\(536\) 16.1200 22.6966i 0.696279 0.980344i
\(537\) 25.0551 + 25.0551i 1.08121 + 1.08121i
\(538\) 11.7173 7.66913i 0.505167 0.330640i
\(539\) −23.3699 −1.00661
\(540\) −16.9069 + 27.5365i −0.727556 + 1.18498i
\(541\) 12.8284 0.551535 0.275767 0.961224i \(-0.411068\pi\)
0.275767 + 0.961224i \(0.411068\pi\)
\(542\) −27.4581 + 17.9717i −1.17943 + 0.771952i
\(543\) −26.9068 26.9068i −1.15468 1.15468i
\(544\) 1.41268 0.849728i 0.0605684 0.0364318i
\(545\) −14.6407 + 11.0486i −0.627138 + 0.473271i
\(546\) 4.82156 + 1.00680i 0.206344 + 0.0430873i
\(547\) 15.8672 15.8672i 0.678431 0.678431i −0.281214 0.959645i \(-0.590737\pi\)
0.959645 + 0.281214i \(0.0907370\pi\)
\(548\) 2.75406 1.07990i 0.117648 0.0461310i
\(549\) 19.6215i 0.837423i
\(550\) 8.81591 + 28.3296i 0.375912 + 1.20798i
\(551\) 31.7324i 1.35184i
\(552\) 0.757651 + 4.47185i 0.0322478 + 0.190335i
\(553\) 1.85295 1.85295i 0.0787956 0.0787956i
\(554\) 6.06095 29.0257i 0.257505 1.23319i
\(555\) 62.4205 47.1059i 2.64960 1.99953i
\(556\) −3.46336 + 7.93136i −0.146879 + 0.336365i
\(557\) −4.50875 4.50875i −0.191042 0.191042i 0.605104 0.796146i \(-0.293131\pi\)
−0.796146 + 0.605104i \(0.793131\pi\)
\(558\) 21.5178 + 32.8759i 0.910920 + 1.39175i
\(559\) −4.59752 −0.194454
\(560\) 6.11435 + 8.77724i 0.258379 + 0.370906i
\(561\) −3.56105 −0.150348
\(562\) 0.100813 + 0.154026i 0.00425252 + 0.00649721i
\(563\) 7.11349 + 7.11349i 0.299798 + 0.299798i 0.840935 0.541137i \(-0.182006\pi\)
−0.541137 + 0.840935i \(0.682006\pi\)
\(564\) −29.3749 + 67.2709i −1.23691 + 2.83262i
\(565\) −19.4702 2.72245i −0.819117 0.114534i
\(566\) −4.17148 + 19.9771i −0.175340 + 0.839700i
\(567\) 3.88890 3.88890i 0.163318 0.163318i
\(568\) 2.17866 + 12.8590i 0.0914146 + 0.539552i
\(569\) 18.4963i 0.775404i −0.921785 0.387702i \(-0.873269\pi\)
0.921785 0.387702i \(-0.126731\pi\)
\(570\) −40.3160 + 19.0104i −1.68865 + 0.796258i
\(571\) 31.1985i 1.30562i 0.757523 + 0.652808i \(0.226409\pi\)
−0.757523 + 0.652808i \(0.773591\pi\)
\(572\) 7.81270 3.06345i 0.326665 0.128089i
\(573\) −28.7042 + 28.7042i −1.19913 + 1.19913i
\(574\) −9.29090 1.94006i −0.387795 0.0809766i
\(575\) 2.40611 1.33814i 0.100342 0.0558042i
\(576\) 14.4435 + 41.4011i 0.601813 + 1.72505i
\(577\) 21.5066 + 21.5066i 0.895334 + 0.895334i 0.995019 0.0996855i \(-0.0317837\pi\)
−0.0996855 + 0.995019i \(0.531784\pi\)
\(578\) −20.0154 + 13.1004i −0.832533 + 0.544906i
\(579\) −18.8029 −0.781423
\(580\) 6.82023 + 28.5160i 0.283195 + 1.18406i
\(581\) 18.9270 0.785226
\(582\) 26.8535 17.5760i 1.11311 0.728550i
\(583\) 0.299613 + 0.299613i 0.0124087 + 0.0124087i
\(584\) 5.96561 8.39943i 0.246859 0.347571i
\(585\) 1.69720 12.1379i 0.0701704 0.501839i
\(586\) −23.3078 4.86698i −0.962838 0.201053i
\(587\) 2.12698 2.12698i 0.0877898 0.0877898i −0.661848 0.749638i \(-0.730228\pi\)
0.749638 + 0.661848i \(0.230228\pi\)
\(588\) 11.8424 + 30.2015i 0.488371 + 1.24549i
\(589\) 24.5343i 1.01092i
\(590\) 11.7077 32.6007i 0.482000 1.34215i
\(591\) 55.2708i 2.27354i
\(592\) 1.82596 48.0004i 0.0750465 1.97281i
\(593\) −14.9993 + 14.9993i −0.615948 + 0.615948i −0.944490 0.328541i \(-0.893443\pi\)
0.328541 + 0.944490i \(0.393443\pi\)
\(594\) 8.76372 41.9692i 0.359580 1.72202i
\(595\) 0.469456 + 0.622082i 0.0192458 + 0.0255029i
\(596\) 0.653907 + 0.285539i 0.0267851 + 0.0116961i
\(597\) −16.8977 16.8977i −0.691577 0.691577i
\(598\) −0.426457 0.651561i −0.0174391 0.0266443i
\(599\) −31.8821 −1.30267 −0.651334 0.758791i \(-0.725790\pi\)
−0.651334 + 0.758791i \(0.725790\pi\)
\(600\) 32.1437 25.7486i 1.31226 1.05118i
\(601\) −36.5855 −1.49236 −0.746178 0.665747i \(-0.768113\pi\)
−0.746178 + 0.665747i \(0.768113\pi\)
\(602\) 4.25845 + 6.50626i 0.173561 + 0.265175i
\(603\) 38.1461 + 38.1461i 1.55343 + 1.55343i
\(604\) −2.68310 1.17162i −0.109174 0.0476725i
\(605\) −8.89761 11.7903i −0.361739 0.479345i
\(606\) −5.34959 + 25.6190i −0.217312 + 1.04070i
\(607\) −8.79118 + 8.79118i −0.356823 + 0.356823i −0.862640 0.505818i \(-0.831191\pi\)
0.505818 + 0.862640i \(0.331191\pi\)
\(608\) −6.61124 + 26.5693i −0.268121 + 1.07753i
\(609\) 22.8346i 0.925304i
\(610\) −3.82625 + 10.6544i −0.154920 + 0.431383i
\(611\) 12.6029i 0.509858i
\(612\) 1.16620 + 2.97415i 0.0471409 + 0.120223i
\(613\) 9.74539 9.74539i 0.393613 0.393613i −0.482360 0.875973i \(-0.660220\pi\)
0.875973 + 0.482360i \(0.160220\pi\)
\(614\) −47.4646 9.91122i −1.91551 0.399984i
\(615\) −5.06044 + 36.1909i −0.204057 + 1.45936i
\(616\) −11.5718 8.21875i −0.466241 0.331143i
\(617\) 15.9154 + 15.9154i 0.640729 + 0.640729i 0.950735 0.310005i \(-0.100331\pi\)
−0.310005 + 0.950735i \(0.600331\pi\)
\(618\) 14.3142 9.36885i 0.575801 0.376870i
\(619\) −6.47284 −0.260165 −0.130083 0.991503i \(-0.541524\pi\)
−0.130083 + 0.991503i \(0.541524\pi\)
\(620\) −5.27315 22.0475i −0.211775 0.885449i
\(621\) −3.97850 −0.159652
\(622\) −13.7192 + 8.97945i −0.550091 + 0.360043i
\(623\) 12.6937 + 12.6937i 0.508562 + 0.508562i
\(624\) −7.91794 8.54416i −0.316971 0.342040i
\(625\) −21.2382 13.1885i −0.849530 0.527541i
\(626\) −44.3104 9.25259i −1.77100 0.369808i
\(627\) 41.8202 41.8202i 1.67014 1.67014i
\(628\) −4.64328 + 1.82069i −0.185287 + 0.0726533i
\(629\) 3.49966i 0.139541i
\(630\) −18.7491 + 8.84087i −0.746984 + 0.352229i
\(631\) 38.0648i 1.51533i 0.652641 + 0.757667i \(0.273661\pi\)
−0.652641 + 0.757667i \(0.726339\pi\)
\(632\) −6.11031 + 1.03525i −0.243055 + 0.0411800i
\(633\) −19.0567 + 19.0567i −0.757438 + 0.757438i
\(634\) −0.354390 + 1.69717i −0.0140746 + 0.0674031i
\(635\) −19.2159 2.68690i −0.762561 0.106626i
\(636\) 0.235372 0.539021i 0.00933312 0.0213736i
\(637\) −3.93836 3.93836i −0.156044 0.156044i
\(638\) −21.3055 32.5515i −0.843492 1.28873i
\(639\) −25.2738 −0.999816
\(640\) 0.230590 25.2972i 0.00911488 0.999958i
\(641\) 2.47864 0.0979003 0.0489501 0.998801i \(-0.484412\pi\)
0.0489501 + 0.998801i \(0.484412\pi\)
\(642\) −17.5704 26.8449i −0.693450 1.05949i
\(643\) −22.2075 22.2075i −0.875780 0.875780i 0.117315 0.993095i \(-0.462571\pi\)
−0.993095 + 0.117315i \(0.962571\pi\)
\(644\) −0.527062 + 1.20701i −0.0207692 + 0.0475631i
\(645\) 23.8975 18.0343i 0.940963 0.710100i
\(646\) −0.407739 + 1.95265i −0.0160423 + 0.0768260i
\(647\) 19.5503 19.5503i 0.768603 0.768603i −0.209258 0.977861i \(-0.567105\pi\)
0.977861 + 0.209258i \(0.0671048\pi\)
\(648\) −12.8240 + 2.17274i −0.503776 + 0.0853531i
\(649\) 45.9617i 1.80415i
\(650\) −3.28850 + 6.25986i −0.128985 + 0.245532i
\(651\) 17.6549i 0.691948i
\(652\) −29.4787 + 11.5590i −1.15447 + 0.452683i
\(653\) 1.86959 1.86959i 0.0731625 0.0731625i −0.669579 0.742741i \(-0.733525\pi\)
0.742741 + 0.669579i \(0.233525\pi\)
\(654\) −33.0696 6.90536i −1.29312 0.270021i
\(655\) −4.39305 + 3.31523i −0.171651 + 0.129537i
\(656\) 15.2575 + 16.4642i 0.595704 + 0.642818i
\(657\) 14.1169 + 14.1169i 0.550753 + 0.550753i
\(658\) −17.8352 + 11.6734i −0.695288 + 0.455077i
\(659\) −1.00511 −0.0391535 −0.0195767 0.999808i \(-0.506232\pi\)
−0.0195767 + 0.999808i \(0.506232\pi\)
\(660\) −28.5929 + 46.5698i −1.11298 + 1.81273i
\(661\) −5.91229 −0.229961 −0.114981 0.993368i \(-0.536681\pi\)
−0.114981 + 0.993368i \(0.536681\pi\)
\(662\) 8.17786 5.35254i 0.317841 0.208032i
\(663\) −0.600118 0.600118i −0.0233066 0.0233066i
\(664\) −36.4942 25.9196i −1.41625 1.00588i
\(665\) −12.8188 1.79240i −0.497091 0.0695065i
\(666\) 91.1189 + 19.0268i 3.53079 + 0.737274i
\(667\) −2.55271 + 2.55271i −0.0988412 + 0.0988412i
\(668\) 15.8614 + 40.4512i 0.613696 + 1.56510i
\(669\) 1.87085i 0.0723312i
\(670\) −13.2746 28.1518i −0.512841 1.08760i
\(671\) 15.0209i 0.579876i
\(672\) −4.75744 + 19.1192i −0.183522 + 0.737540i
\(673\) 22.2258 22.2258i 0.856742 0.856742i −0.134211 0.990953i \(-0.542850\pi\)
0.990953 + 0.134211i \(0.0428498\pi\)
\(674\) −1.35705 + 6.49889i −0.0522717 + 0.250328i
\(675\) 17.5587 + 31.5724i 0.675836 + 1.21522i
\(676\) 1.83288 + 0.800354i 0.0704952 + 0.0307829i
\(677\) 13.0165 + 13.0165i 0.500263 + 0.500263i 0.911520 0.411256i \(-0.134910\pi\)
−0.411256 + 0.911520i \(0.634910\pi\)
\(678\) −19.8301 30.2974i −0.761571 1.16357i
\(679\) 9.31969 0.357657
\(680\) −0.0532723 1.84236i −0.00204290 0.0706515i
\(681\) −72.8771 −2.79266
\(682\) 16.4726 + 25.1676i 0.630769 + 0.963719i
\(683\) 5.53879 + 5.53879i 0.211936 + 0.211936i 0.805089 0.593153i \(-0.202117\pi\)
−0.593153 + 0.805089i \(0.702117\pi\)
\(684\) −48.6234 21.2322i −1.85916 0.811832i
\(685\) 0.458004 3.27552i 0.0174994 0.125151i
\(686\) −4.34556 + 20.8108i −0.165914 + 0.794558i
\(687\) −5.80196 + 5.80196i −0.221359 + 0.221359i
\(688\) 0.699062 18.3768i 0.0266515 0.700609i
\(689\) 0.100983i 0.00384715i
\(690\) 4.77251 + 1.71393i 0.181686 + 0.0652481i
\(691\) 24.6693i 0.938466i −0.883074 0.469233i \(-0.844530\pi\)
0.883074 0.469233i \(-0.155470\pi\)
\(692\) −7.32806 18.6887i −0.278571 0.710437i
\(693\) 19.4487 19.4487i 0.738795 0.738795i
\(694\) −0.584334 0.122017i −0.0221810 0.00463169i
\(695\) 5.82863 + 7.72359i 0.221092 + 0.292972i
\(696\) −31.2708 + 44.0285i −1.18532 + 1.66890i
\(697\) 1.15640 + 1.15640i 0.0438016 + 0.0438016i
\(698\) 33.7006 22.0575i 1.27559 0.834890i
\(699\) 45.4325 1.71841
\(700\) 11.9047 1.14441i 0.449956 0.0432546i
\(701\) −10.8183 −0.408603 −0.204302 0.978908i \(-0.565492\pi\)
−0.204302 + 0.978908i \(0.565492\pi\)
\(702\) 8.54964 5.59587i 0.322685 0.211203i
\(703\) 41.0993 + 41.0993i 1.55009 + 1.55009i
\(704\) 11.0570 + 31.6940i 0.416727 + 1.19451i
\(705\) 49.4363 + 65.5087i 1.86188 + 2.46720i
\(706\) 24.1834 + 5.04982i 0.910156 + 0.190052i
\(707\) −5.37393 + 5.37393i −0.202107 + 0.202107i
\(708\) 59.3973 23.2904i 2.23229 0.875307i
\(709\) 26.0040i 0.976601i 0.872676 + 0.488300i \(0.162383\pi\)
−0.872676 + 0.488300i \(0.837617\pi\)
\(710\) 13.7236 + 4.92847i 0.515036 + 0.184962i
\(711\) 12.0095i 0.450392i
\(712\) −7.09199 41.8587i −0.265784 1.56872i
\(713\) 1.97366 1.97366i 0.0739142 0.0739142i
\(714\) −0.293408 + 1.40512i −0.0109805 + 0.0525855i
\(715\) 1.29926 9.29197i 0.0485897 0.347500i
\(716\) 9.73798 22.3008i 0.363925 0.833418i
\(717\) 0.903206 + 0.903206i 0.0337308 + 0.0337308i
\(718\) −22.0577 33.7007i −0.823184 1.25770i
\(719\) −30.3758 −1.13283 −0.566413 0.824122i \(-0.691669\pi\)
−0.566413 + 0.824122i \(0.691669\pi\)
\(720\) 48.2583 + 8.62947i 1.79848 + 0.321601i
\(721\) 4.96783 0.185012
\(722\) −3.42794 5.23736i −0.127575 0.194914i
\(723\) 13.3497 + 13.3497i 0.496482 + 0.496482i
\(724\) −10.4577 + 23.9489i −0.388656 + 0.890053i
\(725\) 31.5238 + 8.99152i 1.17076 + 0.333937i
\(726\) 5.56098 26.6314i 0.206387 0.988383i
\(727\) −0.0125971 + 0.0125971i −0.000467201 + 0.000467201i −0.707340 0.706873i \(-0.750105\pi\)
0.706873 + 0.707340i \(0.250105\pi\)
\(728\) −0.565064 3.33515i −0.0209427 0.123609i
\(729\) 37.9200i 1.40444i
\(730\) −4.91257 10.4183i −0.181823 0.385597i
\(731\) 1.33983i 0.0495555i
\(732\) −19.4119 + 7.61163i −0.717483 + 0.281334i
\(733\) 24.1323 24.1323i 0.891347 0.891347i −0.103303 0.994650i \(-0.532941\pi\)
0.994650 + 0.103303i \(0.0329411\pi\)
\(734\) 30.7663 + 6.42440i 1.13560 + 0.237129i
\(735\) 35.9199 + 5.02256i 1.32493 + 0.185260i
\(736\) 2.66920 1.60552i 0.0983882 0.0591804i
\(737\) 29.2022 + 29.2022i 1.07568 + 1.07568i
\(738\) −36.3955 + 23.8214i −1.33974 + 0.876879i
\(739\) 1.06565 0.0392006 0.0196003 0.999808i \(-0.493761\pi\)
0.0196003 + 0.999808i \(0.493761\pi\)
\(740\) −45.7669 28.1000i −1.68242 1.03298i
\(741\) 14.0953 0.517804
\(742\) 0.142908 0.0935354i 0.00524631 0.00343379i
\(743\) −1.75392 1.75392i −0.0643452 0.0643452i 0.674202 0.738547i \(-0.264488\pi\)
−0.738547 + 0.674202i \(0.764488\pi\)
\(744\) 24.1775 34.0413i 0.886388 1.24801i
\(745\) 0.636776 0.480545i 0.0233297 0.0176058i
\(746\) −9.55256 1.99470i −0.349744 0.0730311i
\(747\) 61.3358 61.3358i 2.24416 2.24416i
\(748\) 0.892767 + 2.27682i 0.0326428 + 0.0832487i
\(749\) 9.31671i 0.340425i
\(750\) −7.46170 45.4377i −0.272463 1.65915i
\(751\) 10.4197i 0.380220i −0.981763 0.190110i \(-0.939115\pi\)
0.981763 0.190110i \(-0.0608845\pi\)
\(752\) 50.3751 + 1.91629i 1.83699 + 0.0698801i
\(753\) −35.7735 + 35.7735i −1.30366 + 1.30366i
\(754\) 1.89521 9.07611i 0.0690195 0.330533i
\(755\) −2.61281 + 1.97177i −0.0950899 + 0.0717599i
\(756\) −15.8382 6.91600i −0.576029 0.251532i
\(757\) 1.88156 + 1.88156i 0.0683863 + 0.0683863i 0.740473 0.672086i \(-0.234602\pi\)
−0.672086 + 0.740473i \(0.734602\pi\)
\(758\) −0.258008 0.394198i −0.00937129 0.0143179i
\(759\) −6.72845 −0.244227
\(760\) 22.2619 + 21.0107i 0.807526 + 0.762138i
\(761\) 45.0253 1.63216 0.816082 0.577935i \(-0.196141\pi\)
0.816082 + 0.577935i \(0.196141\pi\)
\(762\) −19.5712 29.9018i −0.708989 1.08323i
\(763\) −6.93678 6.93678i −0.251128 0.251128i
\(764\) 25.5487 + 11.1562i 0.924319 + 0.403619i
\(765\) 3.53728 + 0.494606i 0.127891 + 0.0178825i
\(766\) 3.56064 17.0518i 0.128651 0.616106i
\(767\) −7.74558 + 7.74558i −0.279677 + 0.279677i
\(768\) 35.3559 30.3497i 1.27580 1.09515i
\(769\) 40.0379i 1.44380i −0.691996 0.721902i \(-0.743268\pi\)
0.691996 0.721902i \(-0.256732\pi\)
\(770\) −14.3531 + 6.76800i −0.517251 + 0.243902i
\(771\) 53.0722i 1.91135i
\(772\) 4.71395 + 12.0219i 0.169659 + 0.432679i